INHALT

FC - Hydronische Endgeräte

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
ART-U \\
Design Gebläsekonvektoren tief bis nur 10 cm und EC Motor 1-4 kW
\end{tabular} \& pag. 30 \& \& \begin{tabular}{l}
CFV \\
Ventilkonvektoren zum Einbauen mit Einbaukasten 1-4 kW
\end{tabular} \& pag. 76 \\
\hline \& \begin{tabular}{l}
ART-U Canvas \\
Design \\
Gebläsekonvektoren tief bis nur 10 cm und EC Motor 1-4 kW
\end{tabular} \& pag. 36 \& \& \begin{tabular}{l}
FM \\
Wand-Gebläsekonvektor, hoch
2-4 kW
\end{tabular} \& pag. 80 \\
\hline \& \begin{tabular}{l}
ESTRO \\
Gebläsekonvektoren mit Zentrifugallüfter 1-11 kW
\end{tabular} \& pag. 40 \& \& \begin{tabular}{l}
EFFETTO \\
Designmodul für Absaugung und Luftdiffusion mit Coandă-Effekt \\
EFFETTO AirClissi \\
Leuchtkassette mit Coandă-Effekt
\end{tabular} \& pag. 84

pag. 86

\hline \& | ESTRO i |
| :--- |
| Gebläsekonvektoren mit Zentrifugallüfter und EC-Motor $1-9 \text { kW }$ | \& pag. 54 \& \& | ACQVARIA |
| :--- |
| Kassetten- |
| Gebläsekonvektoren 3-10 kW | \& pag. 88

\hline \& | FLAT S |
| :--- |
| Gebläsekonvektor mit DesignerVerkleidungsmöbel 17 cm 1-3 kW | \& pag. 60 \& \& | ACQVARIA i |
| :--- |
| Kassetten- |
| Gebläsekonvektoren |
| mit EC-Motor |
| 3-10 kW | \& pag. 94

\hline \& | FLAT S i |
| :--- |
| Gebläsekonvektor mit DesignerVerkleidungsmöbel 17 cm und EC-Motor 1-3 kW | \& pag. 64 \& \& | DUCTIMAX |
| :--- |
| Kanalisierbare Einheiten mit mittlerer Förderhöhe 2-8 kW | \& pag. 100

\hline \& | FLAT |
| :--- |
| Designer- |
| Gebläsekonvektoren mit Zentrifugallüfter 2-5 kW | \& pag. 68 \& \& | DUCTIMAX i |
| :--- |
| Kanalisierbare Einheiten mit mittlerer Förderhöhe mit Motor EC 2-8 kW | \& pag. 106

\hline \& | FLAT i |
| :--- |
| DesignerGebläsekonvektor mit Zentrifugallüfter und Motor EC 2-5 kW | \& pag. 72 \& \& | UTN |
| :--- |
| Heizlüfter mit hoher Förderhöhe 3-23 kW | \& pag. 112

\hline
\end{tabular}

UTN i

Heizlüfter mit hoher
Förderhöhe mit EC-Motor 4-18 kW

FH - Heizgebläse

AREO
Bläse mit motoren
ON/OFF
8-101 kW

AREO i
pag. 138

Heizgebläse für die Klimatisierung
mit EC-Motor 11-118 kW

CO - Steuerungen und Software für hydronische Endgeräte

	EVO-2-TOUCH Touchscreen- Bedienoberfläche	pag. 150		MYCOMFORT Elektronische Mikroprozessorsteuerung mit LCD-Display	pag. 156
	EVO Elektronische ikroprozessorsteuerung mit RemoteAnwenderschnittstelle	pag. 152		TED Vereinfachte elektronische Steuerung	pag. 158
	EVO DISP Anwender schnittstelle mit LCD-Display	pag. 153		EVO LINK Überwachung mit 5"-Touchscreen für die Verwaltung deslimatisierungssystems	pag. 159
	GALLETTI APP Smartphone-App zur Steuerung von Endgeräten	pag. 154			

Umfangreiche Produktpalette mit über 1000 Möglichkeiten!

Im Jahre 1961 stellt sich Galletti dem Klimatisierungsmarkt mit seinem Plattenstrahler Jolly Seitdem ist über ein halbes Jahrhundert vergangen, die Anlagentypologien und die Bestimmungszwecke haben sich geändert, die Märkte und die Ansprüche der Verbraucher sind größer geworden und Galletti zählt immer noch zu den führenden Unternehmen des Sektors.
Ziel des Unternehmens ist es, die größtmögliche Palette an Lösungen für hydronische Anlagenendgeräte mit einer Technologie und einem Design anzubieten, die mit der Weiterentwicklung der Anlagen Schritt halten, mit dem präzisen Ziel, Zuverlässigkeit mit Innovation zu kombinieren.
Das Angebot ist heute komplett mit Gebläsekonvektoren mit Zentrifugal- oder Tangentiallüftern, Hyb rideinheiten für den Wohnungsbau, Kassetten mit Axial-Zentrifugal-Lüftern, kanalisierbaren Einheiten mit mittlerer und hoher Förderhöhe und -im Zeichen der Tradition- mit konvektiven Heizausführungen.

