

Pompa di calore raffreddata ad acqua per installazione interna

ELFOEnergy Ground Medium² SERIE WSHN-XEE2 12.2-120.2

BOLLETTINO TECNICO

GRANDEZZE	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
POTENZIALITÀ FRIGORIFERA KW	34,5	48,6	58,0	68,1	82,3	102	120	139	168	187	218	241	293	348
POTENZIALITÀ TERMICA KW	40,3	56,6	66,8	79,2	93,6	119	139	162	195	217	251	278	342	407

Pagina

Soluzioni impiantistiche	4
Caratteristiche tecniche unità standard	5
Configurazione unità	6
Opzioni di configurazione a bordo unità	7
Accessori forniti separatamente	8
Dati tecnici generali	11
Regolazione elettronica	18
Funzionalità natural cooling	19
Configurazioni	20
Prestazioni	34
Dimensionali	42

ELFOEnergy Ground Medium²

tre soluzioni per soddisfare le diverse esigenze impiantistiche

GROUND MEDIUM² - SOLO FREDDO o SOLO CALDO

WSH-XEE2:

- Refrigeratore d'acqua o pompa di calore non reversibile
- Recupero energetico parziale

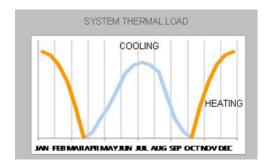
GROUND MEDIUM² - POMPA DI CALORE

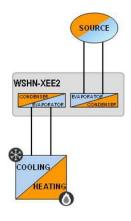
WSHN-XEE2:

- Pompa di calore ad inversione di ciclo
- Recupero energetico parziale
- Produzione di acqua calda sanitaria con valvola deviatrice ACS

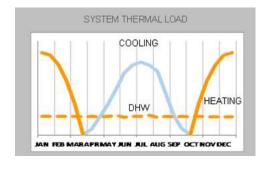
GROUND MEDIUM2 - MULTIFUNZIONE

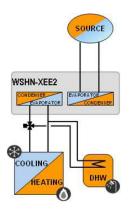
WSHN-XEE2 MF:


- Pompa di calore ad inversione di ciclo
- Produzione contemporanea di acqua calda e refrigerata

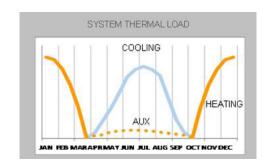


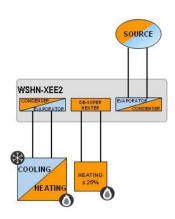
Unità standard:


 Produzione di acqua refrigerata o calda



Unità con accessorio valvola deviatrice ACS


- Produzione di acqua refrigerata o calda
- Produzione prioritaria di acqua calda sanitaria, con valvola 3 vie



Unità con opzione recupero energetico parziale

- Produzione di acqua refrigerata o calda
- Produzione gratuita di acqua calda da recupero energetico parziale

Caratteristiche tecniche unità standard

Compressore

Compressori ermetici Scroll a spirale orbitante completi di protezione del motore contro le sovratemperature, sovracorrenti e contro temperature eccessive del gas di mandata. Sono montati su gommini antivibranti ed è completo di carica olio. I compressori sono provvisti di capottino di isolamento termico e acustico Un riscaldatore dell'olio ad inserimento automatico previene la diluizione dell'olio da parte del refrigerante all'arresto del compressore. I compressori sono collegati in TANDEM su un unico circuito frigo e hanno una equalizzazione bifasica dell'olio.

Struttura

Struttura portante realizzata in lamiera zinco-magnesio in grado di fornire ottime caratteristiche meccaniche e lunga resistenza alla corrosione.

Pannellatura

Pannellatura esterna dell'unità in zinco-magnesio preverniciato RAL 9003 rivestita sul lato interno con materiale termoisolante e fonoassorbente. Ogni pannellatura è facilmente rimovibile per permettere la completa accessibilità ai componenti interni.

Scambiatore lato utilizzo

Scambiatore ad espansione diretta del tipo a piastre saldobrasate INOX AISI 316 con elevata superficie di scambio e completo di isolamento termico esterno anticondensa.

Le connessioni idrauliche dello scambiatore sono di tipo Victaulic.

Scambiatore lato sorgente

Scambiatore ad espansione diretta del tipo a piastre saldobrasate INOX AISI 316 con elevata superficie di scambio e completo di isolamento termico esterno anticondensa.

Le connessioni idrauliche dello scambiatore sono di tipo Victaulic.

Circuito frigorifero

Circuito frigorifero completo di:

- · filtro deidratore antiacido
- indicatore di passaggio del liquido e di umidità
- valvola di espansione elettronica
- valvola di inversione del ciclo a 4 vie
- · pressostato di sicurezza alta pressione
- trasduttore di bassa pressione
- · trasduttore di alta pressione
- valvola di sicurezza per alta pressione
- valvola di sicurezza per bassa pressione
- carica refrigerante

Circuito idraulico

Lato utilizzo

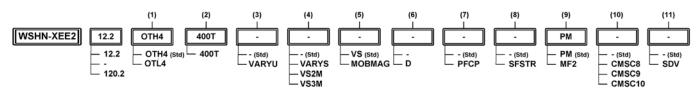
- giunti di collegamento di tipo victaulic
- pressostato differenziale lato acqua
- rubinetto di scarico (con gruppi idronici)
- · pressostato di minima carica impianto (con gruppi idronici)
- · valvola di sicurezza (con gruppi idronici)

Lato sorgente

- giunti di collegamento di tipo victaulic
- pressostato differenziale lato acqua
- rubinetto di scarico (con gruppi idronici)
- pressostato di minima carica impianto (con gruppi idronici)
- valvola di sicurezza (con gruppi idronici)

Quadro elettrico

La sezione di potenza comprende:


- sezionatore generale bloccoporta
- trasformatore di isolamento per l'alimentazione del circuito ausiliario
- salvamotore protezione compressore (per grandezze da 12.2 a 80.2)
- fusibili protezione compressore (per grandezze da 100.2 a 120.2)
- contattore comando compressore
- doppio avvolgimento su compressore per riduzione corrente di spunto (per grandezze da 100.2 a 120.2)

La sezione di controllo comprende:

- terminale di interfaccia con display grafico
- funzione di visualizzazione dei valori impostati, dei codici guasti e dell'indice parametri
- tasti per controllo ON/OFF, modalità di funzionamento caldo e freddo reset allarmi
- regolazione proporzionale-integrale della temperatura dell'acqua
- programmatore giornaliero, settimanale del set-point di temperatura e dell'accensione o spegnimento dell'unità
- compensazione del set point con segnale 0-10 V
- gestione accensione unità da locale o da remoto (seriale)
- · protezione antigelo lato acqua
- protezione e temporizzazione compressore
- funzionalità di preallarme per antigelo acqua e per alta pressione gas refrigerante
- sistema di autodiagnosi con visualizzazione immediata del codice guasto
- · controllo rotazione automatica avviamenti compressori
- visualizzazione ore funzionamento compressore
- ingresso comando ON/OFF a distanza
- contatto pulito per cambio estate / inverno
- contatti puliti per la remotizzazione della segnalazione di allarme cumulativo
- ingresso per demand limit (limitazione potenza assorbita in funzione di un segnale esterno 0÷10V)
- · abilitazione doppio set point
- · contatti puliti per stato compressori
- monitore di fase
- funzionalità ECOSHARE per la gestione automatica di un gruppo di unità
- uscita segnale 0÷10V e contatto pulito per riscaldatore ausiliario
- abilitazione preparazione Acqua Calda Sanitaria in funzione di consenso remoto
- numerazione cavi quadri elettrici
- predisposizione per gestione natural cooling (a cura del cliente)
- predisposizione comando singola pompa on/off o modulante lato utilizzo e lato sorgente

Accessori

- VS2MX Valvola 2 vie modulante lato sorgente
- VS3MX Valvola 3 vie modulante lato sorgente
- VACSUX Valvola deviatrice ACS lato utilizzo
- IFWX Filtro a maglia di acciaio sul lato acqua
- CMMBX Modulo di comunicazione seriale con supervisore (Modbus)
- CMSLWX Modulo di comunicazione seriale LonWorks
- BACX Modulo di comunicazione seriale BACnet
- RCTX Controllo a distanza
- SPCX Compensazione del set point con sonda aria esterna
- AVIBX Supporti antivibranti

(1) Versione

OTH4 - Condizioni operative superiori ai 4°C (standard) OTL4 - Condizioni operative inferiori ai 4°C

(2) Tensione di alimentazione

Tensione di alimentazione 400/3/50

(3) Gruppo idronico lato utilizzo

Consultare gli schemi dei gruppi idronici riportati

(4) Gruppo idronico lato sorgente

Consultare gli schemi dei gruppi idronici riportati

(5) Mobile maggiorato

VS - Mobile standard MOBMAG - Mobile maggiorato

(6) Dispositivo recupero parziale

(-) non richiesto (standard)

D - Recupero energetico parziale (solo per grandezze da 12.2 a 80.2)

(7) Condensatori di rifasamento

(-) non richiesto (standard)

PFCP - Condensatori di rifasamento (cosfi > 0.9)

(8) Soft starter

(-) non richiesto (standard)

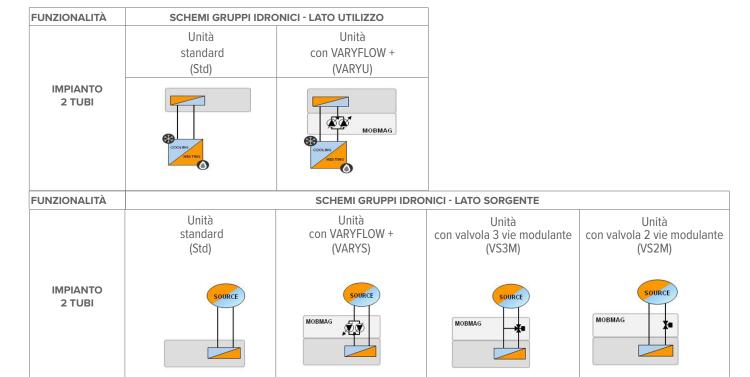
SFSTR - Dispositivo riduzione corrente di spunto (solo per grandezze da 12.2 a 80.2)

(9) Monitore di fase

PM - Monitore di fase (standard) MF2 - Monitore di fase multifunzione

(10) Moduli di comunicazione

(-) non richiesto (standard)


CMSC8 - Modulo di comunicazione seriale per supervisore BACnet CMSC9 - Modulo di comunicazione seriale per supervisore Modbus CMSC10 - Modulo di comunicazione seriale per supervisore LonWorks

(11) Rubinetto di intercettazione

(-) non richiesto (standard)

SDV - Rubinetto di intercettazione sulla mandata e sull'aspirazione dei compressori (solo per grandezze da 12.2 a 80.2)

Gruppi idronici

Opzioni di configurazione a bordo unità

MOBMAG Mobile maggiorato

Il mobile maggiorato è una configurazione che viene selezionata automaticamente in abbinamento a qualsiasi gruppo idronico (lato utilizzo e lato sorgente), ad ogni valvola (2 vie o 3 vie modulante).

Per facilitare la movimentazione dell'unità è stata rivista la struttura del mobile maggiorato, modificata la posizione dei componenti, ottenendo una semplificazione delle operazioni di smontaggio, risparmiando il 50% del tempo. Le istruzioni per lo smontaggio sono riportate in maniera dettagliata all'interno del manuale installazione uso e manutenzione.

SDV Rubinetto di intercettazione sulla mandata e sull'aspirazione dei compressori

La presenza dei rubinetti di intercettazione sulla mandata e sull'aspirazione consente di isolare e sostituire i compressori senza scaricare il refrigerante dell'intero circuito frigorifero. Risultano così agevolate le attività di straordinaria manutenzione. Opzione disponibile solo per le grandezze da 12.2 a 80.2.

CMSC9 Modulo di comunicazione seriale per supervisore Modbus

Consente il collegamento seriale a sistemi di supervisione, utilizzando Modbus come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

Il dispositivo è installato e cablato a bordo unità.

🛕 La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

CMSC8 Modulo di comunicazione seriale per supervisore BACnet

Consente il collegamento seriale a sistemi di supervisione, utilizzando BACnet/IP come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

Il dispositivo è installato e cablato a bordo unità.

▲ Le attività di configurazione e conduzione della rete BACnet sono a carico del Cliente.

🛕 La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

CMSC10 Modulo di comunicazione seriale per supervisore LonWorks

Consente il collegamento seriale ai sistemi di supervisione che utilizzano il protocollo di comunicazione LonWorks. Permette l'accesso ad un elenco di variabili di funzionamento, comandi ed allarmi conforme allo standard Echelon®. Il dispositivo è installato e cablato a bordo unità.

Le attività di configurazione e conduzione della rete LonWorks sono a carico del Cliente

🛕 La tecnologia LonWorks impiega il protocollo LonTalk® per la comunicazione tra i nodi della rete. Contattare il fornitore del servizio per ulteriori informazioni.

MF2 Monitore di fase multifunzione

Il monitore di fase multifunzione controlla la presenza e l'esatta sequenza delle fasi, verifica eventuali anomalie di tensione (+/-10%), ripristina automaticamente il funzionamento dell'unità appena viene ristabilita la corretta alimentazione. Questo controllo consente di:

- salvaguardare i componenti interni dell'unità, che essendo alimentati da una tensione anomala potrebbero funzionare in modo non corretto o rompersi;
- identificare rapidamente fra gli allarmi dei componenti dell'unità, la reale causa del malfunzionamento dovuto allo sbalzo di tensione.

SFSTR Dispositivo riduzione corrente di spunto

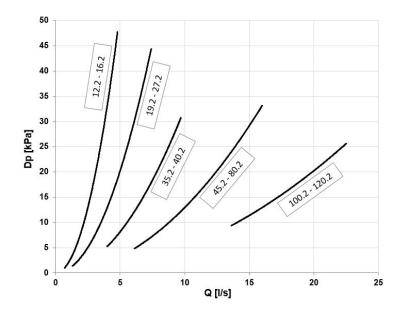
Dispositivo elettronico che avvia automaticamente i compressori in modo graduale, riducendo il picco di corrente che si genera negli avviamenti stella triangolo e riducendo dunque lo stress meccanico sul motore e le sollecitazioni elettrodinamiche sui cavi di alimentazione e sulla rete elettrica.

Opzione disponibile solo per le grandezze da 12.2 a 80.2.

Per le grandezze da 100,2 a 120,2 il controllo della corrente di spunto è di serie. La funzione viene garantita dalla presenza nel motore del compressore di taglia maggiore di un doppio avvolgimento. Questa soluzione permette l'avviamento del compressore in due fasi, ottenendo 2 picchi di corrente ridotti, distanziati uno dall'altro.

PFCP Condensatori di rifasamento (cosfi > 0,9)

Componente necessario per abbassare lo sfasamento tra corrente e tensione nei componenti elettromagnetici dell'unità (es. motori asincroni). Il componente permette di portare il fattore di potenza cosfi a valori mediamente superiori a 0.9, riducendo la potenza reattiva della rete. Ciò comporta un beneficio economico che il fornitore di energia riconosce all'utente finale.


Accessori forniti separatamente

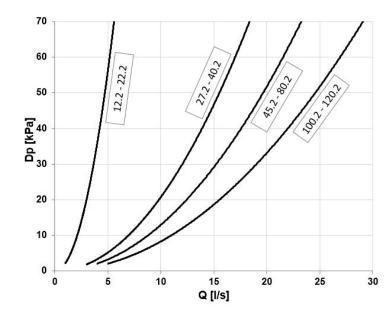
VS2MX

Valvola 2 vie modulante lato sorgente

La valvola a due vie modulante lato sorgente, installata in uscita allo scambiatore lato sorgente, modula la portata d'acqua tramite un segnale 0-10 V emesso dal controllo elettronico dell'unità.

Perdite di carico valvola 2 vie modulante

Q = Portata acqua [l/s] DP = Perdite di carico [kPa]


VS3MX

Valvola 3 vie modulante lato sorgente

La valvola a tre vie modulante mettendo in comunicazione l'ingresso e l'uscita dello scambiatore lato sorgente, svolge la funzione di by-pass riducendo la portata d'acqua all'interno dello scambiatore, mantenendo tuttavia costante la portata in uscita dalla macchina.

La modulazione della valvola è gestita tramite un segnale 0-10 V generato dal controllo elettronico dell'unità.

Perdite di carico valvola 3 vie modulante

Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

Accessori forniti separatamente

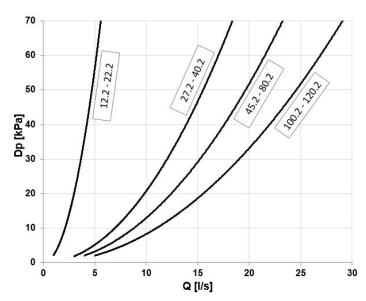
VACSUX Valvola deviatrice ACS lato utilizzo

La valvola deviatrice acqua calda sanitaria lato utilizzo è fornita come accessorio separato dall'unità.