Energieersparnis mit EC-Motoren Inverter

Auf dem Klimatisierungsektor geht der Trend immer mehr in Richtung von Lösungen, die Leistungen und geringen Verbrauch kombinieren.
Galletti bietet im Zeichen einer kontinuierlichen Innovation Lösungen mit bürstenlosen Motoren an, die Folgendes garantieren:
" Anwendungskomfort durch komplette Modulation des Luftdurchsatzes
" um bis zu 50\% reduzierte Betriebskosten gegenüber herkömmlichen Motoren
» schnelles Erreichen der eingestellten Temperatur in den klimatisierten Räumen
" konstante Anpassung der abgegebenen Leistung auf der Basis der effektiven Last
" außerordentlich geräuscharmer Betrieb bei niedrigen Drehzahlen, wie beim Nachtbetrieb

Laufruhe

Das Projekt aller Belüftungsbauteile der Galletti-Endgeräte wird ausschließlich durch das technische Team des Unternehmens erarbeitet, das über alle erforderlichen Forschungs- und Entwicklungsinstrumente und ein in über 50 Jahren gesammeltes spezifisches Know-How verfügt.
Im Einzelnen haben die letzten Studien an Materialien und aerodynamischen Profilen zur Entwicklung besonderer Lüfterräder und Schnecken geführt, die derart konzipiert sind, dass sie Schallleistungen bieten, die zu den besten auf europäischer Ebene zählen und nach Eurovent zertifiziert sind. Gleichzeitig gewährleisten sie eine korrekte Luftverteilung, die in jeder Betriebsphase maximalen Raumkomfort garantiert.

Design und Materialien

Galletti verwendet für die hydronischen Endgeräte Verkleidungen mit exklusivem Design, die sich der Wohn- und Gewerbeumgebung anpassen.
Die Qualität der für die Fertigung verwendeten Materialien gewährleistet gleichbleibende Eigenschaften im Laufe der Zeit.
Die Teile aus Kunststoff bestehen aus UV-beständigem stabilisiertem ABS, damit die Farbe sich nicht im Laufe der Zeit verändert.
Für die Teile aus Stahl wird Blech mit der Stärke 10/10 mm mit doppelter Lackschicht mit UV-Beständigkeitsklasse RUV 3 gemäß der Norm EN 10169-2 verwendet.

Effiziente Klimakontrolle

Galletti bietet Steuerungen zur Installation am Gerät oder an der Wand mit über 20 Optionen an, je nach gewünschtem Regelungs- und Komfortgrad.
Die LED- oder LCD-Steuerungen der jüngsten Generation zeichnen sich durch Design und Technologie aus: EVO, EVO-2-TOUCH e MYCOMFORT stellen die Kunst der intelligenten Verwaltung eines mit einer Kältemaschine oder einer Wärmepumpe kombinierten Anlagenendgeräts dar.
Verwaltungssysteme, Master/Slave-Optionen, selbstnachstellende Regelung der Kältemaschine/Wärmepumpe, Steuerung der Umgebungsfeuchte - um nur einige der wichtigsten Pluspunkte dieser qualitativ hochwertigen und zuverlässigen Produkte zu nennen.

Druckunabhängige Regelventile (als Option erhätlich)

Kombinierbar mit ON/OFF- oder MODULIER-Servomotoren. Um eine dynamische Auswuchtung der Anlage und
 eine bereits eingestellte Regelung zu gewährleisten (Berechnungen wie beim herkömmlichen Auswuchten sind nicht notwendig). Sie bieten ferner viele Vorteile, darunter:

- Effiziente Energieübertragung und minimale Pumpenkosten durch Ausschluss von Überdurchsatz bei Teillastbedingungen durch exakte druckunabhängige Durchsatzregelung.
- Geringere Investitionen bei der Pumpenwahl und reduzierter Energieverbrauch, da die erforderliche Förderhöhe geringer ist, als bei den herkömmlichen Konfigurationen. Dank der integrierten piezometrischen Anschlüsse können Probleme schneller behoben und die Optimierung der Pumpleistung schneller und einfacher durchgeführt werden.
- erfordert keine aufwändige Inbetriebsetzung der Anlage zur Regelung des Durchsatzes zu den Gebläsekonvektoren unter Nennbedingungen mehr.
- Die reduzierten Bewegungen des modulierenden Stellantriebs durch den integrierten Differenzialdruckregler gewährleisten eine längere Lebensdauer des Stellantriebs selbst und verhindern, dass die Umgebungstemperatur durch Druckschwankungen der Anlage beeinflusst wird.
- Die Stabilität der Umgebungstemperatur ermöglicht es, eine niedrigere Durchschnittstemperatur bei gleichem Komfort zu erreichen.
- Weniger Reklamationen von Anlagenbetreibern, da der Durchsatz durch den korrekten Betrieb des Ventils nie von den Auslegungswerten abweicht.
- Es ist nicht mehr erforderlich, Ausgleichventile im Verteilungsnetz zu installieren.