La chiamata dell'ACS avviene con la chiusura di un contatto pulito presente nel quadro elettrico dell'unità. In riscaldamento, la regolazione comanda la commutazione della valvola 3 vie perchè devi il flusso da impianto all'accumulo acqua calda sanitaria (ACS), cambia il set da quello dell'impianto a quello dell'ACS, effettua la termoregolazione e in base alla distanza dal set ACS attiva o disattiva i compressori. In raffreddamento, la regolazione spegne i compressori per il cambio di modo, comanda la commutazione della valvola 3 vie e avvia i compressori dopo il tempo di sicurezza dovuto all'on/off.

Per le grandezze dalla 12.2 alla 22.2 la valvola deviatrice ACS è da 2".

Per le grandezze dalla 27.2 alla 40.2 la valvola deviatrice ACS è da 2"1/2.

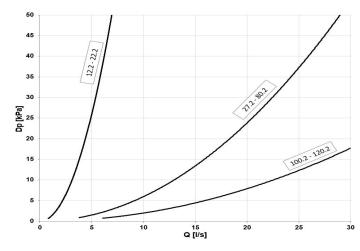

Per le grandezze dalla 45.2 alla 80.2 la valvola deviatrice ACS è da 3".

Per le grandezze dalla 100.2 alla 120.2 la valvola deviatrice ACS è da 4".

La valvola deviatrice ACS ha un grado di protezione IP 40.

E' pertanto obbligatorio che il cliente preveda una protezione per la valvola da liquidi esterni.

Perdite di carico valvola deviatrice ACS


Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

IFWX Filtro a maglia d'acciao sul lato acqua

Il dispositivo evita lo sporcamento dello scambiatore da parte di eventuali impurità presenti nel circuito idraulico. Il filtro meccanico a maglia d'acciaio inossidabile deve essere posizionato sulla linea d'ingresso dell'acqua. Deve essere facilmente smontabile per la periodica manutenzione e pulizia. Utilizzabile sia sul lato utilizzo, lato sorgente.

▲ Verificare la presenza delle necessarie intercettazioni idrauliche sull'impianto, per effettuare la periodica manutenzione

Perdite di carico filtro a maglia d'acciaio

Q = Portata acqua [I/s] DP = Perdite di carico [kPa]

Accessori forniti separatamente

CMMBX Modulo di comunicazione seriale con supervisore (Modbus)

Consente il collegamento seriale a sistemi di supervisione, utilizzando Modbus come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

🛕 La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

CMSLWX Modulo di comunicazione seriale LonWorks

Consente il collegamento seriale ai sistemi di supervisione che utilizzano il protocollo di comunicazione LonWorks. Permette l'accesso ad un elenco di variabili di funzionamento, comandi ed allarmi conforme allo standard Echelon®.

Le attività di configurazione e conduzione della rete LonWorks sono a carico del Cliente

🛕 La tecnologia LonWorks impiega il protocollo LonTalk® per la comunicazione tra i nodi della rete. Contattare il fornitore del servizio per ulteriori informazioni

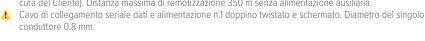
BACX Modulo di comunicazione seriale BACnet

Consente il collegamento seriale a sistemi di supervisione, utilizzando BACnet/IP come protocollo di comunicazione. Permette l'accesso all'elenco completo di variabili di funzionamento, comandi ed allarmi. Con questo accessorio ogni unità può dialogare con i principali sistemi di supervisione.

Le attività di configurazione e conduzione della rete BACnet sono a carico del Cliente.

🛕 La lunghezza totale di ogni singola linea seriale non deve superare i 1000 metri e la linea va collegata in tipologia bus (entra/esci)

RCTX Controllo a distanza


Opzione che consente il pieno controllo di tutte le funzioni dell'unità da posizione remota. Facilmente installabile a parete, replica nell'aspetto e nelle funzioni l'interfaccia utente a bordo dell'unità.

⚠ Tutte le funzionalità del dispositivo possono essere replicate con un normale computer portatile collegato all'unità con un cavo di rete Ethernet e dotato di browser di navigazione internet

🛕 Il dispositivo va installato su parete mediante idonei tasselli e collegato all'unità (installazione e cablaggio a cura del Cliente). Distanza massima di remotizzazione 350 m senza alimentazione ausiliaria.

SPCX Compensazione del set point con sonda aria esterna

La compensazione del set point con sonda aria varia la taratura del set point in funzione della temperatura dell'aria esterna consentendo un risparmio energetico. La sonda viene collegata al modulo principale di regolazione dell'unità e la lunghezza massima del cavo di collegamento è di 20 metri. Il sensore non deve essere influenzato da fattori che ne possano falsare la lettura (ad esempio irraggiamento solare diretto, contatto con fonti di calore esterne etc.), deve quindi essere collocato in un luogo riparato.

AVIBX Supporti antivibranti

I supporti antivibranti in gomma vanno fissati in appositi alloggiamenti sui longheroni di appoggio ed hanno la funzione di smorzare le vibrazioni prodotte dalla macchina riducendo i rumori trasmessi alle strutture di appoggio.

Dati tecnici generali

OTH4 - Condizioni operative superiori ai 4°C - Prestazioni

GRANDEZZE			12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
Pannelli radianti																
Riscaldamento																
Potenzialità termica (EN14511:2018)	1	kW	41,0	57,8	68,5	81,1	94,6	120	141	161	200	222	257	284	350	420
Potenza assorbita totale (EN14511:2018)	2	kW	7,61	11,0	12,8	15,9	17,6	23,8	27,0	32,0	38,5	43,5	49,1	55,4	68,7	83,0
COP (EN 14511:2018)	3		5,39	5,28	5,35	5,10	5,38	5,02	5,20	5,04	5,19	5,10	5,23	5,13	5,10	5,06
ErP Classe energetica Riscaldamento d'ambiente - Clima MEDIO - W35	9		A+++	A+++	-	-		-	-			-		-		-
SCOP - Clima MEDIO - W35	10		5,69	5,45	5,47	4,85	5,97	5,67	5,84	5,68	5,68	5,55	5,63	5,45	5,76	5,61
Raffreddamento																
Potenzialità frigorifera (EN14511:2018)	6	kW	47,8	67,5	80,2	94,0	108	137	164	191	233	259	300	330	398	471
Potenza assorbita totale (EN14511:2018)	2	kW	7,99	11,6	13,7	16,7	18,4	25,3	28,5	34,3	41,1	46,8	53,7	61,8	73,0	86,9
EER (EN 14511:2018)	7		5,98	5,79	5,84	5,62	5,89	5,39	5,74	5,59	5,67	5,53	5,58	5,34	5,45	5,41
Unità terminali																
Riscaldamento																
Potenzialità termica (EN14511:2018)	_4_	kW	40,3	56,6	66,8	79,2	93,6	119	139	_162_	195	217	_251_	278	342	407
Potenza assorbita totale (EN14511:2018)	2	kW	9,47	13,2	15,8	19,1	21,3	28,4	32,3	38,4	45,8	52,0	58,1	65,6	82,6	100
COP (EN 14511:2018)	3		4,25	4,28	4,24	4,15	4,40	4,18	4,29	4,22	4,25	4,18	4,32	4,25	4,15	4,06
Raffreddamento																
Potenzialità frigorifera (EN14511:2018)	8	kW	34,5	48,6	58,0	68,1	82,3	102	120	139	168	187	218	241	293	348
Potenza assorbita totale (EN14511:2018)	2	kW	7,42	10,5	12,4	15,4	17,5	23,8	26,9	32,0	38,1	43,0	48,7	55,1	67,8	81,7
EER (EN 14511:2018)	7		4,65	4,61	4,67	4,41	4,69	4,29	4,45	4,34	4,42	4,34	4,47	4,37	4,32	4,26
SEER	10		5,38	4,78	5,01	4,97	5,3	5,18	5,36	5,37	5,16	5,05	5,25	4,97	5,08	4,95
Radiatori																
Riscaldamento																
Potenzialità termica (EN14511:2018)	_5_	kW	37,5	52,3	61,4	73,0	88,1	112	132	153	181	202	233	258	_ 316	377
Potenza assorbita totale (EN14511:2018)	2	kW	12,0	16,3	19,6	23,1	26,2	34,7	39,4	47,0	55,9	63,4	70,3	79,2	102	125
COP (EN 14511:2018)	3		3,12	3,20	3,13	3,16	3,36	3,23	3,35	3,26	3,23	3,18	3,31	3,26	3,10	3,02
ErP Classe energetica Riscaldamento d'ambiente - Clima MEDIO - W55	9		A+++	A+++	A+++	-	-	-	-	-	-	-	-	-	-	-
SCOP - Clima MEDIO - W55	10		4,51	4,35	4,36	4,40	4,83	4,60	4,69	4,67	4,64	4,61	4,69	4,65	4,67	4,52

Il Prodotto rispetta la Direttiva Europea ErP (Energy Related Products), che comprende il Regolamento delegato (UE) N. 811/2013 della Commissione (potenza termica nominale ≤70 kW alle condizioni di riferimento specificate) ed il Regolamento delegato (UE) N. 813/2013 della Commissione (potenza termica nominale ≤400 kW alle condizioni di riferimento specificate). «Contiene gas fluorurati a effetto serra» (GWP 2087,5).

- 1. Dati riferiti alle seguenti condizioni: Temperatura acqua allo scambiatore interno 30/35°C. Temperatura acqua allo scambiatore esterno 10/7°C. Dati prestazionali calcolati in riferimento alla norma EN14511:2018
- 2. La potenza assorbita totale si ricava sommando la potenza assorbita dal compressore + la quota parte per vincere le perdite di carico interne lato utilizzo e lato sorgente + la potenza assorbita dal circuito ausiliario elettrico
- 3. COP (EN 14511:2018) coefficiente di prestazione in riscaldamento. Rapporto tra la potenza termica resa e la potenza assorbita secondo la norma EN 14511:2018
- 4. Dati riferiti alle seguenti condizioni: Temperatura acqua allo scambiatore interno 40/45°C. Temperatura acqua allo scambiatore esterno 10/7°C. Dati prestazionali calcolati in riferimento alla norma EN14511:2018
- 5. Dati riferiti alle seguenti condizioni: Temperatura acqua allo scambiatore interno 50/55°C. Temperatura acqua allo scambiatore esterno 10/7°C. Dati prestazionali calcolati in riferimento alla norma EN14511:2018
- 6. Dati riferiti alle seguenti condizioni: Temperatura acqua allo scambiatore interno 23/18°C. Temperatura acqua allo scambiatore esterno 30/35°C. Dati prestazionali calcolati in riferimento alla norma EN14511:2018
- 7. EER (EN 14511:2018) coefficiente di prestazione in raffreddamento. Rapporto tra la potenza frigorifera resa e la potenza assorbita secondo norma EN 14511:2018
- 8. Dati riferiti alle seguenti condizioni: Temperatura acqua allo scambiatore interno 12/7°C. Temperatura acqua allo scambiatore esterno 30/35°C. Dati prestazionali calcolati in riferimento alla norma EN14511:2018
- 9. Classe di efficienza energetica stagionale di riscaldamento d'ambiente secondo Regolamento delegato (UE) N. 811/2013 della Commissione. W = Temperatura uscita acqua (°C)
- 10. Dati calcolati in conformità alla Norma EN 14825:2018

OTH4 - Condizioni operative superiori ai 4°C - Caratteristiche costruttive

		12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
								Sc	roll						
								R-4	-10A						
	Nr	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Nr	3	3	3	3	3	3	3	3	3	2	3	2	3	2
	-	3,0	5,8	5,8	5,8	6,6	8,0	10,1	11,0	13,1	12,6	12,6	12,6	12,6	12,6
	kg	3,7	6,5	6,5	6,7	12,0	15,0	17,0	17,5	23,0	24,5	28,0	30,0	35,0	35,0
	Nr	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1								P	HE						
	Nr	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	I/s	1,6	2,3	2,8	3,2	3,9	4,9	5,7	6,6	8,0	8,9	10,4	11,4	13,9	16,5
1								Р	HE						
	Nr	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	I/s	2,0	2,8	3,4	4,0	4,8	6,0	7,0	8,2	9,9	11,0	12,8	14,1	17,3	20,6
		1" 1/4	1" 1/4	1" 1/4	1" 1/4	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"
		2"	2"	2"	2"	3"	3"	3"	3"	3"	3"	3"	3"	4"	4"
3	MPa	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	300	470	470	470	730	950	950	950	1550	2000	2000	2550	2450	3700
	V	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
	1 2	Nr	Nr 2 Nr 3 I 3,0 kg 3,7 Nr 1 1	Nr 2 2 2 Nr 3 3 3 1 3,0 5,8 kg 3,7 6,5 Nr 1 1 1 1 2 1/s 1,6 2,3 1 1 2 1/s 2,0 2,8 1 1 1 2 1/s 2,0 2,8 1 1 1 1 2 1/s 2,0 2,8 1 1 1 1 1 2 1/s 2,0 2,8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nr 2 2 2 2 2 Nr 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Nr 2 2 2 2 2 2 Nr 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Nr 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	Nr 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	Sc R-4 Nr 2 2 2 2 2 2 2 2 2 Nr 3 3 3 3 3 3 3 3 3 I 3,0 5,8 5,8 5,8 6,6 8,0 10,1 kg 3,7 6,5 6,5 6,5 6,7 12,0 15,0 17,0 Nr 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nr 2 2 2 2 2 2 2 2 2	Nr 2 2 2 2 2 2 2 2 2	Nr 2 2 2 2 2 2 2 2 2	Nr 2 2 2 2 2 2 2 2 2	Scroll R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R	Scroll R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R

^{1.} PHE = scambiatore a piastre

^{2.} Dati riferiti alle seguenti condizioni: Temperatura acqua scambiatore interno 12/7°C. Temperatura Acqua scambiatore esterno 30/35°C.

^{3.} Condizioni per circuito lato utilizzo e lato sorgente. Nelle configurazioni con gruppi idronici la massima pressione lato acqua è 600 kPa

Dati tecnici generali

Dati elettrici

Tensione di alimentazione 400/3/50

GRANDEZZE		12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
F.L.A. Corrente assorbita alle	massir	ne cond	lizioni a	mmesse											
F.L.A Totale	А	23,8	31,5	36,4	44,9	51,8	66,8	74,9	89,6	104	119	133	148	188	228
F.L.I. Potenza assorbita a pie	no cario	co (alle ı	nax con	dizioni a	nmess	e)									
F.L.I Totale	kW	14,0	19,5	22,4	26,3	30,2	39,6	44,6	53,1	63,7	72,2	81,0	90,0	116	140
M.I.C. Massima corrente di s	punto d	lell'unità	1												
M.I.C Valore	А	111	126	133	189	196	256	302	340	355	370	468	482	458	499
M.I.C. con accessorio soft start	A	65,2	76,2	80,0	111	118	154	180	201	216	230	284	299	-	-

I dati elettrici si riferiscono all'unità standard; in funzione degli accessori installati, i dati possono subire delle variazioni.

Alimentazione 400/3/50 +/- 10%

Max. sbilanciamento di tensione tra le fasi 2 %

Per tensioni di alimentazione differenti dallo standard consultare l'ufficio tecnico Clivet

Le unità sono conformi a quanto prescritto dalla normativa europea CEI EN 60204 e CEI EN 60335.

Livelli sonori

_			L	ivello di Pote	nza Sonora (d	B)			Livello di	Livello di
GRANDEZZE				Bande d'	ottava (Hz)				Potenza Sonora	Pressione Sonora
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
12.2	78	69	62	56	52	44	43	38	60	44
16.2	78	71	66	63	53	49	46	41	64	49
19.2	78	73	67	63	55	51	47	42	65	49
22.2	78	73	65	62	55	52	47	42	64	49
27.2	78	73	66	62	56	54	49	44	64	49
35.2	81	83	80	67	61	61	52	45	74	58
40.2	81	79	80	67	65	63	55	50	74	58
45.2	81	78	80	69	66	62	55	48	74	58
55.2	81	80	83	70	68	65	57	50	77	60
60.2	81	80	83	71	69	65	57	50	77	61
70.2	82	80	85	73	72	68	60	51	79	63
80.2	82	80	85	73	74	70	61	52	80	63
100.2	83	81	86	74	75	71	62	53	81	64
120.2	84	82	87	75	76	72	63	54	82	65

 $Livelli \ sonori \ si \ riferiscono \ ad \ unit\`a \ a \ pieno \ carico, \ nelle \ condizioni \ nominali \ di \ prova.$

Il livello di pressione sonora è riferito ad 1m di distanza dalla superficie esterna dell'unità funzionante in campo aperto.