PLUS

» Hoher Wirkungsgrad: Elimination von Schimmelpilzen, Bakterien, Viren, VOC bis zu 99 \% im Vergleich zu ihrer Ausgangskonzentration.
» Niedrigen Energieverbrauch: Über 10 Watt;
" Starke desodorierende Wirkung: Beseitigt Gerüche aus der durchströmenden Luft.
" Natürlicher Prozess: Es werden keine chemischen Stoffe verwendet und keine chemischen Rückstände oder produziert.
" Den Betriebs- und Einsatzbedingungen entsprechend anpassbare und dimensionierbare Technik.

Gebläsekonvektoren mit NTP-Technologie JONIX INSIDE und JONIX DUCT

Dle Luftverschmutzung in geschlossenen Räumen war schon immer ein bedeutendes Problem für die öffentiche Gesundheit, mit großen sozzialen und wirtschaftlichen Auswirkungen, und gerade im aktuellen kritischen Moment nimmt das Thema der Innenraumluftsanierung eine Rolle von primärer Bedeutung ein.
Unter den auf dem Markt erhältichen Lösungen gilt die NTP (Non Thermal Plasma)-Technologie heute als eine der effektivsten und slchersten für die Oxidation und Zersetzung von verunreinigenden Stoffen und Keimen. Es handelt sich um eine weiterentwickelte Form der Luftionisation, mit hoher Leistung bei der Beseitigung von Keimen und chemischen Stoffen. Nichtthermisches Plasma ist ein physikalisches Phänomen, das bel Rauntemperatur erzeugt wird.
Das „kalte Plasma* ist ein ionisiertes Gas, d.h. es besteht aus verschiedenen elektrisch geladenen Teilchen: Elektronen, lonen, Atome und Moleküle organischen und chemischen Uisprungs, die kollidieren und oxidierende Spezies erzeugen. Durch die Kollision hochenergetischer Elektronen mit Sauerstoff, Wasserdampf und Stickstoff entstehen verschiedene aktive Spezies (lonen oder neutrale Spezies und Radikale), die mit dem Luftstrom zu den verunreinigenden Stoffen und Keimen transportiert werden.
Es handelt sich folglich um ein aktives System der Luftsanierung, das nach Schadstoffen und Keimen „Jagt" und diese abbaut und zersetzt, ohne Rückstände zu bilden. Das nicht thermische Plasma eliminiert Bakterien, Viren, Schimmelpilze, Sporen, Gerüche und alle flüchtigen organischen Verbindungen (VOC): Formaldehyd, Benzol: usw.
Galletti integriert bereits seit Jahren die von JONIX entwickelte NTP-Technologie in seine Gebläsekonvektoren. Alle JONIX-Geräte verwenden die NTP-Technologie (Non Thermal Plasma oder Cold Plasma), bei der oxidierende und somit desinfizierende Spezies durch „JONIX-Generatoren" (oder „Aktuatoren") erzeugt werden.

Von freien Radikalen ange griffene Zelle

Abteilung für Molekulare Medizin - Universität Padua
Die Abteilung für Molekulare Medizin hat die in den Jonix-Geräten angewandte Non Thermal Plasma-Technologie in Labortests auf ihre viruzide Aktivität hin überprüft.
Die Ergebnisse zeigen, dass das verwendete Gerät (Jonix CUBE - Non Thermal Plasma Technologie) eine effektive antivirale Aktivität gegen SARS-CoV-2 (das sogenannte Covid-19) hat, und zwar mit einer Viruslastreduktion von 99,9999\%.
Zur Gewährleistung maximaler Präzision und Exaktheit wurde der Test gemäß der Norm DIN EN 14476:2019 "Quantitativer Suspensionsversuch zur Bewertung der viruziden Aktivität im medizinischen Bereich - Prüfverfahren und Anforderungen (Phase 2, Stufe 1)" und der Norm DIN EN 17272:2020 „Verfahren zur luftübertragenen Raumdesinfektion durch automatisierte Verfahren - Bestimmung der bakteriziden, mykobakteriziden, sporiziden, fungiziden, levuroziden, viruziden, tuberkuloziden und Phagen-Wirksamkeit" durchgeführt. Die viruzide Aktivität wurde mit dem Stamm SARS - CoV-2 (Covid-19) getestet. Alle Versuche wurden in einem Labor mit biologischer Sicherheitsstufe 3 (BSL3) durchgeführt.
Das wissenschaftliche Dossier wird auf Anfrage zur Verfügung gestellt.

FAN COIL MIT JONIX INSIDE

Das Gerät JONIX INSIDE ist eine an den Gebläsekonvektoren ESTRO, FLAT, FLAT S und ACQVARIA installierte Neuheit und verhindert die Bildung von chemischen und biologischen Verunreinigungen (Schimmel, Bakterien und Legionellen) auf den Innenflächen und entfernt diese aus der durchströmenden Luft. Die Sanierung erfolgt kontinuierlich und verhindert so, dass Staubablagerungen den idealen Nährboden für die Entwicklung von Schimmel und Bakterien bilden. Die Position des Geräts JONIX INSIDE im Inneren des Gebläsekonvektors wurde auf der Grundlage der in den ARCHALabors durchgeführten Tests und Versuchen festgelegt, wobei die Betriebszyklen des Geräts auf eine stärkere Sanierung des Endgeräts, insbesondere des Wärmetauschers, des Kondensatsammelbehälters, des Radiallüfters und der Innenflächen abzielen.

Regelung einheit mit JONIX INSIDE

Die Steuerungen EVO, EVO-2-TOUCH und MYCOMFORT verwalten den kombinierten Betrieb von Gebläsekonvektor und Geräten zur Maximierung der Sanierungswirkung der Gebläsekonvektoreinheit in den Hauptkomponenten wie Register, Kondensatauffangwanne und Lufffilter.

KANALISIERBARE EINHEITEN MIT JONIX DUCT

Die kanalisierbaren Galletti-Einheiten der Serien DUCTIMAX und UTN nutzen die NTP JonixTechnologie zur Hygienisierung der urchströmenden Luft, zur mikrobiellen Dekontamination der Innenoberflächen der Einheiten, der Filter, der Register und zur Vorbeugung gegen die Entwicklung von Legionella in den Kondenswassersammelbecken. Die Vorrichtungen sind dem Bestimmungszweck, dem Luftdurchsatz und den zu behandelnden Schadstoffen entsprechend dimensioniert.

Regelung JONIX INSIDE

Sie werden in speziellen Plena installiert, die in den Luftauslass oder den Lufteinlass eingefügt und von der Steuerung EVO gesteuert werden, um die Effekte auf das Gerät, die Kanäle und die durchströmende Luft zu maximieren. Die eingesetzte Elektronik meldet den Betriebszustand an die Leistungsplatine EVO BOARDund signalisiert eventuelle Fehlfunktionen und die Notwendigkeit einer programmierten Wartung.

Design Gebläsekonvektoren tief bis nur 10 cm und EC Motor

ART-U 1-4 kW

PLUS

" Möbel mit innovativem Design mit einer bis auf 10 cm reduzierten Tiefe.
» Invertergesteuerter Motor EC
» Niedrigen Energieverbrauch

Innovation im Zeichen des Designs

Aus der großen Erfahrung Galletti in der Entwicklung und Gestaltung von Gebläsekonvektoren und als Bestätigung der kontinuierlich auf Innovation ausgerichteten Forschungsarbeit entstand ART-U, das Ergebnis einer perfekten Kombination zwischen Leistung und Design. ART-U ist ein einzigartiges Produkt, das einerseits den immer höheren Anforderungen hinsichtlich Energieeffizienz gerecht wird, andererseits aber auch erstmals den aktuellen Innen-ausstattungs- und Raumgestaltungstrends entspricht.
Wurde mit seiner Tiefe, die an bestimmten Punkten nur 10 cm beträgt, und seiner einzigartigen Linie konzipiert, um ein absolut transversales Produkt darzustellen, das sich sowohl strengen und essentiellen Umgebungen als auch einem gemütlicheren und raffinierteren Ambiente perfekt anpasst. Das Erreichen außerordentlich hoher Ästhetik-Standards geht jedoch nicht zu Lasten der Konstruktionsvirtuosität der Produkte Galletti: Die Forschung nach Innovation wurde denn auch auf die Komponenten und den Einsatz neuer Materialien ausgerichtet. Mit ART-U wurde der modernste Stand der Technik dank dem Einsatz numerischer Strömungssimulationen auch hinsichtlich technischer Leistung neu definiert, um den Wärmetausch im Gebläsekonvektor durch den Einsatz von Elektromotoren mit Permanentmagneten zu optimieren.
Ist das einzige innovative Produkt, das Design, geringe Tiefe und Energieeffizienz in sich vereint.

Designwettbewerbe

Seine Entwicklung hat gerade erst begonnen, aber es hat bereits wichtige Anerkennungen erhalten und die Jury der renommiertesten internationalen Preise für industrielles Produktdesign überzeugt.

VERFÜGBARE VERSIONEN

Die ART-U-Ausführungen mit Metallfinish der Frontverkleidung sind nach der CMF-Tafel (Farben, Materialien, Oberflächen) zusammengefasst. CMF ist ein echtes Industriedesign-Instrument, das an der chromatischen, haptischen und dekorativen Gestaltung von Produkten und Umgebungen arbeitet.

HAUPTBESTANDTEILE

Design-Verkleidung

Das elegante Frontpaneel besteht aus zwei Aluminiumblechen mit Polyethylenkern und eventuell mit einer Oberflächenlackierung auf Polyesterbasis. Ein leichtes, doch sehr widerstandsfähiges Material, das als Fassadenverkleidung im Bauwesen entwickelt wurde. Die Seitenteile bestehen aus UV-beständigem stabilisiertem ABS, damit die Farbe sich nicht im Laufe der Zeit verändert.
Der Polyethylenkern dient als biegsames und wärmeisolierendes Füllmittel, während das Aluminium Struktur und Ästhetik verleiht.

Leitbleche

Aus PVC. Sie wurden entwickelt, um den Luftfluss im Gebläsekonvektor zu optimieren und eine optimale Verteilung des Luftstroms im Register sowie einen geräuscharmen Betrieb unter allen Betriebsbedingungen zu gewährleisten.