Livelli di potenza sonora determinati mediante il metodo intensimetrico (UNI EN ISO 9614-2)

Dati riferiti alle seguenti condizioni:

Te,mperatura acqua ingresso / uscita scambiatore lato utilizzo 12/7 $^{\circ}\mathrm{C}$

Temperatura acqua ingresso / uscita scambiatore lato sorgente 30/35 $^{\circ}\mathrm{C}$

Portate d'acqua ammissibili Portate di acqua minima (Qmin) e massima (Qmax) ammissibili per il corretto funzionamento dell'unità

		12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
Lato	Min [l/s]	0,8	1,0	1,1	1,1	1,8	1,8	2,4	2,4	2,9	2,9	3,8	3,8	9,5	10,5
utilizzo	Max [l/s]	4,2	4,8	4,9	5,1	8,8	9,3	11,4	12,2	15,0	15,4	18,3	19,0	28,0	29,0
Lato	Min [l/s]	0,8	1,0	1,1	1,1	2,2	2,2	2,9	2,9	3,6	3,6	4,3	4,3	9,5	10,5
sorgente	Max [l/s]	4,2	4,8	4,9	5,3	11,0	11,5	14,4	15,0	18,0	18,5	21,3	21,7	28,0	30,0

Fattori di correzione per impiego con glicole

% peso glicole etilenico		5%	10%	15%	20%	25%	30%	35%	40%
Temperatura congelamento	°C	-2,0	-3,9	-6,5	-8,9	-11,8	-15,6	-19,0	-23,4
Temperatura di sicurezza	°C	3	1	-1	-4	-6	-10	-14	-19
Fattore Potenzialità frigorifera sc INTERNO	-	0,995	0,990	0,985	0,981	0,977	0,974	0,971	0,968
Fattore Potenza assorbita compressore sc. INTERNO	-	0,997	0,993	0,990	0,988	0,986	0,984	0,982	0,981
Fattore Portata soluzione glicolata sc. INTERNO	-	1,003	1,010	1,020	1,033	1,050	1,072	1,095	1,124
Fattore Perdite di carico sc. INTERNO	-	1,029	1,060	1,090	1,118	1,149	1,182	1,211	1,243
Fattore Potenzialità frigorifera sc. ESTERNO	_	0,999	0,997	0,995	0,992	0,989	0,986	0,983	0,979
Fattore Potenza assorbita compressore sc. ESTERNO	-	1,003	1,006	1,009	1,013	1,016	1,021	1,026	1,031
Fattore Portata soluzione glicolata sc. ESTERNO	-	1,004	1,011	1,020	1,031	1,043	1,056	1,071	1,088
Fattore Perdite di carico sc. ESTERNO	-	1,027	1,062	1,103	1,149	1,200	1,256	1,318	1,387

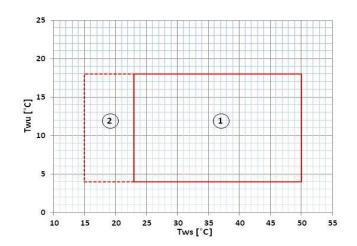
Fattori di correzione incrostazioni

	EVAPOR	ATORE	CONDEN	ISATORE
m² °C / W	F1	FK1	F2	FK2
0.44 x 10 (-4)	1	1	1	1
0.88 x 10 (-4)	0,97	0,99	0,97	1,08
1.76 x 10 (-4)	0,94	0,98	0,92	1,05

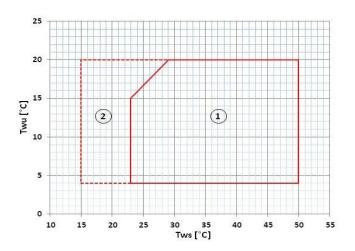
F1 = Fattore correzione potenza frigorifera

FK1 = Fattore correzione potenza assorbita dai compressori

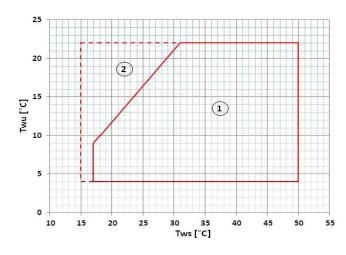
Tarature protezioni e controlli

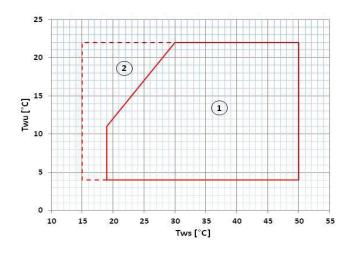

		INTERVENTO	RIARMO	VALORE
Pressostato di alta pressione (lato gas)	[kPa]	4050	3300	-
Allarme di bassa pressione (lato gas)	[kPa]	450	600	-
Pressostato di bassa pressione (GEO) (lato gas)	[kPa]	200	350	-
Protezione antigelo	[°C]	4	6,0	-
Valvola di sicurezza alta pressione (lato gas)	[kPa]	-	-	4500
Valvola di sicurezza bassa pressione (lato gas)	[kPa]	-	-	3000
Max n° avviamenti del compressore per ora (lato gas)	[n°]	-	-	10
Pressostato differenziale (lato acqua)	[kPa]	3	5	-
Massima pressione senza gruppo idronico (lato acqua)	[kPa]	-	-	1000
Massima pressione con gruppo idronico (lato acqua)	[kPa]	-	-	600
Taratura valvola di sicurezza (lato acqua) (1)	[kPa]	-	-	600

(1) Disponibile solo con opzione gruppo idronico


Dati tecnici generali

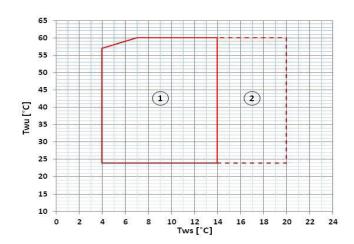
Limiti di funzionamento (Raffreddamento)


Grandezza 12.2

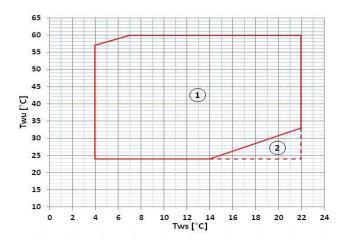

Grandezza 16.2

Grandezze 19.2 - 22.2 - 27.2 - 35.2 - 40.2 - 45.2

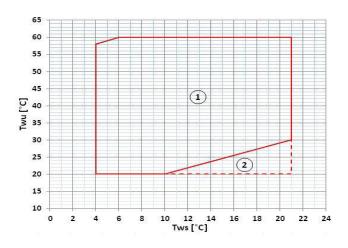
Grandezze 55.2 - 60.2 - 70.2 - 80.2 - 100.2 - 120.2

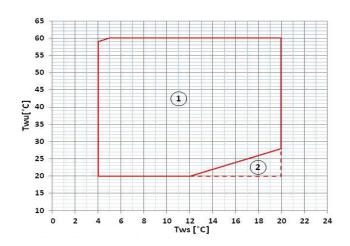


Twu [°C] = Temperatura acqua in uscita lato utilizzo Tws [°C] = Temperatura acqua in uscita lato sorgente I limiti sono riferiti a DT=5°C sia lato utilizzo sia lato sorgente


- 1. Campo di funzionamento normale
- 2. Campo di funzionamento con valvola modulante lato sorgente in regolazione (configurazioni opzionali)

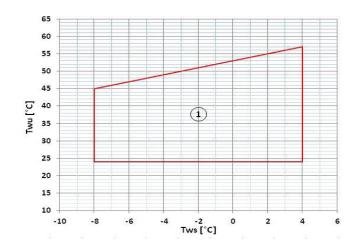
Limiti di funzionamento (Riscaldamento) - OTH4 - Condizioni operative superiori ai 4°C


Grandezza 12.2

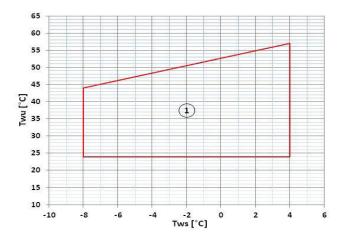

Grandezza 16.2

Grandezze 19.2 - 22.2 - 27.2 - 35.2 - 40.2 - 45.2

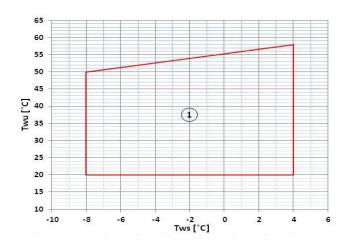
Grandezze 55.2 - 60.2 - 70.2 - 80.2 - 100.2 - 120.2

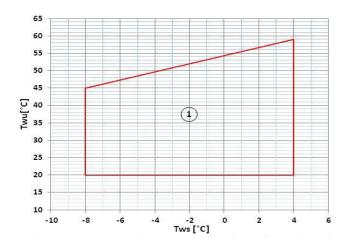

Twu $[^{\circ}C]$ = Temperatura acqua in uscita lato utilizzo Tws $[^{\circ}C]$ = Temperatura acqua in uscita lato sorgente I limiti sono riferiti a DT=5 $^{\circ}C$ sia lato utilizzo sia lato sorgente

- 1. Campo di funzionamento normale
- 2. Campo di funzionamento con valvola modulante lato sorgente in regolazione (configurazioni opzionali)


Dati tecnici generali

Limiti di funzionamento (Riscaldamento) - OTL4 - Condizioni operative inferiori ai 4°C


Grandezza 12.2


Grandezza 16.2

Grandezze 19.2 - 22.2 - 27.2 - 35.2 - 40.2 - 45.2

Grandezze 55.2 - 60.2 - 70.2 - 80.2 - 100.2 - 120.2

Twu [°C] = Temperatura acqua in uscita lato utilizzo Tws [°C] = Temperatura acqua in uscita lato sorgente I limiti sono riferiti a DT=5°C sia lato utilizzo sia lato sorgente

1. Campo di funzionamento dove è obbligatorio l'utilizzo di miscela acqua e glicole in funzione della temperatura dell'acqua in uscita dallo scambiatore lato sorgente

Descrizione regolazione accensione gradini

La regolazione elettronica permette di gestire in modo affidabile l'unità in funzione del carico richiesto.

L'attivazione dei gradini dei compressori avviene favorendo la massima efficienza dal più piccolo al più grande.

The street of the street

Controlli principali

Controllo della temperatura dell'acqua in uscita con algoritmo PID: mantiene la temperatura media di uscita al valore di set impostato.

- differenziale di accensione autoadattativo: garantisce i tempi minimi di funzionamento del compressore in sistemi con basso contenuto d'acqua;
- · controllo di condensazione basato sulla pressione;
- · preallarmi a reset automatico: in caso di allarme è consentito un certo numero di ripartenze prima del blocco definitivo;
- · conteggio ore funzionamento compressore;
- · conteggio spunti compressore;
- controllo e gestione continua delle condizioni di lavoro dei compressori per garantire il funzionamento dell'unità anche in condizioni di lavoro estreme;
- controllo temperatura dell'acqua all'utilizzo per prevenire la ghiacciatura delle tubazioni;
- · storico allarmi;
- · autostart dopo caduta di tensione;
- · controllo locale o remoto.

Visualizzazione dello stato dell'unità

Attraverso l'interfaccia utente è possibile visualizzare:

- · stato e modo di funzionamento delle unità;
- · temperatura ingresso/uscita acqua;
- temperature e pressioni del circuito frigorifero;
- · segnalazione allarmi e anomalie in corso.

Visualizzazione sonde, trasduttori e parametri

Una sezione dedicata dell'interfaccia utente permette al personale dell'assistenza tecnica o al personale destinato alla manutenzione di controllare gli stati di funzionamento dell'unità.

Questa sezione è accessibile solo a personale specializzato.

Gestione di più macchine in cascata (ECOSHARE)

Permette la gestione di più unità connesse tra loro idraulicamente fino ad un massimo di 1 master e 6 slave.

Le unità devono essere dello stesso tipo: tutte pompe di calore reversibili, oppure tutte solo freddo, oppure tutte solo caldo. Le grandezze possono essere diverse.

La comunicazione tra le unità avviene attraverso un cavo BUS seriale permettendo:

- impostazione dei set-point acqua mandata delle unità slave;
- impostazione delle logiche che incrementano l'efficienza energetica del sistema;
- bilanciamento delle ore di funzionamento delle unità;
- gestione delle unità in caso di avaria (solo su unita slave);
- Gestione spegnimento gruppi idronici per unità non impegnate.

Controllo a distanza (RCTX)

Il controllo a distanza consente il pieno controllo di tutte le funzioni dell'unità da posizione remota. Facilmente installabile a parete, replica nell'aspetto e nelle funzioni l'interfaccia utente a bordo dell'unità.

Funzionalità natural cooling

Con l'abilitazione della funzionalità Natural Cooling l'unità è in grado di gestire autonomamente un sistema per produzione di freddo mediante l'utilizzo dell'acqua della sorgente nel caso le condizioni di temperatura del fluido siano favorevoli.

In questo caso la sorgente viene gestita come se fosse il primo gradino di potenza a disposizione della macchina e può essere utilizzata per coprire il 100% del carico di raffreddamento o anche in integrazione ai compressori per coprire una parte della richiesta di freddo azzerando o riducendo la potenza elettrica assorbita dai compressori.

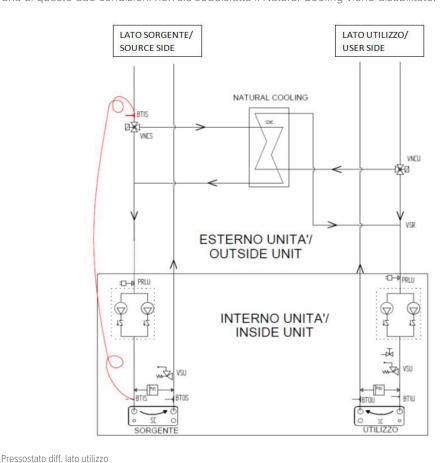
L'impianto per il Natural Cooling dovrà prevedere i seguenti componenti aggiuntivi (non forniti da Clivet):

1) scambiatore acqua/acqua di Natural Cooling (SCNC nello schema di massima): questo scambiatore dovrà essere opportunamente dimensionato in base alle temperatura previste per i fluidi lato utilizzo e lato sorgente e in base alle perdite di carico della restante parte dell'impianto e alla prevalenza utile della macchina nel caso le pompe siano montate a bordo macchina.

2) due valvole 3 vie on/off o equivalenti (VNCS e VNCU nello schema di massima): una sul circuito sorgente e una sul circuito utilizzo. Anche queste dovranno essere opportunamente dimensionate in base alle portate previste.

Per la corretta operatività della funzione Natural Cooling il controllo del set point deve essere impostato sulla mandata (parametro 436 Tiporeg).

In fase di set up dell'impianto sarà necessario remotizzare la sonda sull'acqua in ingresso sorgente a monte della valvola deviatrice lato sorgente (VNCS).


La macchina potrà essere selezionata con o senza gruppi idronici lato utilizzo e sorgente: il sistema dovrà essere in grado di assorbire/ gestire le variazioni di portata/prevalenza dovute all'inserimento/all'esclusione dello scambiatore Natural Cooling.

Il controllo dell'unità fornisce un segnale on/off per l'abilitazione del Natural Cooling tramite la commutazione delle valvole.

Il Natural Cooling viene abilitato nel caso in cui siano soddisfatte le due condizioni seguenti:

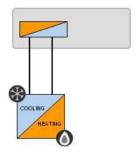
1) la temperatura dell'acqua ingresso sorgente deve essere inferiore al set point in raffreddamento più un delta definito dal parametro 365 DeltaNC (il valore può essere positivo o negativo) [Tws_in < (Set_cooling + DeltaNC)]

2) la temperatura dell'acqua ingresso utilizzo deve essere maggiore della temperatura dell'acqua ingresso sorgente più un delta definito dal parametro 366 IsteresiStopNC (valore può essere solo positivo) [Tws_in < (Twu_in + IsteresiStopNC)] Nel caso una di queste due condizioni non sia soddisfatta il Natural Cooling viene disabilitato.

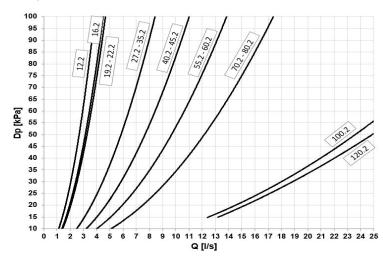
Pressostato diff. lato sorgente PDS PRIU Pressostato carico impianto tarato 0.5 bar SC Scambiatore di calore a piastre VSU Valvola di sicurezza tarata 6 bar (solo se presente pompe o valvole) VSR Valvola scarico **BTIS** Sonda temperatura ingresso sorgente (da remotizzare) **BTOS** Sonda temperatura uscita sorgente BTIU Sonda temperatura ingresso utilizzo BTOU Sonda temperatura uscita utilizzo VNCS Valvola natural cooling lato sorgente (a carico del cliente) Valvola natural cooling lato utilizzo (a carico del cliente) VNCU

Scambiatore natural cooling (a carico del cliente)

PDU


SCNC

Gruppi idronici lato utilizzo


Unità standard (-)

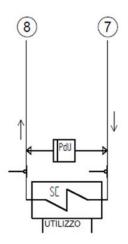
Configurazione che non prevede gruppo idronico lato utilizzo, ma dotata della componentistica secondo legenda sullo schema idraulico riportato.

Tutti gli attacchi acqua sono Victaulic. E' possibile comandare una pompa esterna attraverso segnale on/ off o 0-10V.

Curve perdite di carico scambiatore lato utilizzo

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

Q = Portata acqua [I/s] DP = Perdite di carico [kPa]


Alle perdite di carico dello scambiatore lato utilizzo devono essere sommate anche le perdite di carico del filtro a maglia d'acciaio che deve essere posizionato sulla linea di ingresso dell'acqua. Si tratta di un dispositivo obbligatorio per il corretto funzionamento dell'unità, ed è disponibile come accessorio IFWX.