Oberes Gitter

Besteht aus ausrichtbaren Flügeln aus eloxiertem Aluminium, kompatibel für On-Board-Befehlsinstallation. Die die Gitter unterstützenden „Kämme" verhindern ein Verbiegen derselben und gewährleisten stets die Sicherheit des Anwenders.

Frontgitter

Stahl. Entwarf sich zu stabilisierend en Betrieb des Tangentiallüfters.

Elektromotor

EC-Motor mit Permanentmagneten mit integriertem Inverter im Lüftungsaggregat. Die Schutzart IP44 ist garantiert, weshalb die Gefahr des Eintretens von Staub in den Innenraum gebannt und die Widerstandsfähigkeit gegen Wasserspritzer gewährleistet ist.

Tangentiallüfter

Statisch und dynamisch ausgewuchteter Tangentiallüfter mit reduzierter Geräuschentwicklung.
Der für die Flügel verwendete Kunststoff gewährleistet gegenüber den Metalluüftern eine Verringerung der Vibrationen und schließt eine Verbiegung längs der Rotationsachse aus.
Zwischen die einzelnen Flügel wurden Verstärkungsscheiben eingefügt, um die Widerstandsfähigkeit zu erhöhen.

Wärmetauscherbatterien

Gewellt mit hoher Effizienz, aus Kupferrohren und Aluminiumlamellen, ausgestattet mit Verteilern aus Messing und Entlüftungsventil.
Die Lamellen werden serienmäßig einer hydrophilen Behandlung unterzogen, um die Wirksamkeit bei der Kühlung zu erhöhen und zugleich eine bessere Beständigkeit gegenüber aggressiven Atmosphären zu gewährleisten.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

Fan coil ART-U

VERFÜGBARE VERSIONEN

ART-U Grey
Der Einsatz einer Fronttafel aus gebürstetem Aluminium natürliche in Kombination mit schwarzen Seitenteilen unterstreicht die absolute Eleganz dieses einzigartigen Gebläsekonvektors und seine äußerst geringe Tiefe. Mit seinen einfachen, sauberen und wesentlichen Linien passt sich das Produkt perfekt Umgebungen an, in denen der Einrichtungsstil neuen Trends folgt und in denen sich jedes Element durch ein ansprechendes Design auszeichnen soll.

ART-U White
Die neutrale weiße Farbe gewährleistet die maximale Integration in den Raum hinsichtlich Anpassungsfähigkeit, der Gebläsekonvektor verschwindet fast in der Wand.

Galletti

VERFÜGBARE VERSIONEN

ART-U Red

Dank der erlesenen und eleganten Linien des Produkts hebt auch eine starke, entschiedene Farbe wie Rot die einzigartige Persönlichkeit von ART-U tatsächlich noch mehr hervor und verwandelt das Produkt in eine wahre Einrichtungsikone.

ART-U Black

Die einzigartige Farblösung in Schwarz trägt dazu bei, dass der Gebläsekonvektor sich perfekt in die Umgebung integriert und dieser einen Hauch absoluter Eleganz verleiht.

ZUBEHÖR

EVO-2-TOUCH

Das neue Bedienfeld EVO-2-TOUCH, das auch an dem Gerät installiert werden kann, garantiert maximalen thermo-hygrometrischen Komfort in Verbindung mit der Ergonomie des Touchscreens. Dank der 'Tap'- und 'Swipe'Funktion ist die Benutzererfahrung derjenigen bei einem Smartphone ähnlich.
Die verschiedenen Bildschirmseiten sind so gestaltet, dass die Mensch-Ma-schine-Kommunikation intuitiv möglich ist. Jede Seite enthält nur wenige wesentliche Informationen, die es ermöglichen, die wichtigsten Betriebsparameter des Geräts nachzuschlagen und die Steuerung den Systemanforderungen entsprechend zu konfigurieren.
Der Außenrahmen der Schnittstelle ist in vier verschiedenen Farben erhältlich und wird aus zwei Aluminiumblechen mit Polyethylenkern hergestell.

DISC-COVER

Der minimalistische Stil des DISC-COVER-Fußes steht im Einklang mit den eleganten und essentiellen Linien von ART-U. Erhältlich in drei verschiedenen Farben: Weiß RAL9010, Schwarz RAL9005, Rot RAL3020. Passt sich perfekt dem Stil der zu klimatisierenden Umgebung an, egal ob es sich um einen strengen und formellen oder einen ironischen Stil handelt. Die Form wurde speziell so konzipiert, dass sowohl die Installation als auch die Reinigung und Wartung schnell und einfach durchgeführt werden können. Das Magnetbefestigungssystem ermöglicht es, die Position entsprechend der Montagehöhe und der Position der Rohre einzustellen.

ZUBEHÖR	
LUR	
Elektronische Mikroprozessorsteuertafeln mit display	
DIST	Distanzhalter Steuerung MYCOMFORT zur Wandmontage
E2TK	Touchscreen-Bedienoberfläche 2,8" EVO-2-TOUCH für EVO-Steuerung, Aluminium schwarz Rahmen RAl9005
E2TY	Touchscreen-Bedienoberfläche 2,8" EVO-2-TOUCH für EVO-Steuerung, gebürstetem Aluminium natürliche Rahmen
E2TW	Touchscreen-Bedienoberfläche 2,8" EVO-2-TOUCH für EVO-Steuerung, Aluminium weiße Rahmen RAL9010
E2TR	Touchscreen-Bedienoberfläche 2,8" EVO-2-TOUCH für EVO-Steuerung, gebürstetem Aluminium rot Rahmen RAL3020
EVOBOARD	Leistungsplatine für Steuerung EVO
EVODISP	Anwerderschnittstelle mit Display zur EVO-Steuerung
EYNAVEL	Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone
KBEVS	Installationskit für Steuerung EVODISP am Gerät ART-U
MCLE	Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCSUE	Feuchtigkeitsfühler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE	Wasserfühler für Steuerungen MYCOMFORT, EVO
TOUCHKB-W	Installationskit für Steuerung EVO-2-TOUCH am Gerät ART-U nach Version White

TECHNISCHE NENNDATEN

ART-U			10				20				30			
Velindigkeit			1	2	3	4	1	2	3	4	1	2	3	4
Eingangsspannung	(E)	V	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Gesamtkühlleistung	(1)(E)	kW	0,31	0,71	0,84	1,08	0,58	1,15	1,41	1,76	0,66	1,63	1,97	2,44
Sensible Kühlleistung	(1)(E)	kW	0,21	0,56	0,69	0,91	0,41	0,89	1,08	1,36	0,46	1,18	1,44	1,78
Klasse FCEER	(E)		C				C				B			
Wasserdurchsatz	(1)	1/h	53	122	145	185	100	198	242	303	113	280	339	418
Druckverlust	(1)(E)	kPa	1	4	5	8	2	6	9	13	2	12	17	24
Heizleistung	(2)(E)	kW	0,29	0,82	1,05	1,40	0,59	1,09	1,31	1,62	0,67	1,78	2,15	2,65
Klasse FCCOP	(E)		C											
Wasserdurchsatz	(2)	I/h	51	143	183	243	103	231	278	345	117	310	374	461
Druckverlust	(2)(E)	kPa	1	4	6	11	2	7	10	14	2	12	17	24
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	40	148	207	312	82	224	287	389	91	302	392	529
Leistungsaufnahme	(E)	W	4	7	9	14	4	10	12	17	5	11	15	24
Globale Schallleistung	(3)(E)	dB(A)	28	41	46	54	28	41	47	54	28	42	47	54

ART-U			40				50			
Velindigkeit			1	2	3	4	1	2	3	4
Eingangsspannung	(E)	V	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Gesamtkühlleistung	(1)(E)	kW	0,76	1,84	2,37	3,12	0,92	2,32	2,89	3,69
Sensible Kühlleistung	(1)(E)	kW	0,53	1,38	1,77	2,33	0,65	1,72	2,15	2,77
Klasse FCEER	(E)		B							
Wasserdurchsatz	(1)	1/h	131	315	406	535	157	398	496	634
Druckverlust	(1)(E)	kPa	2	12	18	29	3	13	19	29
Heizleistung	(2)(E)	kW	0,74	1,99	2,49	3,21	0,95	2,56	3,16	4,02
Klasse Fccop	(E)									
Wasserdurchsatz	(2)	1/h	128	347	433	559	165	446	550	698
Druckverlust	(2)(E)	kPa	2	11	17	26	2	13	19	28
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	104	363	496	724	129	439	587	831
Leistungsaufnahme	(E)	W	5	12	17	27	5	12	18	30
Globale Schallleistung	(3)(E)	dB(A)	31	42	47	54	32	42	47	54

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}^{\circ}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN 1397 :2021
(2) Wassertemperatur $45^{\circ} / 10^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(3) Schallleistung gemessen gemäß $\operatorname{SO} 03741$ und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Design Gebläsekonvektoren tief bis nur 10 cm und EC Motor

ART-U Canvas 1 - $\mathbf{4} \mathbf{k W}$

Now it's up to you

Dank ART-U Canvas wird eine neue Grenze in der Klimatisierung von Innenräumen erreicht. Ein Produkt, das bereits ein Unikum in seinem Sektor war, wird heute weiter verbessert: ART-U Es wird dank der kompletten Personalisierung der Fronttafel zu einer vielseitigen Plattform. Die Fronttafel des Gebläsekonvektors wird zu einer echten Malerleinwand, die durch den Innenarchitekten „kontaminiert" und personalisiert wird. Auf ART-U Canvas kann jede beliebige Vollfarbe, jedes Bild und jede Fotografie hohe Auflösung reproduziert werden. Für die Anpassung des Gebläsekonvektors sind keine Mindestmengen erforderlich, um dem Innenarchitekten unabhängig von der Größe des Projekts maximale Freiheit zu gewährleisten.

Mit ART-U-Canvas sind der Kreativität keine Grenzen gesetzt: Jetzt liegt es an Innen, die perfekte Version zu wählen, die sich vom Stil her in die zu klimatisierende Umgebung einfügt.