Portate d'acqua ammissibili lato utilizzo

Portate di acqua minima (Qmin) e massima (Qmax) ammissibili per il corretto funzionamento dell'unità

GRAN	IDEZZE	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
Lato	Min [l/s]	0,8	1,0	1,1	1,1	1,8	1,8	2,4	2,4	2,9	2,9	3,8	3,8	9,5	10,5
utilizzo	Max [l/s]	4,2	4,8	4,9	5,1	8,8	9,3	11,4	12,2	15,0	15,4	18,3	19,0	28,0	29,0

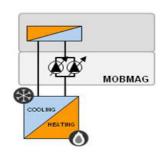
Schema idraulico

7 = Ingresso lato utilizzo

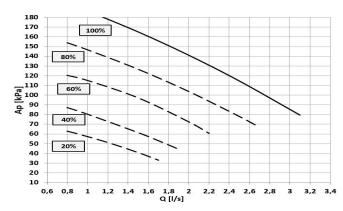
8 = Uscita lato utilizzo

PdU = Pressostato differenziale lato utilizzo

Configurazioni

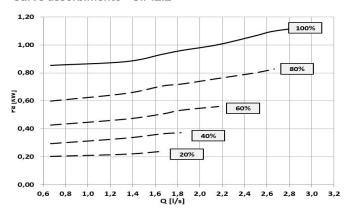

Gruppi idronici lato utilizzo

Unità con VARYFLOW + (VARYU)

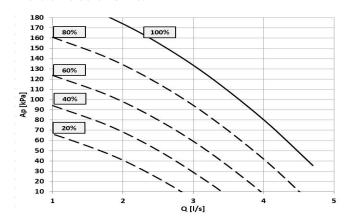

Configurazione che prevede 2 elettropompe di tipo centrifugo disposte in parallelo comandate da inverter, con corpo e girante in acciaio AISI 304, e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.

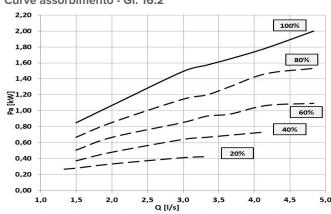
La regolazione, modula la portata d'acqua mantenendo costante il delta T. Se la temperatura dell'acqua si trova in condizioni critiche, permette di estendere i limiti di funzionamento dell'unità garantendone il funzionamento riducendo automaticamente la portata dell'acqua. In caso di temporanea indisponibilità di una delle due pompe, garantisce circa l'80% della portata nominale.



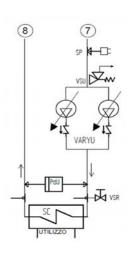
Prevalenza utile - Gr. 12.2


Q = Portata acqua [I/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 12.2

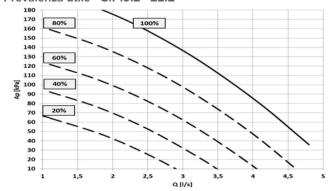

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Prevalenza utile - Gr. 16.2

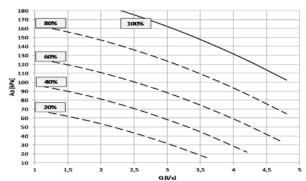

Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 16.2

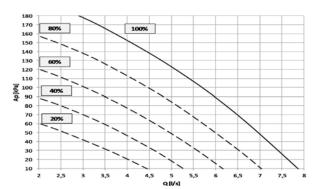
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Schema idraulico lato utilizzo

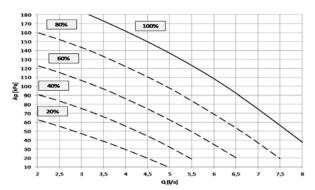
- 7 = Ingresso lato utilizzo
- 8 = Uscita lato utilizzo
- SP = Pressostato carico impianto tarato 0.7 bar
- VSU = Valvola di sicurezza tarata 6 bar
- VARYU = Gruppo idronico VARYFLOW+ lato utilizzo
- PdU = Pressostato differenziale lato utilizzo
- VSR = Valvola scarico
- SC = Scambiatori di calore a piastre


Unità con VARYFLOW + (VARYU)

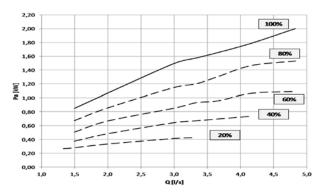
Prevalenza utile - Gr. 19.2 - 22.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

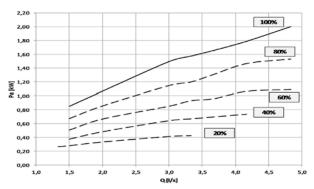
Prevalenza utile - Gr. 27.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

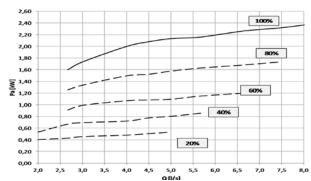
Prevalenza utile - Gr. 35.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

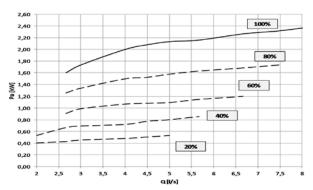
Prevalenza utile - Gr. 40.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 19.2 - 22.2


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

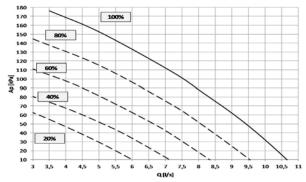
Curve assorbimento - Gr. 27.2


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 35.2

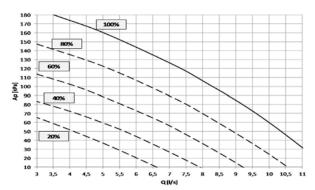
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 40.2

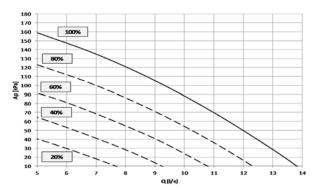


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

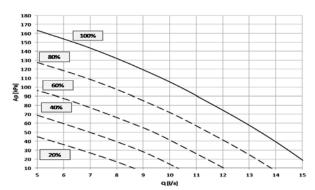
Configurazioni


Unità con VARYFLOW + (VARYU)

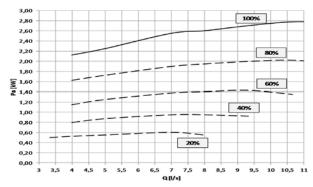
Prevalenza utile - Gr. 45.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

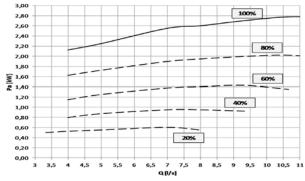
Prevalenza utile - Gr. 55.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

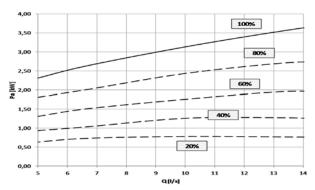
Prevalenza utile - Gr. 60.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

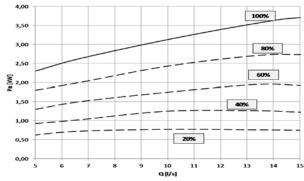
Prevalenza utile - Gr. 70.2 - 80.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 45.2

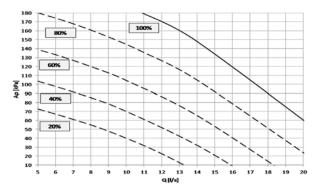

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 55.2

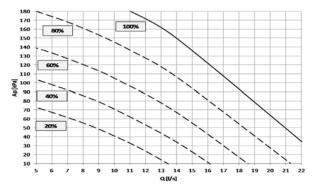

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 60.2

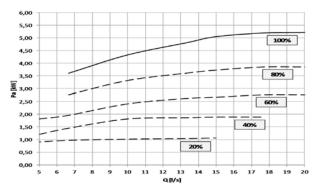
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Curve assorbimento - Gr. 70.2 - 80.2

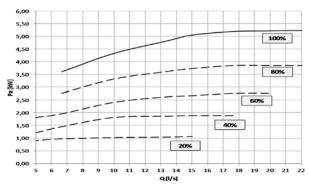
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Unità con VARYFLOW + (VARYU)

Prevalenza utile - Gr. 100.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Prevalenza utile - Gr. 120.2

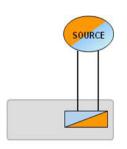

Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 100.2

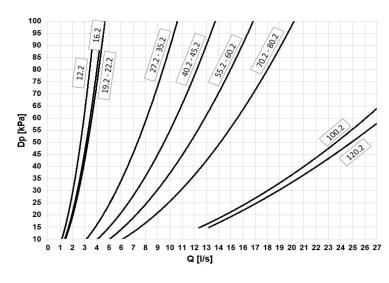
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 120.2

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Configurazioni

Gruppi idronici lato sorgente


Unità standard (-)

Configurazione che non prevede gruppo idronico lato sorgente, ma dotata della componentistica secondo legenda sullo schema idraulico riportato.

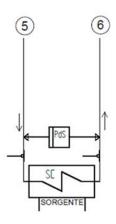
Tutti gli attacchi acqua sono Victaulic. E' possibile comandare una pompa esterna attraverso segnale on/off o 0-10V.

Curve perdite di carico scambiatore lato sorgente con condizioni superiori ai 4°C - OTH4

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di $7^{\circ}\mathrm{C}$

Q = Portata acqua [l/s]

DP = Perdite di carico [kPa]

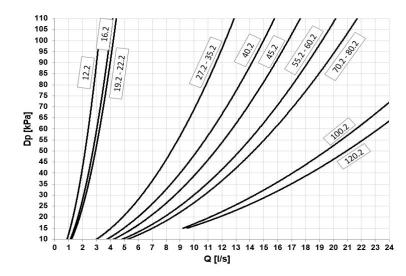

Alle perdite di carico dello scambiatore lato sorgente devono essere sommate anche le perdite di carico del filtro a maglia d'acciaio che deve essere posizionato sulla linea di ingresso dell'acqua. Si tratta di un dispositivo obbligatorio per il corretto funzionamento dell'unità, ed è disponibile come accessorio IFWX.

Portate d'acqua ammissibili con condizioni superiori ai 4°C - OTH4

Portate di acqua minima (Qmin) e massima (Qmax) ammissibili per il corretto funzionamento dell'unità

GRAN	DEZZE	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
Lato	Min [l/s]	0,8	1,0	1,1	1,1	2,2	2,2	2,9	2,9	3,6	3,6	4,3	4,3	9,5	10,5
sorgente	Max [l/s]	4,2	4,8	4,9	5,3	11,0	11,5	14,4	15,0	18,0	18,5	21,3	21,7	28,0	30,0

Schema idraulico lato sorgente



5 = Ingresso lato sorgente

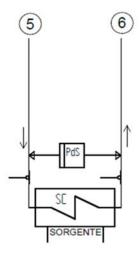
6 = Uscita lato sorgente

Pds = Pressostato differenziale lato sorgente

Curve perdite di carico scambiatore lato sorgente con condizioni operative inferiori ai 4°C - OTL4

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 0° C e 30% di glicole.

Q = Portata acqua [l/s] DP = Perdite di carico [kPa]


Alle perdite di carico dello scambiatore lato sorgente devono essere sommate anche le perdite di carico del filtro a maglia d'acciaio che deve essere posizionato sulla linea di ingresso dell'acqua. Si tratta di un dispositivo obbligatorio per il corretto funzionamento dell'unità, ed è disponibile come accessorio IFWX.

Portate d'acqua ammissibili con condizioni operative inferiori ai 4°C - OTL4

Portate di acqua minima (Qmin) e massima (Qmax) ammissibili per il corretto funzionamento dell'unità

GRAN	DEZZE	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
Lato	Min [l/s]	0,9	1,1	1,2	1,2	3,0	3,0	3,7	4,2	4,8	5,4	5,4	5,4	9,2	9,5
sorgente	Max [l/s]	3,6	4,4	4,6	4,6	13,5	13,5	16,5	18,5	21,0	21,0	23,0	23,0	28,0	30,0

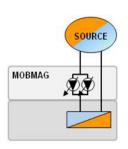
Schema idraulico lato sorgente

5 = Ingresso lato sorgente

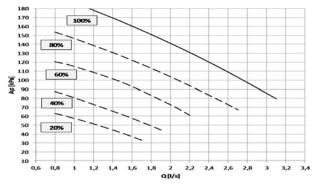
6 = Uscita lato sorgente

Pds = Pressostato differenziale lato sorgente

Configurazioni

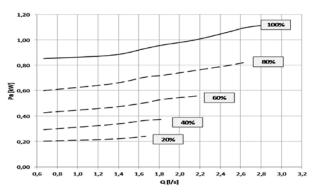

Gruppi idronici lato sorgente

Unità con VARYFLOW + (VARYS)

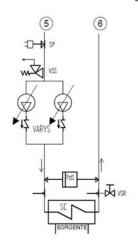

Configurazione che prevede 2 elettropompe di tipo centrifugo disposte in parallelo comandate da inverter, con corpo e girante in acciaio AISI 304, e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

Le elettropompe sono dotate di motore elettrico trifase con grado di protezione IP55 e complete di guscio isolante in termoformato.

La regolazione, modula la portata dell'acqua mantenendo costante il delta T. Se la temperatura dell'acqua si trova in condizioni critiche, permette di estendere i limiti di funzionamento dell'unità garantendone il funzionamento riducendo automaticamente la portata dell'acqua. In caso di temporanea indisponibilità di una delle due pompe, garantisce circa l'80% della portata nominale.



Prevalenza utile - Gr. 12.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 12.2

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

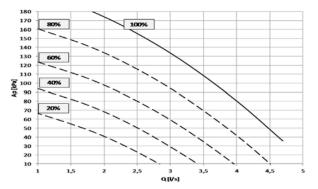
Schema idraulico lato sorgente

5 = Ingresso lato sorgente

6 = Uscita lato sorgente

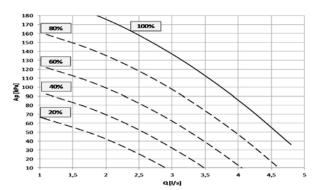
SP = Pressostato carico impianto tarato 0.7 bar

VSS = Valvola di sicurezza tarata 6 bar

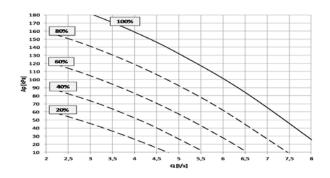

VARYS = Gruppo idronico VARYFLOW+ lato sorgente

Pds = Pressostato differenziale lato sorgente

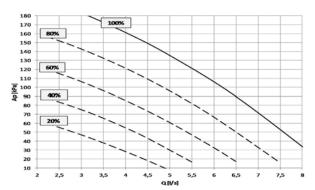
VSR = Valvola scarico


Unità con VARYFLOW + (VARYS)

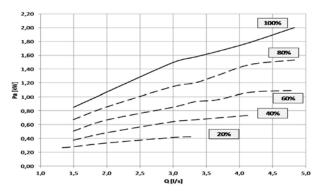
Prevalenza utile - Gr. 16.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

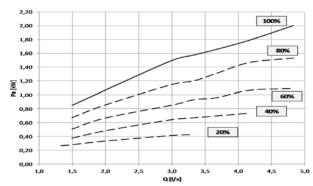
Prevalenza utile - Gr. 19.2 - 22.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

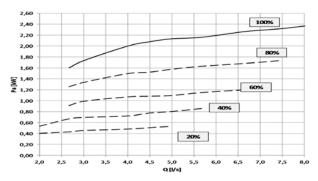
Prevalenza utile - Gr. 27.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

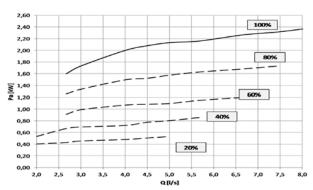
Prevalenza utile - Gr. 35.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento- Gr. 16.2


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

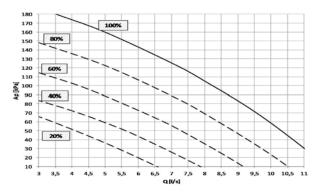
Curve assorbimento - Gr. 19.2 - 22.2


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 27.2

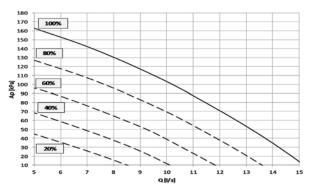
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 35.2

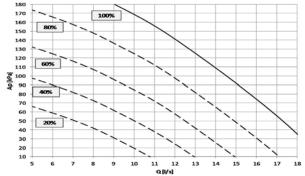


Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

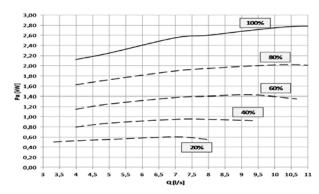
Configurazioni


Unità con VARYFLOW + (VARYS)

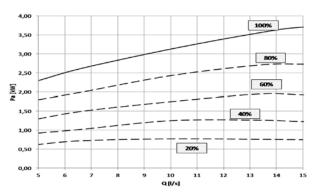
Prevalenza utile - Gr. 40.2 - 45.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

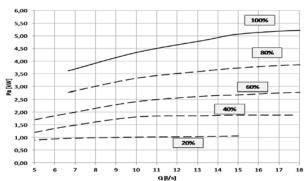
Prevalenza utile - Gr. 55.2 - 60.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Prevalenza utile - Gr. 70.2 - 80.2

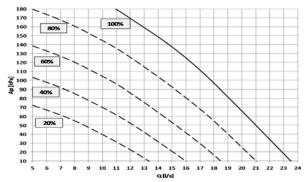

Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 40.2 - 45.2

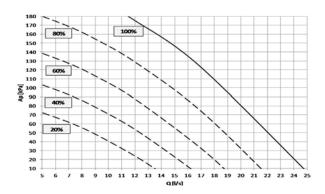

Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 55.2 - 60.2

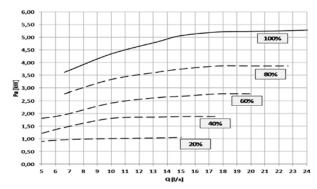
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Curve assorbimento - Gr. 70.2 - 80.2

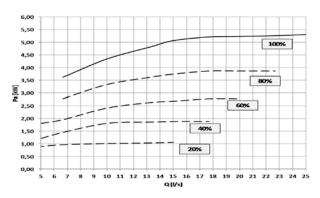
Q = Portata acqua [I/s] Pa = Potenza elettrica assorbita [kW]


Unità con VARYFLOW + (VARYS)

Prevalenza utile - Gr. 100.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Prevalenza utile - Gr. 120.2


Q = Portata acqua [l/s] Ap = Prevalenza utile, disponibile agli attacchi dell'unità [kPa]

Curve assorbimento - Gr. 100.2

Q = Portata acqua [I/s] Pa= Potenza elettrica assorbita [kW]

Curve assorbimento - Gr. 120.2

Q = Portata acqua [l/s] Pa = Potenza elettrica assorbita [kW]

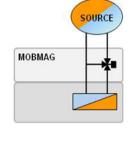
Configurazioni

Gruppi idronici lato sorgente

Unità con valvola 3 vie modulante (VS3M)

Configurazione che prevede 1 valvola 3 vie modulante lato sorgente e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

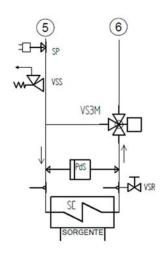
La valvola a tre vie modulante, mettendo in comunicazione l'ingresso e l'uscita dello scambiatore lato sorgente,


svolge la funzione di by-pass riducendo la portata d'acqua all'interno dello scambiatore, mantenendo tuttavia costante la portata in uscita della macchina.