VERFÜGBARE VERSIONEN

Canvas ist in zwei Versionen erhätlich:
Total Graphic Skin e Graphic Skin.
Total Graphic Skin ermöglicht die individuelle Gestaltung der gesamten Oberfläche der Frontverkleidung durch die Reproduktion von Grafiken oder Fotos.

Die Version Graphic Skin ermöglicht die Reproduktion von Bildern, wobei die Verkleidung aus natürlichem gebürstetem Aluminium oder in Weiß RAL9010 teilweise sichtbar bleibt.

Diese beiden Versionen von ART-U-Canvas sind nach der CMF-Tafel (Farben, Materialien, Oberflächen) zusammengefasst. CMF ist ein echtes Industriedesign-Instrument, das an der chromatischen, haptischen und dekorativen Gestaltung von Produkten und Umgebungen arbeitet.

PLUS

" Möbel mit innovativem Design mit einer
bis auf 10 cm reduzierten Tiefe.
» Invertergesteuerter Motor EC
» Niedrigen Energieverbrauch
" Komplette Personalisierung der Fronttafel

VERFÜGBARE VERSIONEN

	Total Graphic Skin		Graphic Skin	
Farbe				
Materialien				
Ausführung	Matt		Matte Grafik und gebürsteter metallischer Untergrund	Matte Grafik und metallischer Untergrund, weiß RAL9010 matt

ART-U CANVAS

ART-U wird zu einer Plattform, die den Vorschlägen des Innenarchitekten entsprechend angepasst werden kann.
Die Farbe der Fronttafel kann aus über 3000 Farbvarianten der RAL- und PANTONE-Skala ausgewählt werden.

Jede geometrische Textur oder jeder Materialeffekt kann ein einzigartiges Design schaffen, das Ihre Persönlichkeit in jedem Detail zum Ausdruck bringt.

Mit ART-U Canvas sind der Kreativität keine Grenzen mehr gesetzt. Es besteht die Möglichkeit, die Fronttafel mit Bildern und Fotografien zu personalisieren, was aus diesem Gebläsekonvektor einen effektiven Einrichtungsgegenstand macht.

Innovation ergänzt die Kreativität mit ART-U-Canvas. Dieser intelligente und erstaunlich leistungsstarke Gebläsekonvektor wurde entwickelt, um die Regeln des Designs neu zu schreiben und individuelle Gestaltungen zu inspirieren, die weit über die Oberfläche des Gebläsekonvektors hinausgehen.

ONLINE KONFIGURATOR ART-U CREATOR

Mit der Online-Software ART-U-Creator können Sie Ihrer Design-Idee, angewandt auf die Klimatechnik, Form geben. Dank dieses Tools können Sie Ihren ART-UCanvas schnell konfigurieren, indem Sie die Grafik der Frontverkleidung und die Farbe der anderen Komponenten des Produkts auswählen. Es gibt ein Produkt für jede Lösung, die Konfiguration des Stils Ihrer Umgebung war noch nie so einfach.

Wenden Sie sich an art-u@galletti.it, um Zugang zum ersten Gestaltungs-Konfigurator speziell für Gebläsekonvektoren zu erhalten.

MASSZEICHNUNG

ESTRO 1-11 kW

JONIX
pura livipg

PLUS

" Motoren mit 3 oder 6 Geschwindigkeiten
" Zentrifugallüfter aus ABS
" Batterie bis 4 Reihen
» Umkehrbare Wasseranschlüsse
» Verkleidung aus Stahl / ABS
» Inkorporierbare JONIX-Reinigungssystem

Die umfangreichste GebäsekonverktorPalette auf dem Markt vereint Technologie, Qualität und die Zuverlässigkeit von Galletti

Die Baureihe ESTRO ist auf dem Markt die Gebläsekonvektorlinie mit dem größten Angebot an Modellen und Zubehör, was alle Ansprüche der Fachleute auf diesem Sektor zufriedenstellt.
Die Palette besteht aus 20 Modellen, die in 9 Bauausführungen hergestellt werden.
Für die Realisierung des Projekts ESTRO wurde Material höchster Qualität ausgewählt, was zusammen mit der großen Sorgfalt und Aufmerksamkeit beim Zusammenbau der wichtigsten Bauteile zu einer hohen Betriebszuverlässigkeit und zu Geräuschkomfort führt. Die Linie ESTRO zeichnet sich durch ein Baukonzept aus, das es ermöglicht, die Modelle zur vertikalen Installation mit denen zur horizontalen Installation zu vereinen: Es werden Ausführungen zur Sichtinstallation an der Wand, am Boden oder an der Decke sowie zum Einbau in die Wand, die Decke und einen tiefergelegten Boden angeboten.
Bei der kanalisierbaren Einbauausführung verfügt ESTRO über eine Reihe von Zubehör, das eine schnelle und kostengünstige Installation mit direkt an Luftverteilungsgitter gekuppelten biegsamen Kanalisierungen erlaubt.
Mit ESTRO können Steuerungen zur Installation am Gerät oder an der Wand mit über 20 Optionen an, je nach gewünschtem Rege-lungs- und Komfortgrad kombiniert werden.
Ein innovatives Luftionisierungssystem gewährleistet die Desinfektion des Endgeräts und die Desodorierung der Raumluft.