La modulazione della valvola è gestita tramite un segnale 0-10V generato dal controllo elettronico dell'unità

Opzione disponibile solo per grandezze da 12.2 a 80.2.

Perdite di carico valvola 3 vie modulante lato sorgente



Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

Q = Portata acqua [l/s] DP = Perdite di carico [kPa]

Schema idraulico lato sorgente

5 = Ingresso lato sorgente

6 = Uscita lato sorgente

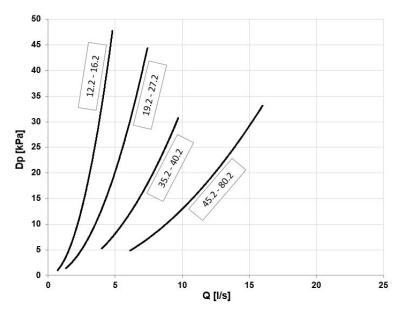
SP = Pressostato carico impianto tarato 0.7 bar

VSS = Valvola di sicurezza tarata 6 bar

VS3M = Valvola 3 vie modulante lato sorgente

PdS = Pressostato differenziale lato sorgente

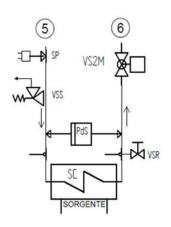
Gruppi idronici lato sorgente


Unità con valvola 2 vie modulante (VS2M)

Configurazione che prevede 1 valvola 2 vie modulante lato sorgente e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono victaulic. La valvola a due vie modulante, installata in uscita allo scambiatore lato sorgente, modula la portata dell'acqua tramite un segnale 0-10 V emesso dal controllo elettronico dell'unità.

Opzione disponibile solo per grandezze da 12.2 a 80.2.

MOBMAG


Perdite di carico valvola 2 vie modulante lato sorgente

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

Q = Portata acqua [l/s] DP = Perdite di carico [kPa]

Schema idraulico lato sorgente

5 = Ingresso lato sorgente

6 = Uscita lato sorgente

SP = Pressostato carico impianto tarato 0.7 bar

VSS = Valvola di sicurezza tarata 6 bar

VS2M = Valvola 2 vie modulante lato sorgente

PdS = Pressostato differenziale lato sorgente

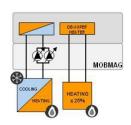
Configurazioni

Recupero energetico parziale (D)

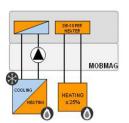
Configurazione che prevede 1 scambiatore a piastre saldobrasate INOX (AISI 316) lato recupero, e componentistica secondo legenda sullo schema idraulico riportato. Tutti gli attacchi acqua sono Victaulic.

Configurazione che consente la produzione gratuita di acqua calda durante il funzionamento in raffreddamento, grazie al recupero di parte del calore di condensazione che verrebbe altrimenti smaltito sulla sorgente termica esterna. E' possibile recuperare circa il 20% della potenza termica dissipata dell'unità pari alla somma della potenza frigorifera e della relativa potenza elettrica assorbita dai compressori.

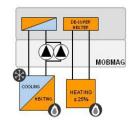
Il dispositivo di recupero parziale si considera in funzione quando è alimentato dal flusso d'acqua da riscaldare. Questa condizione migliora le prestazioni dell'unità, poiché riduce la temperatura di condensazione: in condizioni nominali la potenza frigorifera aumenta indicativamente di 3,2% e la potenza assorbita dai compressori si riduce di 3,6%.


In caso di assenza di richiesta di produzione di acqua fredda l'unità non può produrre acqua calda. La richiesta di potenza termica avviene attraverso l'abilitazione di un contatto digitale, che attiva la pompa lato recupero (esterna all'unità).

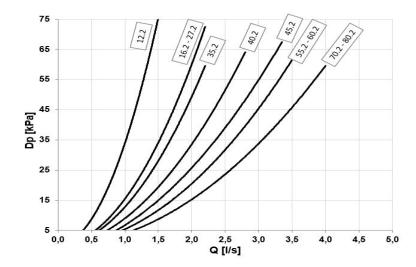
Opzione disponibile solo per le grandezze da 12.2 a 80.2.


L'opzione recupero energetico parziale (D) può essere abbinata con i gruppi idronici lato utilizzo presentati nelle pagine precedenti secondo gli schemi sotto riportati.

CO-SUPER HEATER

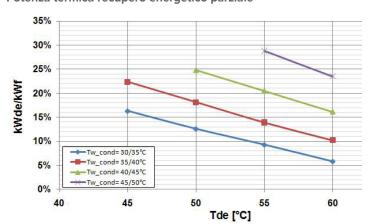

COOLING
HEATING
#EATING
\$25%

D+VARYP



D+HYG1

D+HYG2


Curve perdite di carico scambiatore recupero parziale

Le perdite di carico lato acqua sono calcolate considerando una temperatura media dell'acqua di 7°C

Q = Portata acqua [l/s] DP = Perdite di carico [kPa]

Potenza termica recupero energetico parziale

kWde/kWf = Potenza termica/Potenzialità frigorifera [%] Tde [°C] = Temperatura uscita acqua scambiatore recupero (ΔT=5°C) Temperatura uscita acqua scambiatore utilizzo = 7°C

Schema idraulico

IN = Ingresso lato recupero OUT = Uscita lato recupero SC = Scambiatori di calore a piastre

Prestazioni in riscaldamento - OTH4 - Condizioni operative superiori ai 4°C

Grandezze 12.2 - 40.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C		5	7		10		12		15		17	
		kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe	kWt	kWe
	30	38,8	6,29	4,2	6,31	44,7	6,34	47,3	6,37	51,4*	6,43*	54,5*	6,49*
	35	38,7	7,14	40,9	7,17	44,4	7,22	46,9	7,26	50,8*	7,34*	53,7*	7,41*
12.2	45	38,0	9,09	40,2	9,10	43,3	9,13	45,7	9,15	49,3*	9,21*	52,1*	9,25*
	55	35,5	11,8	37,4	11,8	40,1	11,7	42,2	11,7	45,4*	11,7*	47,8*	11,7*
	60	-	-	36,7	13,4	39,4	13,4	41,3	13,3	44,4*	13,3*	46,8*	13,3*
	30	54,9	8,99	58,6	9,28	64,2	9,80	67,5	9,38	73,2	9,28	77,4	9,38
	35	54,4	10,1	57,7	10,1	62,8	10,2	66,3	10,3	72,1	10,5	76,1	10,6
16.2	45	53,4	12,5	56,4	12,5	61,2	12,6	64,4	12,6	69,6	12,8	73,4	12,9
	55	49,5	15,9	52,2	15,9	56,2	15,9	59,2	15,9	63,6	15,9	66,8	16,0
	60	-	-	51,0	18,1	54,9	18,0	57,7	18,0	62,1	18,0	65,3	18,0
	30	65,1	10,4	68,9	10,4	75,0	10,5	79,4	10,7	86,5	10,8	91,3	10,9
	35	64,6	11,6	68,3	11,6	74,2	11,7	78,3	11,9	85,2	12,1	89,9	12,2
19.2	45	63,1	14,5	66,6	14,6	72,0	14,6	75,9	14,8	82,3	14,9	86,6	15,0
	55	58,1	18,6	61,2	18,6	65,8	18,5	69,3	18,8	74,6	18,8	78,4	18,8
	60	56,4	21,1	59,5	21,1	64,1	21,0	67,3	21,3	72,5	21,3	76,1	21,3
	30	76,9	12,8	81,3	12,8	88,3	12,7	93,2	12,7	101	12,6	106	12,5
	35	76,4	14,3	80,8	14,4	87,7	14,5	92,4	14,6	100	14,6	106	14,6
22.2	45	74,8	17,5	78,9	17,6	85,4	17,7	90,1	17,8	97,5	18,0	103	18,1
	55	69,1	21,7	72,7	21,8	78,1	21,9	82,1	22,0	88,6	22,2	92,8	22,3
	60	67,4	24,5	71,0	24,5	76,2	24,6	80,2	24,6	86,2	24,7	90,8	24,8
	30	89,8	14,7	94,5	14,7	102	14,7	107	14,7	115	14,6	121	14,6
	35	89,1	16,7	94,4	16,7	101	16,8	106	16,8	114	16,9	120	16,9
27.2	45	88,5	20,5	93,4	20,5	100	20,6	105	20,7	113	20,8	117	20,9
	55	83,9	25,6	87,9	25,6	93,9	25,8	97,8	25,9	104	25,9	109	26,1
	60	82,4	28,7	85,6	28,8	92,1	28,9	95,4	29,0	102	29,1	107	29,2
	30	114	19,6	120	19,7	129	19,7	136	19,8	148	19,9	156	19,9
	35	114	22,1	119	22,2	129	22,4	135	22,6	146	22,8	154	22,9
35.2	45	113	26,8	119	27,0	128	27,2	134	27,3	144	27,6	150	27,7
	55	107	33,4	112	33,6	119	33,8	125	34,0	134	34.3	139	34,5
	60			112	37,8	120	38,0	124	38,1	132	38,3	139	38,6
	30	134	22,5	140	22,5	151	22,6	159	22,7	171	22,7	179	22,8
	35	133	25,4	140	25,6	150	25,8	157	25,9	170	26,1	179	26,3
40.2	45	133	30,8	138	31,0	148	31,2	155	31,4	167	31,7	175	31,9
	55	126	38,1	132	38,3	139	38,6	145	38,8	154	39,0	163	39,3
	60	-	-	130	42,8	139	43,0	144	43,1	153	43,3	160	43,5

KWt = Potenzialità termica fornita (kW)

KWE = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)
To = temperatura acqua uscita lato utilizzo (°C)
Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

* Prestazioni con valvola modulante o pompa inveter lato sorgente in regolazione (configurazioni opzionali)

Prestazioni

Prestazioni in riscaldamento - OTH4 - Condizioni operative superiori ai 4°C

Grandezze 45.2 - 120.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C	5		7		10		12		15		17	
		kWt	kWe										
	30	155	26,4	163	26,5	177	26,7	185	26,8	201	27,0	211	27,0
	35	155	29,9	161	30,1	176	30,4	182	30,6	198	30,9	209	31,1
45.2	45	153	36,3	162	36,6	173	36,9	180	37,1	193	37,5	204	37,8
	55	147	45,3	153	45,5	163	45,9	169	46,1	181	46,4	189	46,8
	60	-	-	152	50,9	160	50,6	169	51,3	181	51,7	190	52,1
	30	191	31,9	202	32,1	219	32,5	232	32,7	252	33,2	266	33,5
	35	188	35,9	199	36,2	215	36,6	228	36,9	247	37,4	261	37,8
55.2	45	184	43,5	194	43,7	209	44,1	221	44,4	239	44,9	251	45,2
	55	172	54,0	180	54,3	193	54,6	202	54,9	218	55,4	229	55,7
	60	171	60,5	179	60,7	191	61,1	201	61,3	217	61,7	227	62,0
	30	213	35,8	226	36,1	244	36,5	259	36,8	282	37,3	298	37,7
	35	210	40,5	222	40,7	241	41,2	254	41,6	276	42,2	291	42,6
60.2	45	206	49,1	217	49,3	235	49,8	247	50,1	267	50,7	281	51,1
	55	192	61,2	201	61,5	216	61,9	227	62,2	244	62,8	255	63,3
	60	192	68,6	201	68,9	216	69,3	225	69,5	243	70,1	256	70,6
	30	245	40,8	259	41,2	283	41,9	299	42,5	325	43,4	342	44,0
	35	243	45,6	257	46,0	279	46,7	294	47,3	319	48,1	336	48,7
70.2	45	238	55,0	251	55,4	271	55,9	285	56,4	308	57,1	324	57,7
	55	221	67,9	232	68,3	249	68,9	262	69,3	281	70,0	296	70,6
	60	219	75,7	230	76,1	246	76,7	258	77,2	277	77,9	293	78,5
	30	272	45,8	288	46,4	314	47,4	332	48,2	359	49,4	379	50,3
	35	269	51,2	284	51,8	309	52,7	326	53,5	353	54,6	372	55,5
80.2	45	265	61,5	278	62,1	301	62,9	317	63,5	342	64,4	359	65,2
	55	246	75,6	258	76,1	277	77,0	290	77,6	312	78,5	327	79,2
	60	243	84,0	256	84,6	275	85,5	287	86,0	309	87,0	326	87,7
	30	336	60,3	356	60,9	382	61,7	405	62,5	439	63,6	462	64,4
	35	331	65,7	350	66,3	376	67,1	398	67,8	430	68,9	453	69,7
100.2	45	324	79,7	342	80,3	364	80,9	385	81,5	415	82,5	436	83,1
	55	300	99,5	316	100	335	100	352	101	378	102	397	102
	60	299	112	315	112	334	112	352	113	378	114	397	114
	30	402	72,3	426	72,9	458	73,6	484	74,1	523	75,0	550	75,6
	35	397	79,1	420	79,7	451	80,5	476	81,1	514	82,0	541	82,7
120.2	45	385	96,6	407	97,1	435	97,6	456	98,1	492	99,0	516	99,5
	55	357	122	377	122	399	123	418	123	450	123	470	124
	60	358	138	377	138	400	139	414	133	450	139	473	139

KWt = Potenzialità termica fornita (kW)

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C) Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Prestazioni in raffreddamento - OTH4 -Condizioni operative superiori ai 4°C

Grandezze 12.2 -40.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C	30		35		40		45		50	
		kWf	kWe								
	5	33,8	6,24	32,3	7,1	30,5	8,08	28,5	9,12	25,9	10,5
	7	36,2	6,26	34,6	7,13	32,7	8,10	30,5	9,14	27,8	10,5
	10	39,4	6,29	37,7	7,18	35,7	8,14	33,3	9,16	30,5	10,5
12.2	12	41,6	6,38	39,7	7,30	37,7	8,26	35,3	9,28	32,3	10,6
	15	45,7	6,44	43,6	7,38	41,4	8,32	38,9	9,33	35,7	10,6
	18	49,7	6,52	47,4	7,49	45,1	8,42	42,4	9,41	38,9	10,7
	5	47,6	8,9	45,5	9,98	43,0	11,2	40,3	12,5	36,6	14,2
	7	51,0	9,16	48,8	10,0	46,2	11,2	43,2	12,5	39,4	14,2
12.0	10	55,8	9,28	53,3	10,1	50,5	11,3	47,4	12,6	43,3	14,2
16.2	12	58,9	9,45	56,3	10,3	53,3	11,5	50,1	12,8	45,8	14,4
	15	64,9	9,28	61,8	10,5	58,6	11,6	55,0	12,9	50,4	14,5
	18	70,5	9,43	67,0	10,7	63,6	11,8	59,7	13,1	54,8	14,6
	5	56,6	10,5	54,4	11,6	51,4	13,0	47,9	14,6	43,5	16,4
	7	60,6	10,6	58,1	11,7	55,1	13,1	51,4	14,6	46,7	16,5
	10	66,2	10,7	63,5	11,8	60,2	13,1	56,2	14,7	51,2	16,5
19.2	12	69,8	10,8	67,0	12,0	63,5	13,3	59,3	14,9	54,3	16,7
	15	76,7	11,0	73,6	12,1	69,9	13,4	65,5	14,9	60,0	16,7
	18	83,0	11,2	79,7	12,3	75,8	13,6	70,8	15,1	64,9	16,8
	5	66,4	12,8	63,8	14,2	60,4	15,8	56,5	17,5	51,7	19,5
	7	71,1	12,8	68,2	14,3	64,6	15,9	60,5	17,6	55,5	19,6
	10	77,6	12,8	74,5	14,4	70,6	16,1	66,1	17,8	60,6	19,7
22.2	12	81,7	12,9	78,5	14,6	74,4	16,3	69,9	18,1	64,0	20,0
	15	90,0	12,8	86,4	14,7	82,1	16,4	77,0	18,2	70,6	20,2
	18	97,2	12,7	93,4	14,7	88,9	16,5	83,4	18,4	76,7	20,4
	5	80,9	15,0	78,5	16,8	74,8	18,5	70,0	20,9	65,6	23,0
	7	85,5	15,0	82,3	16,9	79,3	18,6	74,4	21,0	69,6	23,1
	10	91,6	15,0	88,1	17,0	85,0	18,7	79,6	21,1	74,4	23,2
27.2	12	95,5	15,2	92,3	17,3	88,7	18,9	82,7	21,4	77,8	23,5
	15	105	15,2	101	17,3	96,9	19,0	90,2	21,6	84,8	23,6
	18	112	15,2	108	17,4	105	19,1	97,2	21,7	91,5	23,8
	5	99,8	20,1	96,0	22,4	92,7	24,4	87,8	27,5	82,5	30,1
	7	106	20,2	102	22,6	99,4	24,5	92,4	27,6	86,6	30,2
	10	115	20,3	110	22,8	106	24,7	99,0	27,9	92,9	30,4
35.2	12	120	20,6	115	23,2	112	25,2	104	28,3	97,5	30,9
	15	131	20,7	127	23,4	122	25,4	113	28,6	106	31,2
	18	141	20,7	136	23,5	130	25,6	121	28,9	115	31,5
	5	118	22,5	112	25,6	107	27,9	99,5	31,3	91,1	35,1
	7	127	22,5	120	25,8	116	28,1	107	31,6	97,9	35,3
	10	138	22,7	131	26,1	126	28,3	116	31,8	107	35,6
40.2	12	145	23,0	138	26,4	132	28,7	122	32,3	112	36,1
	15	159	23,1	151	26,6	145	29,0	134	32,6	123	36,4
	18	173	23,1	163	26,8	157	29,2	145	32,8	133	36,7

kWf = Potenza frigorifera in kW

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C) Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Prestazioni

Prestazioni in raffreddamento - OTH4 -Condizioni operative superiori ai 4°C

Grandezze 45.2 - 120.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C	3	80	3	35		10	4	5	5	60
		kWf	kWe								
	5	137	26,4	130	30,2	124	32,8	115	37,0	105	41,5
	7	147	26,6	139	30,4	134	33,0	123	37,2	113	41,8
4= 0	10	161	26,8	152	30,7	146	33,3	135	37,5	124	42,2
45.2	12	169	27,2	160	31,2	153	33,9	141	38,1	130	42,8
	15	185	27,4	175	31,6	168	34,2	155	38,6	142	43,2
	18	201	27,5	190	31,9	182	34,6	168	39,0	155	43,7
	5	167	31,8	158	36,0	151	39,2	140	44,0	128	49,4
	7	178	32,0	169	36,3	161	39,4	150	44,3	137	49,7
FF 2	10	194	32,4	183	36,7	176	39,8	162	44,7	149	50,1
55.2	12	205	33,0	193	37,3	186	40,4	171	45,4	158	50,8
	15	224	33,5	212	37,8	204	40,9	189	45,9	174	51,3
	18	244	33,9	230	38,3	221	41,3	205	46,3	188	51,9
	5	185	35,7	175	40,6	167	44,1	155	49,7	143	55,9
	7	197	36,0	187	40,9	179	44,4	166	50,0	152	56,2
60.3	10	216	36,4	203	41,2	196	44,7	181	50,4	166	56,6
60.2	12	227	37,1	215	42,0	206	45,5	191	51,2	176	57,5
	15	250	37,7	236	42,7	227	46,1	209	51,8	192	58,1
	18	271	38,2	256	43,3	246	46,6	228	52,4	209	58,8
	5	215	40,8	204	46,0	194	50,0	180	56,0	165	62,6
	7	230	41,3	218	46,4	209	50,4	193	56,5	177	63,1
70.0	10	259	42,3	246	47,5	236	51,3	218	57,4	201	64,1
70.2	12	264	43,0	250	48,2	239	52,0	221	58,2	203	64,9
	15	294	44,1	279	49,3	268	53,0	247	59,2	227	65,9
	18	314	44,9	297	50,1	284	53,7	262	59,9	241	66,6
	5	239	46,0	226	51,7	217	56,1	199	62,9	183	70,1
	7	254	46,6	241	52,3	231	56,7	213	63,4	196	70,7
80.2	10	284	47,8	269	53,6	259	57,8	242	64,6	223	72,0
80.2	12	292	48,8	276	54,6	265	58,7	245	65,5	224	72,9
	15	325	50,4	307	56,0	296	60,0	274	66,8	251	74,1
	18	346	51,5	327	57,1	315	61,0	290	67,7	266	75,0
	5	286	59,8	274	65,7	260	72,1	243	79,7	221	89,6
	7	306	60,4	293	66,3	279	72,7	261	80,3	237	90,1
100.2	10	329	61,3	315	67,1	300	73,5	279	80,9	255	90,7
100.2	12	346	62,1	334	67,8	317	74,1	296	81,5	270	91,2
	15	378	63,2	364	69,0	346	75,2	324	82,5	296	92,1
	18	410	64,3	395	70,1	375	76,3	351	83,4	322	93,0
	5	338	71,9	325	79,1	309	87,0	288	96,6	261	109
	7	362	72,4	348	79,7	332	87,5	309	97,1	281	110
120.2	10	390	73,2	375	80,5	357	88,2	333	97,6	303	110
120.2	12	410	73,8	396	81,1	376	88,8	350	98,1	319	111
	15	451	74,7	433	82,0	412	89,7	384	98,9	351	111
	18	491	75,6	471	83,0	449	90,6	419	99,7	383	112

kWf = Potenza frigorifera in kW

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C) Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Prestazioni in riscaldamento - OTL4 - Condizioni operative inferiori ai 4°C

Grandezze 12.2 - 40.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C	-	6	-	3		1		0		1		3
		kWt	kWe										
	30	30,0	6,24	32,8	6,25	34,7	6,25	35,8	6,26	36,8	6,27	38,9	6,28
	35	29,8	7,04	32,4	7,07	34,3	7,08	35,3	7,09	36,3	7,10	38,3	7,12
12.2	45	29,6	9,18	32,0	9,16	33,8	9,15	34,7	9,15	35,6	9,15	37,5	9,14
	50	28,7	10,6	31,2	10,6	32,9	10,5	33,8	10,5	34,6	10,5	36,4	10,5
	55	-	-	-	-	-	-	-	-	-	-	35,3	11,9
	30	41,6	8,83	45,6	8,84	48,2	8,84	49,8	8,85	51,2	8,86	54,3	8,88
	35	41,3	9,83	45,1	9,85	47,6	9,86	49,0	9,87	50,4	9,89	53,3	9,92
16.2	45	40,9	12,5	44,4	12,4	46,8	12,4	48,1	12,4	49,3	12,4	52,0	12,4
	50	39,7	14,3	43,1	14,2	45,4	14,2	46,6	14,2	47,8	14,2	50,3	14,1
	55		-						_		-	48,6	15,9
	30	49,9	10,2	54,6	10,3	57,9	10,3	59,6	10,3	61,4	10,3	64,9	10,3
	35	49,5	11,4	54,0	11,5	57,1	11,5	58,7	11,5	60,4	11,5	64,0	11,6
19.2	45	48,6	14,5	52,8	14,5	55,7	14,5	57,5	14,5	59,0	14,5	62,1	14,5
	50	47,1	16,6	51,1	16,5	53,8	16,5	55,4	16,5	56,9	16,5	59,8	16,5
	55	-	-	-	-	-	-	-	-	-	-	57,5	18,6
	30	58,3	12,4	63,6	12,5	67,1	12,5	69,1	12,6	71,2	12,6	75,1	12,6
	35	57,6	13,7	62,9	13,9	66,4	14,0	68,1	14,0	70,4	14,0	74,3	14,1
22.2	45	56,8	17,1	61,9	17,1	65,1	17,2	66,8	17,3	68,6	17,3	72,5	17,4
	50	55,5	19,4	60,1	19,4	63,2	19,4	64,7	19,5	66,5	19,5	70,0	19,6
	55									_	_	67,4	21,7
	30	69,6	14,4	75,8	14,5	80,2	14,6	82,7	14,6	85,1	14,6	90,2	14,6
	35	68,7	16,0	75,1	16,2	79,2	16,3	81,7	16,3	83,9	16,4	88,8	16,5
27.2	45	67,2	19,9	73,2	20,0	77,3	20,1	79,4	20,2	81,5	20,3	86,0	20,4
	50	65,1	22,6	70,7	22,7	74,6	22,8	76,5	22,8	78,5	22,9	82,7	23,0
	55	-	-	68,1	25,3	71,9	25,4	73,6	25,4	75,5	25,5	79,4	25,5
	30	88,2	19,1	96,7	19,2	102	19,4	105	19,4	109	19,5	116	19,5
	35	87,2	21,2	95,3	21,5	101	21,6	104	21,7	107	21,8	113	22,0
35.2	45	85,5	26,0	93,0	26,3	98,0	26,4	101	26,5	104	26,6	110	26,9
	50	83,0	29,5	90,3	29,7	95,1	29,8	97,7	29,9	100	30,0	106	30,2
	55					92,3	33,3	94,4	33,3	97,1	33,4	102	33,6
	30	102	21,9	111	22,1	118	22,2	122	22,2	125	22,3	133	22,4
	35	101	24,2	110	24,5	116	24,7	120	24,8	123	24,9	130	25,0
40.2	45	99,2	29,7	108	30,0	114	30,2	117	30,3	120	30,4	126	30,6
	50	96,1	33,5	104	33,7	110	33,9	113	34,0	116	34,1	122	34,3
	55	-	-	-	-	106	37,5	109	37,7	112	37,7	117	37,9
1/11/1 B 1 1 12/2 1													

KWt = Potenzialità termica fornita (kW)

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)
To = temperatura acqua uscita lato utilizzo (°C)
Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Dati riferiti al funzionamento con miscela di acqua e glicole propilenico al 30% lato sorgente

Prestazioni

Prestazioni in riscaldamento - OTL4 - Condizioni operative inferiori ai 4°C

Grandezze 45.2 - 120.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

GRANDEZZE	To °C	-	6		3	-	1		0		1	:	3
		kWt	kWe										
	30	120	25,6	131	25,8	138	26,0	143	26,0	147	26,1	156	26,3
	35	118	28,5	129	28,9	136	29,1	140	29,2	145	29,4	153	29,6
45.2	45	117	35,3	127	35,5	133	35,7	137	35,8	141	36,0	148	36,2
	50	114	40,0	123	40,1	129	40,2	133	40,3	136	40,5	143	40,7
	55	-	-	-	-	126	44,8	129	44,9	132	45,0	138	45,2
	30	143	30,8	157	31,1	167	31,3	172	31,4	177	31,5	188	31,7
	35	142	34,3	155	34,7	164	34,9	169	35,0	174	35,2	185	35,3
55.2	45	140	42,4	152	42,7	160	42,9	165	43,0	170	43,2	179	43,4
	50			148	48,0	156	48,2	160	48,3	164	48,4	173	48,7
	55									159	53,7	167	54,0
	30	159	34,5	175	34,8	185	35,0	191	35,2	197	35,3	209	35,6
	35	158	38,7	172	39,1	183	39,3	188	39,5	194	39,7	205	40,0
60.2	45	157	48,1	169	48,3	179	48,4	184	48,6	188	48,7	199	49,0
	50	-	-	165	54,5	174	54,6	179	54,7	183	54,9	193	55,1
	55	-	-	-	-	169	60,8	173	60,9	178	61,0	186	61,2
	30	181	38,7	198	39,2	210	39,5	216	39,7	223	39,9	237	40,3
	35	179	43,0	196	43,6	207	44,0	214	44,2	220	44,4	232	44,9
70.2	45	177	53,0	193	53,5	203	53,9	209	54,1	215	54,3	226	54,7
	50			188	60,1	197	60,4	203	60,6	208	60,8	219	61,2
	55					192	66,9	197	67,2	201	67,4	211	67,8
	30	201	43,0	220	43,6	233	44,1	240	44,4	247	44,6	263	45,2
	35	199	47,9	217	48,7	230	49,2	236	49,5	243	49,8	258	50,5
80.2	45	197	58,8	213	59,6	226	60,2	232	60,4	238	60,7	251	61,4
	50	-	-	208	66,6	219	67,2	225	67,5	230	67,8	243	68,4
	55	-	-	-	-	212	74,2	217	74,6	223	74,9	234	75,5
	30	245	55,8	267	56,4	282	56,8	289	57,0	298	57,3	315	57,8
	35	244	61,5	265	62,1	279	62,6	286	62,8	294	63,0	312	63,6
100.2	45	242	76,1	262	76,7	275	77,1	282	77,3	289	77,5	306	78
	50			254	86,6	267	87,0	273	87,2	280	87,4	295	87,8
	55					259	96,9	265	97,1	272	97,3	285	97,7
	30	289	67,9	313	68,5	330	68,9	340	69,1	348	69,3	368	69,7
	35	288	74,9	311	75,6	328	76,0	337	76,3	345	76,5	366	77,0
120.2	45	286	93,4	308	93,9	325	94,3	332	94,5	340	94,7	359	95,1
	50	-	-	299	107	314	107	322	107	330	108	347	108
	55	-	-	-	-	304	120	311	120	320	121	335	121

KWt = Potenzialità termica fornita (kW)

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C)

Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Dati riferiti al funzionamento con miscela di acqua e glicole propilenico al 30% lato sorgente

Prestazioni in raffreddamento - OTL4 - Condizioni operative inferiori ai 4°C

Grandezze 12.2 - 40.2

TEMPERATURA ACQUA USCITA LATO SORGENTE °C

RANDEZZE	To °C	3	0	3	15	4	10	4	5	5	0
		kWf	kWe								
	5	32,6	6,97	31,1	7,81	29,4	8,77	27,1	9,97	24,5	11,3
	7	34,8	7,02	33,3	7,86	31,4	8,82	29,0	10,0	26,3	11,4
42.2	10	37,7	7,09	36,0	7,93	34,0	8,90	31,5	10,1	28,5	11,4
12.2	12	39,4	7,15	37,7	8,0	35,7	8,96	32,9	10,1	30,0	11,4
	15	42,6	7,26	40,8	8,09	38,5	9,06	35,8	10,2	32,6	11,5
	18	46,0	7,46	44,0	8,31	41,7	9,27	38,4	10,4	35,3	11,7
-	5	45,1	9,76	43,1	10,8	40,5	12,0	37,3	13,4	33,6	15,2
	7	48,1	9,96	46,0	10,9	43,3	12,1	40,0	13,5	36,2	15,2
46.0	10	52,6	10,1	50,3	11,0	47,5	12,2	43,7	13,6	39,6	15,3
16.2	12	54,9	10,2	52,4	11,1	49,5	12,3	45,8	13,7	41,5	15,4
	15	59,7	10,3	57,0	11,3	53,8	12,5	49,6	13,9	45,1	15,5
-	18	64,6	10,6	61,7	11,6	58,1	12,8	53,6	14,2	48,8	15,9
	5	55,6	10,9	53,8	11,8	50,9	13,2	47,3	14,8	42,8	16,7
	7	59,6	11,0	57,5	11,9	54,6	13,3	50,9	14,8	46,1	16,7
40.0	10	64,9	11,1	62,8	12,0	59,6	13,3	55,5	14,9	50,4	16,7
19.2	12	67,8	11,2	65,7	12,1	62,3	13,4	58	14,9	52,9	16,8
-	15	74,0	11,3	71,6	12,2	68,0	13,5	63,5	15,0	57,9	16,8
	18	80,0	11,6	77,4	12,5	73,6	13,8	68,6	15,3	62,7	17,1
	5	64,2	13,3	62,1	14,5	58,9	16,0	54,9	17,7	50,0	19,8
-	7	68,6	13,4	66,4	14,6	63	16,1	58,7	17,9	53,6	19,8
	10	74,8	13,4	72,5	14,7	68,8	16,3	64,3	18,0	58,6	20,0
22.2	12	78,0	13,4	75,6	14,8	71,9	16,4	67,1	18,1	61,5	20,1
-	15	85,0	13,4	82,3	14,9	78,3	16,5	73,1	18,3	67,1	20,3
-	18	92,1	13,5	89,1	15,1	84,9	16,8	79,2	18,7	72,7	20,7
	5	78,5	15,2	75,7	16,7	71,6	18,6	66,6	20,6	60,5	23,0
	7	84,0	15,2	81,1	16,8	76,8	18,7	71,5	20,7	64,9	23,1
	10	90,2	15,3	87,0	16,9	82,5	18,8	76,8	20,9	69,9	23,2
27.2	12	93,2	15,3	89,8	16,9	85,2	18,8	79,4	21,0	72,3	23,3
	15	102	15,3	98,0	17,0	93,1	19,0	86,8	21,1	79,4	23,5
-	18	110	15,3	106	17,1	101	19,1	94,4	21,3	86,3	23,7
	5	100	20,4	96,2	22,3	91,0	24,6	84,4	27,2	77,2	30,2
	7	107	20,5	103	22,5	97,8	24,7	90,8	27,4	82,4	30,3
	10	116	20,7	111	22,7	105	25,0	97,8	27,6	89,3	30,6
35.2	12	120	20,7	115	22,8	109	25,1	101	27,8	92,3	30,8
-	15	130	20,8	125	23,0	119	25,4	110	28,1	101	31,1
	18	142	20,9	136	23,2	129	25,6	120	28,4	110	31,5
	5	115	23,1	111	25,5	105	28,1	97,4	31,1	88,9	34,7
_	7	124	23,2	119	25,6	113	28,3	105	31,3	96,0	34,9
	10	134	23,3	128	25,9	122	28,5	113	31,5	103	35,1
40.2	12	138	23,4	132	26,0	126	28,7	117	31,7	107	35,3
-	15	151	23,4	145	26,2	137	28,9	128	32,0	117	35,6
-	18	163	23,9	157	26,6	149	29,4	139	32,6	129	36,1

kWf = Potenza frigorifera in kW

kWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C)

Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente

Dati riferiti al funzionamento con miscela di acqua e glicole propilenico al 30% lato sorgente

Prestazioni

Prestazioni in raffreddamento - OTL4 - Condizioni operative inferiori ai 4°C

Grandezze 45.2 - 120.2

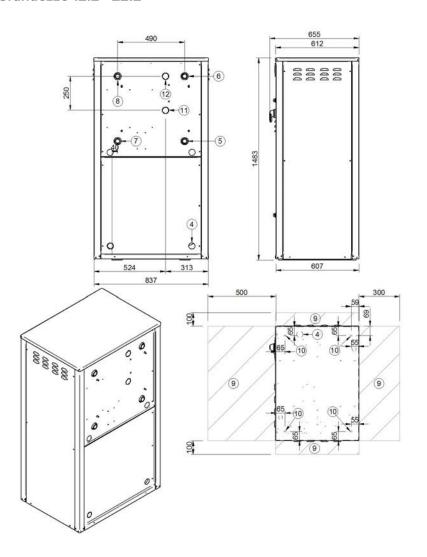
TEMPERATURA ACQUA USCITA LATO SORGENTE °C

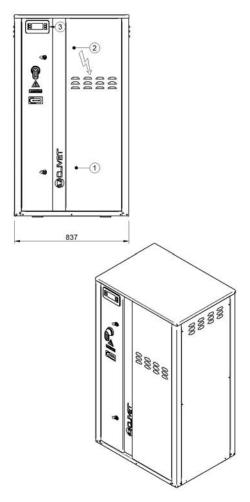
GRANDEZZE	To °C	3	0	3	35	4	10	4	5	5	50
		kWf	kWe								
	5	135	27,0	129	29,8	123	32,9	114	36,4	104	40,7
	7	146	27,2	140	30,0	132	33,1	123	36,6	113	41
4= 0	10	157	27,4	151	30,3	143	33,4	133	36,9	122	41,3
45.2	12	163	27,6	156	30,5	148	33,6	138	37,1	126	41,5
	15	177	27,8	170	30,8	161	34	150	37,6	138	41,9
	18	192	28,0	185	31,1	175	34,3	163	38,0	150	42,3
	5	163	32,6	156	35,8	148	39,5	138	43,8	126	49
	7	176	32,9	168	36,1	159	39,8	149	44,0	136	49,3
	10	189	33,3	181	36,5	172	40,1	160	44,3	147	49,6
55.2	12	195	33,5	187	36,8	177	40,3	165	44,6	151	49,8
	15	213	34,0	204	37,3	194	40,8	181	45,1	165	50,3
	18	232	34,5	222	37,7	211	41,3	196	45,5	180	50,7
	5	183	36,7	175	40,4	165	44,5	154	49,3	141	55,3
	7	196	37,0	188	40,8	178	44,8	166	49,7	152	55,7
	10	212	37,5	203	41,1	192	45,2	179	50,1	164	56,1
60.2	12	219	37,8	210	41,4	199	45,5	185	50,3	169	56,3
	15	239	38,4	228	42,1	217	46,1	202	50,9	185	56,8
	18	259	39,4	248	43,1	235	47,2	219	52,0	201	58,1
	5	208	41,9	200	45,9	190	50,5	177	55,8	162	62,4
	7	224	42,4	214	46,4	203	51,0	190	56,3	173	62,8
	10	242	43,1	231	47,1	220	51,6	204	56,9	187	63,4
70.2	12	248	43,8	238	47,5	226	51,9	211	57,3	193	63,8
	15	271	44,6	260	48,4	247	52,8	229	58,1	210	64,5
	18	294	46,1	282	49,9	268	54,3	250	59,6	229	66,0
	5	232	47,2	222	51,7	211	56,7	196	62,6	179	69,7
	7	248	47,9	238	52,4	226	57,4	210	63,3	193	70,3
	10	268	48,9	257	53,3	244	58,2	227	64,0	208	71,1
80.2	12	277	49,5	265	53,9	251	58,7	234	64,5	214	71,5
	15	300	50,9	287	55,0	273	59,8	255	65,6	234	72,5
	18	325	52,8	312	56,9	296	61,7	276	67,4	254	74,3
	5	290	60,3	278	66,2	265	73,0	247	81,0	226	90,9
	7	310	61,0	297	66,8	282	73,6	263	81,5	241	91,4
	10	336	61,9	323	67,8	307	74,5	288	82,4	264	92,2
100.2	12	351	62,6	339	68,5	321	75,1	299	82,9	275	92,6
	15	384	63,7	369	69,5	353	76,1	327	83,9	301	93,5
	18	418	64,8	401	70,8	383	77,1	356	84,9	328	94,4
	5	337	72,7	324	80,0	308	88,6	286	98,6	261	112
	7	358	73,2	345	80,7	328	89,0	304	99,1	279	112
	10	394	73,9	378	81,5	361	89,8	335	99,8	308	112
120.2	12	412	74,5	396	82,2	376	90,2	349	100	320	113
	15	449	75,4	432	83,0	410	91,1	382	101	351	114
	18	490	76,3	470	84,0	447	92,1	416	102	382	114

KWf = Potenza frigorifera in kW

KWe = potenza elettrica assorbita totale (compressore + circuito ausiliario) (kW)

To = temperatura acqua uscita lato utilizzo (°C)

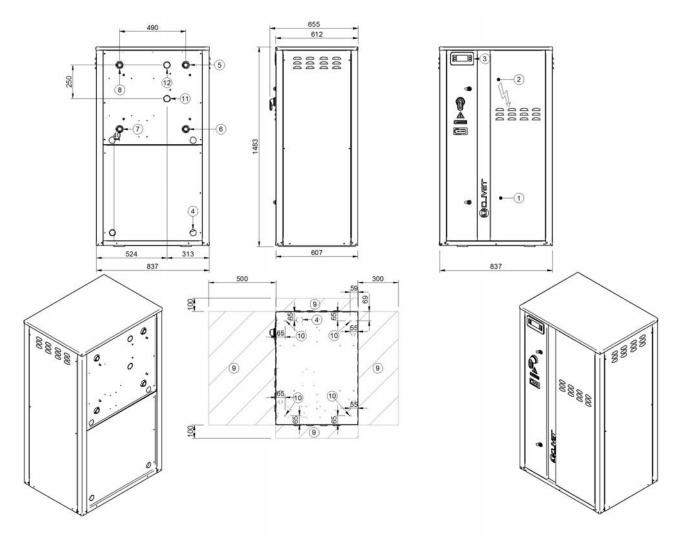

Le prestazioni sono riferite a DT=5°C sia lato utilizzo che sorgente


Dati riferiti al funzionamento con miscela di acqua e glicole propilenico al 30% lato sorgente

Dimensionali - Versione OTH4 senza gruppo idronico

Grandezze 12.2 - 22.2

DAA8U10 2_22 2 STD REV01

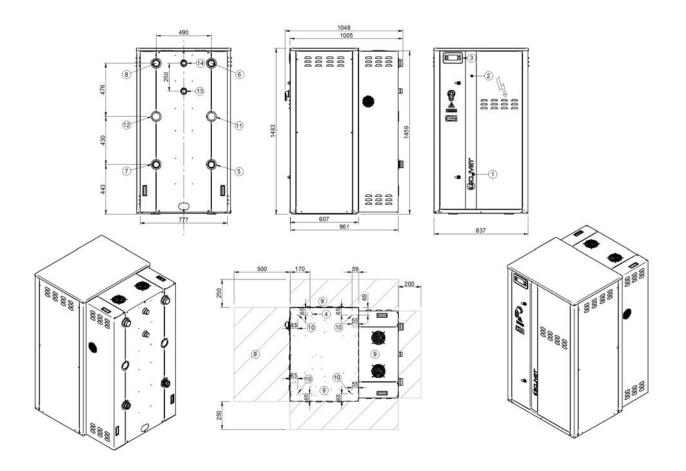

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (1" 1/4 GAS)
- 6) Mandata acqua lato sorgente (1" 1/4 GAS)
- 7) Ritorno acqua lato utilizzo (1" 1/4 GAS)
- 8) Mandata acqua lato utilizzo (1" 1/4 GAS)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (1" 1/4 Victaulic) (optional)
- 12) Mandata acqua recupero parziale (1" 1/4 Victaulic) (optional)

GRANDEZZE		12.2	16.2	19.2	22.2
Lunghezza	mm	837	837	837	837
Altezza	mm	1483	1483	1483	1483
Profondità	mm	607	607	607	607
Peso in funzionamento	kg	223	290	309	322
Peso di spedizione	kg	214	273	288	306

Dimensionali - Versione OTL4 senza gruppo idronico

Grandezze 12.2 - 22.2

DAA8U10 2_22 2 STD_GEO REV01

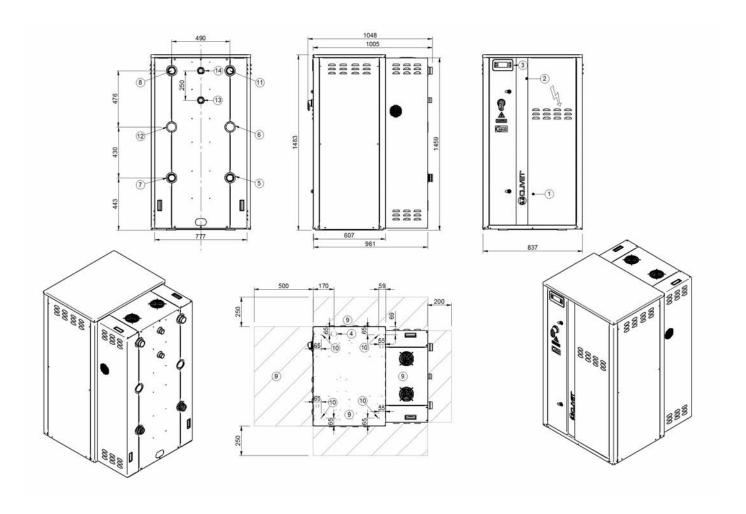

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (1" 1/4 GAS)
- 6) Mandata acqua lato sorgente (1" 1/4 GAS)
- 7) Ritorno acqua lato utilizzo (1" 1/4 GAS)
- 8) Mandata acqua lato utilizzo (1" 1/4 GAS)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (1" 1/4 GAS) (optional)
- 12) Mandata acqua recupero parziale (1" 1/4 GAS) (optional)

GRANDEZZE		12.2	16.2	19.2	22.2
Lunghezza	mm	837	837	837	837
Altezza	mm	1483	1483	1483	1483
Profondità	mm	607	607	607	607
Peso in funzionamento	kg	223	290	309	322
Peso di spedizione	kg	214	273	288	306

Dimensionali - Versione OTH4 con opzione gruppo idronico e mobile maggiorato (MOBMAG)

Grandezze 12.2 - 22.2

DAA8U10 2_22 2 MAG REV01

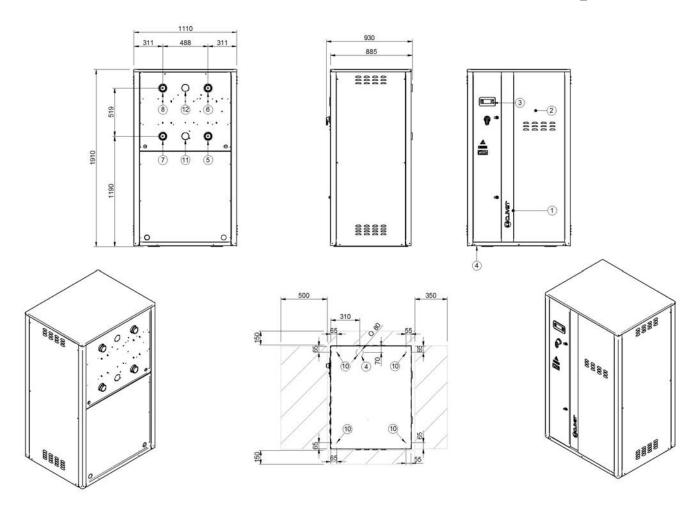

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" Victaulic)
- 6) Mandata acqua lato sorgente (2" Victaulic)
- 7) Ritorno acqua lato utilizzo (2" Victaulic)
- 8) Mandata acqua lato utilizzo (2" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua lato sorgente senza pompe (2" Victaulic)
- 12) Ritorno acqua lato utilizzo senza pompe (2" Victaulic)
- 13) Mandata acqua recupero parziale (1" 1/4 Victaulic) (optional)
- 14) Ritorno acqua recupero parziale (1" 1/4 Victaulic) (optional)

GRANDEZZE		12.2	16.2	19.2	22.2
Lunghezza	mm	837	837	837	837
Altezza	mm	1483	1483	1483	1483
Profondità	mm	961	961	961	961
Peso in funzionamento	kg	296	366	386	399
Peso di spedizione	kg	276	338	353	371

Dimensionali - Versione OTL4 con opzione gruppo idronico e mobile maggiorato (MOBMAG)

Grandezze 12.2 - 22.2

DAA8U10 2_22 2 MAG GEO REV01

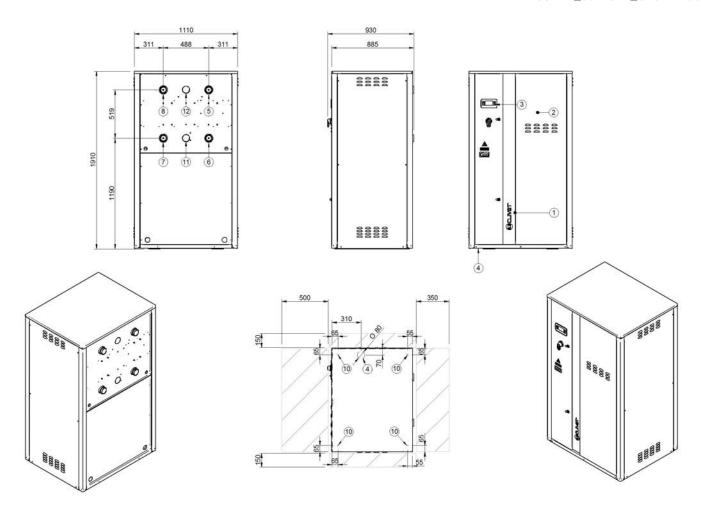

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" Victaulic)
- 6) Mandata acqua lato sorgente (2" Victaulic)
- 7) Ritorno acqua lato utilizzo (2" Victaulic)
- 8) Mandata acqua lato utilizzo (2" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua lato sorgente senza pompe (2" Victaulic)
- 12) Ritorno acqua lato utilizzo senza pompe (2" Victaulic)
- 13) Mandata acqua recupero parziale (1" 1/4 Victaulic) (optional)
- 14) Ritorno acqua recupero parziale (1" 1/4 Victaulic) (optional)

GRANDEZZE		12.2	16.2	19.2	22.2
Lunghezza	mm	837	837	837	837
Altezza	mm	1483	1483	1483	1483
Profondità	mm	961	961	961	961
Peso in funzionamento	kg	296	366	386	399
Peso di spedizione	kg	276	338	353	371

Dimensionali - Versione OTH4 senza gruppo idronico

Grandezze 27.2 - 60.2

DAA8U27 2_60 2 STD REV01

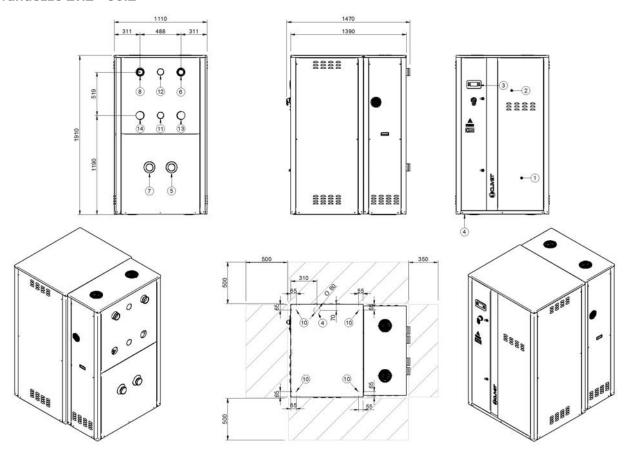

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" 1/2 victaulic)
- 6) Mandata acqua lato sorgente (2" 1/2 victaulic)
- 7) Ritorno acqua lato utilizzo (2" 1/2 victaulic)
- 8) Mandata acqua lato utilizzo (2" 1/2 victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" 1/2 victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" 1/2 victaulic) (optional)

GRANDEZZE	27.2	35.2	40.2	45.2	55.2	60.2	
Lunghezza	mm	1110	1110	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910	1910	1910
Profondità	mm	885	885	885	885	885	885
Peso in funzionamento	kg	441	519	580	581	728	743
Peso di spedizione	kg	436	514	568	569	707	727

Dimensionali - Versione OTL4 senza gruppo idronico

Grandezze 27.2 - 45.2

DAA8U27 2_50 2 STD_GEO REV00


- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" 1/2 victaulic)
- 6) Mandata acqua lato sorgente (2" 1/2 victaulic)
- 7) Ritorno acqua lato utilizzo (2" 1/2 victaulic)
- 8) Mandata acqua lato utilizzo (2" 1/2 victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" 1/2 victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" 1/2 victaulic) (optional)

GRANDEZZE		27.2	35.2	40.2	45.2
Lunghezza	mm	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910
Profondità	mm	885	885	885	885
Peso in funzionamento	kg	460	538	602	616
Peso di spedizione	kg	451	529	585	596

Dimensionali - Versione OTH4 con opzione gruppo idronico e mobile maggiorato (MOBMAG)

DAA8U27 2_60 2 MAG REV01

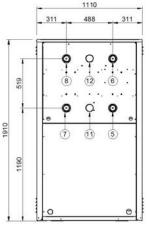
Grandezze 27.2 - 60.2

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic)
- 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" Victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" Victaulic) (optional)
- 13) Ritorno acqua lato sorgente senza pompe (3" Victaulic)
- 14) Ritorno acqua lato utilizzo senza pompe (3" Victaulic)

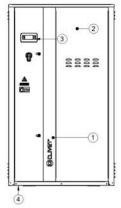
GRANDEZZE		27.2	35.2	40.2	45.2	55.2	60.2
Lunghezza	mm	1110	1110	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910	1910	1910
Profondità	mm	1390	1390	1390	1390	1390	1390
Peso in funzionamento	kg	587	665	734	752	906	921
Peso di spedizione	kg	552	630	692	694	840	860

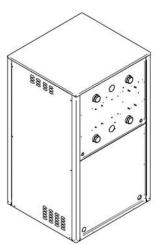
Dimensionali - Versione OTL4 con opzione gruppo idronico e mobile maggiorato (MOBMAG) DAA8U27 2_50 2 MAG_GEO REV01

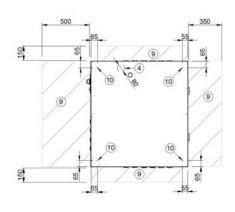
Grandezze 27.2 - 45.2

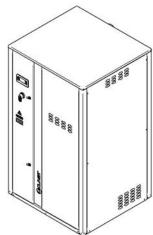

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic) 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" Victaulic) (optional) 12) Mandata acqua recupero parziale (2" Victaulic) (optional)
- 13) Ritorno acqua lato sorgente senza pompe (3" Victaulic)
- 14) Ritorno acqua lato utilizzo senza pompe (3" Victaulic)

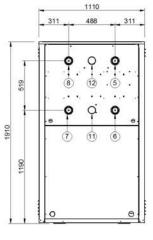
GRANDEZZE		27.2	35.2	40.2	45.2
Lunghezza	mm	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910
Profondità	mm	1390	1390	1390	1390
Peso in funzionamento	kg	606	684	756	787
Peso di spedizione	kg	567	645	709	721

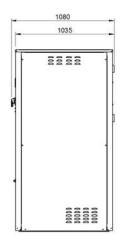

Dimensionali - Versione OTH4 senza gruppo idronico

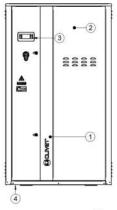

Grandezze 70.2 - 80.2

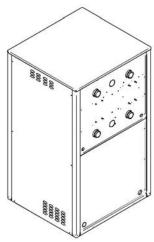

DAA8U70 2_90 2 STD REV00

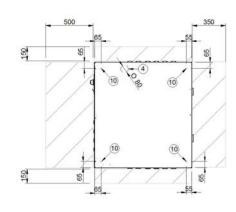


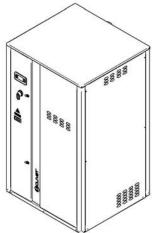

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" 1/2 Victaulic)
- 6) Mandata acqua lato sorgente (2" 1/2 Victaulic)
- 7) Ritorno acqua lato utilizzo (2" 1/2 Victaulic)
- 8) Mandata acqua lato utilizzo (2" 1/2 Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" 1/2 Victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" 1/2 Victaulic) (optional)

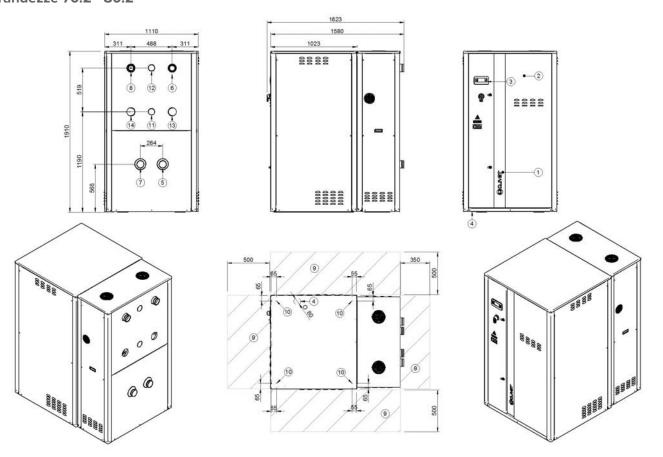

GRANDEZZE		70.2	80.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1035	1035
Peso in funzionamento	kg	808	820
Peso di spedizione	kg	780	792


Dimensionali - Versione OTL4 senza gruppo idronico


Grandezze 55.2 - 80.2


DAA8U55 2_90 2 STD_GEO REV00



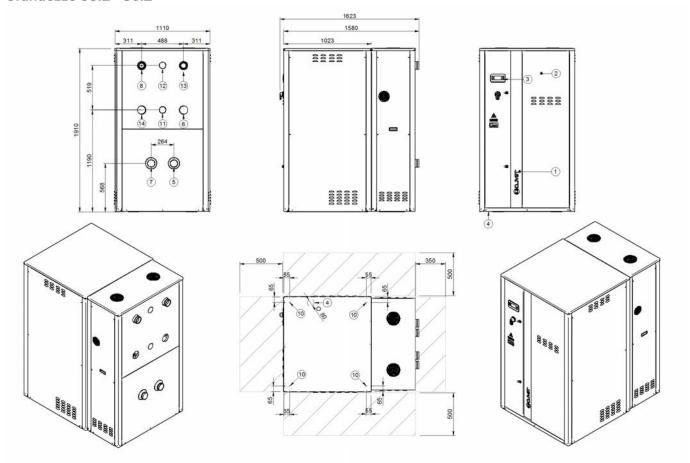


- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (2" 1/2 victaulic)
- 6) Mandata acqua lato sorgente (2" 1/2 victaulic)
- 7) Ritorno acqua lato utilizzo (2" 1/2 victaulic)
- 8) Mandata acqua lato utilizzo (2" 1/2 victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" 1/2 victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" 1/2 victaulic) (optional)

GRANDEZZE		55.2	60.2	70.2	80.2
Lunghezza	mm	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910
Profondità	mm	1035	1035	1035	1035
Peso in funzionamento	kg	768	783	840	852
Peso di spedizione	kg	738	758	805	817

Dimensionali - Versione OTH4 con opzione gruppo idronico e mobile maggiorato (MOBMAG) DAA8U70 2_90 2 MAG REV00

Grandezze 70.2 - 80.2

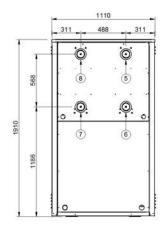

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic)
- 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" Victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" Victaulic) (optional)
- 13) Ritorno acqua lato sorgente senza pompe (3" Victaulic)
- 14) Ritorno acqua lato utilizzo senza pompe (3" Victaulic)

GRANDEZZE		70.2	80.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1580	1580
Peso in funzionamento	kg	992	1004
Peso di spedizione	kg	919	931

Dimensionali - Versione OTL4 con opzione gruppo idronico e mobile maggiorato (MOBMAG)

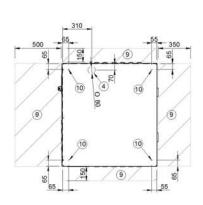
DAA8U55 2_90 2 MAG_GEO REV00

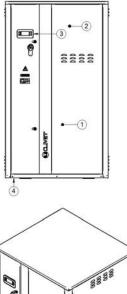
Grandezze 55.2 - 80.2

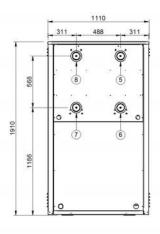

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic)
- 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua recupero parziale (2" victaulic) (optional)
- 12) Mandata acqua recupero parziale (2" victaulic) (optional)
- 13) Ritorno acqua lato sorgente senza pompe (3" Victaulic)
- 14) Ritorno acqua lato utilizzo senza pompe (3" Victaulic)

Grandezze		55.2	60.2	70.2	80.2
Lunghezza	mm	1110	1110	1110	1110
Altezza	mm	1910	1910	1910	1910
Profondità	mm	1580	1580	1580	1580
Peso in funzionamento	kg	946	961	1024	1036
Peso di spedizione	kg	871	891	944	956

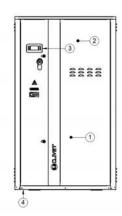

Dimensionali - Versione OTH4 senza gruppo idronico

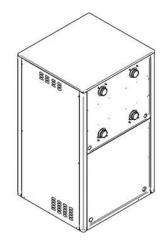

Grandezze 100.2 - 120.2

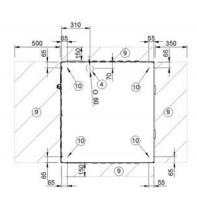

DAA8U100 2_120 2 STD REV00

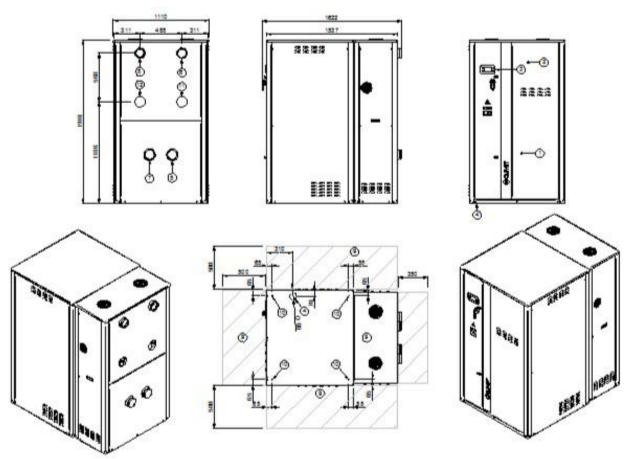

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic)
- 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5

GRANDEZZE		100.2	120.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1038	1038
Peso in funzionamento	kg	1119	1265
Peso di spedizione	kg	1040	1176


Dimensionali - Versione OTL4 senza gruppo idronico


Grandezze 100.2 - 120.2


DAA8U100 2_120 2 STD_GEO REV00

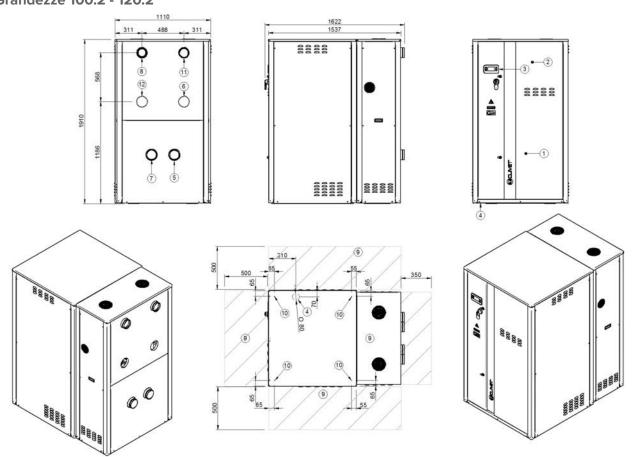

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (3" Victaulic)
- 6) Mandata acqua lato sorgente (3" Victaulic)
- 7) Ritorno acqua lato utilizzo (3" Victaulic)
- 8) Mandata acqua lato utilizzo (3" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5

GRANDEZZE		100.2	120.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1038	1038
Peso in funzionamento	kg	1119	1265
Peso di spedizione	kg	1040	1176

Dimensionali - Versione OTH4 con opzione gruppo idronico e mobile maggiorato (MOBMAG) DAA8U100 2_120 2 MAG REV01

DATA/DATE 07/03/2019

Grandezze 100.2 - 120.2



- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (4" Victaulic)
- 6) Mandata acqua lato sorgente (4" Victaulic)
- 7) Ritorno acqua lato utilizzo (4" Victaulic)
- 8) Mandata acqua lato utilizzo (4" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11)Ritorno acqua lato sorgente senza pompe (4" Victaulic)
- 12) Ritorno acqua lato utilizzo senza pompe (4" Victaulic)

GRANDEZZE		100.2	120.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1537	1537
Peso in funzionamento	kg	1335	1482
Peso di spedizione	kg	1186	1322

Dimensionali - Versione OTL4 con opzione gruppo idronico e mobile maggiorato (MOBMAG) DAA8U100 2_120 2 MAG_GEO REV01 DATA/DATE 07/03/2019

Grandezze 100.2 - 120.2

- 1) Vano compressori
- 2) Quadro elettrico
- 3) Tastiera controllo unità
- 4) Ingresso linea elettrica
- 5) Ritorno acqua lato sorgente (4" Victaulic)
- 6) Mandata acqua lato sorgente (4" Victaulic)
- 7) Ritorno acqua lato utilizzo (4" Victaulic)
- 8) Mandata acqua lato utilizzo (4" Victaulic)
- 9) Spazi funzionali
- 10) Fori per antivibranti Ø 12,5
- 11) Ritorno acqua lato sorgente senza pompe (4" Victaulic)
- 12) Ritorno acqua lato utilizzo senza pompe (4" Victaulic)

GRANDEZZE		100.2	120.2
Lunghezza	mm	1110	1110
Altezza	mm	1910	1910
Profondità	mm	1537	1537
Peso in funzionamento	kg	1335	1482
Peso di spedizione	kg	1186	1322

Pagina intenzionalmente bianca

DA OLTRE 30 ANNI OFFRIAMO SOLUZIONI PER IL COMFORT SOSTENIBILE E IL BENESSERE DELL'INDIVIDUO E DELL'AMBIENTE

www.clivet.com

MideaGroup
humanizing technology

ELFOEnergy Ground Medium - WSHN-XHE2 - BT20G5511--02

CLIVET S.p.A.

Via Camp Lonc 25, Z.I. Villapaiera 32032 Feltre (BL) - Italy Tel. +39 0439 3131 - info@clivet.it

CLIVET GMBH

Hummelsbütteler Steindamm 84, 22851 Norderstedt, Germany Tel. +49 40 325957-0 - info.de@clivet.com

Clivet Group UK LTD

Units F5 & F6 Railway Triangle, Portsmouth, Hampshire PO6 1TG Tel. +44 02392 381235 -Enquiries@Clivetgroup.co.uk

CLIVET LLC

Office 508-511, Elektozavodskaya st. 24, Moscow, Russian Federation, 107023 Tel. +7495 6462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO) Headquarter Building,Office EG-05, P.O Box-342009, Dubai, UAE Tel. +9714 3208499 - info@clivet.ae

Clivet South East Europe

Jaruščica 9b 10000, Zagreb, Croatia Tel. +385916065691 - info.see@clivet.com

Clivet Airconditioning Systems Pvt Ltd Office No.501 & 502,5th Floor, Commercial –I, Kohinoor City, Old Premier Compound, Off LBS Marg, Kirol Road, Kurla West, Mumbai Maharashtra 400070, India

Tel. +91 22 30930200 - sales.india@clivet.com