VERFÜGBARE VERSIONEN

ESTRO FL

Ausführung mit für die Sichtinstallation an der Wand geeigneter Verkleidung. Vertikale Luftausblasung, Luftfilter an der Saugseite, mit Schrauben zu 1/4 Drehung an der Verkleidung befestigt.
ESTRO FL ist in $\mathbf{2 0}$ Modellen erhältlich.

ESTRO FA

Sichtinstallation an der Wand mit Verkleidung. Dank der schrägen Luftausblasung an der Vorderseite ist ESTRO FA besonders zum Einsetzen in Fächer mit einer Tiefe bis 150 mm geeignet.
ESTRO FA ist in 19 Modellen erhältlich.

ESTRO CL
Sichtinstallation an der Wand mit Verkleidung, vertikale Luftausblasung. Mit dezenten, pastellfarbenen Tönen, passt zu traditionellen Einrichtungen und überall dort, wo die warmen Farben und die eleganten Formen aus ESTRO CL einen effektiven Einrichtungsgegenstand machen. Farbe der Blechtafel: RAL 9001. Farbe der Teile aus ABS: Pantone "warm gray 2 U".
ESTRO CL ist in $\mathbf{2 0}$ Modellen erhältlich.

ESTRO FU

Ausführung mit für die Sichtinstallation am Boden und an der Decke geeigneter Verkleidung. An der Verkleidung sind sowohl die Luftausblasgitter als die Sauggitter mit eingebautem Filter vorhanden.
ESTRO FU ist in 20 Modellen erhältlich.

ESTRO FP

Ausführung mit für die Sichtinstallation an der Decke geeigneter Verkleidung. Die rückseitige Luftansaugung hinter den Ausblas-
 gittern. Diese Ausführung ist besonders nützlich in Kombination mit Außenluftschiebern
ESTRO FP ist in $\mathbf{2 0}$ Modellen erhältlich.

ESTRO FB

Ausführung mit niedriger Bauhöhe mit für die Sichtinstallation am Boden und an der Decke geeigneter Verkleidung. An der Verkleidung sind sowohl die Luftausblasgitter als die Sauggitter mit eingebautem Filter vorhanden. Die neue Positionierung der Innenkomponenten hat eine Reduzierung der Höhe auf nur 438 mm erlaubt.
ESTRO FB ist in 9 Modellen erhältlich.

ESTRO FC

Vertikale- und horizontale Einbauinstallation, Luftansaugung in Linie mit Luftausblasung, Körper aus wärmeisoliertem verzinktem Stahlblech. Anschlüsse und Mischkammer erlauben die Vervollständigung des Saugvorgangs und die Luftausblasung in den Raum.
ESTRO FC ist in $\mathbf{2 0}$ Modellen erhältlich.

ESTRO FF

Vertikale- und horizontale Einbauinstallation, Luftansaugung vorne, Körper aus wärmeisoliertem verzinktem Stahlblech. Die Ansaugung an der Vorderseite ermöglicht den Einbau in den Boden oder horizontal mit Direktansaugung von der Zwischendecke. ESTRO FF ist in $\mathbf{2 0}$ Modellen erhältlich.

ESTRO FBC

Niedrige Bauhöhe für die vertikale- und horizontale Einbauinstallation, Luftansaugung vorne mit Lufffilter, Körper aus wärmeisoliertem verzinktem Stahlblech. Die neue Positionierung der strategischen Komponenten hat eine Reduzierung der Höhe auf nur 412 mm erlaubt.
ESTRO FBC ist in 9 Modellen erhältlich.

Hydronische Endgeräte ESTRO

HAUPTBESTANDTEILE

Verkleidung

Besteht aus einer lackierten Stahlblechtafel; Seitenteile, Luftausblasgitter (um 180° verstellbar) und Sauggitter bestehen aus ABS.
Die abgerundete Form und die Farben passen perfekt zur heutigen Wohnungseinrichtung und entsprechen den architektonischen Ansprüchen.

Elektromotor

Auf Schwingungsdämpfer montiert, mit ständig eingeschaltetem Verflüssiger und Überlastungsschutz der Wicklungen, direkt mit den Lüftern gekoppelt. Wird sowohl mit 3 als mit 6 Drehgeschwindigkeiten angeboten, um allen spezifischen Ansprüche hinsichtlich Leistungen, Laufruhe und Stromverbrauch zu entsprechen.

Struktur

Gefertigt aus starkem, verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1. Die Ausführungen FU - FB - FC - FF und FBC sind mit doppeltem Kondenswassersammelbecken ausgestattet.

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, statisch und dynamisch ausgewuchtet; gefertigt aus antistatischem ABS, Schaufeln mit Flügelprofil, versetzte Module. Die Lüfter sind eingebaut in eine ABS-Hochleistungsschnecke.

Wärmetauscherbatterie

Mit hohem Wirkungsgrad, aus Kupferrohren und Aluminiumrippen, ausgestattet mit Verteilern aus Messing und Entlüftungsventil. Die Hydraulikanschlüsse sind bei der Installation umkehrbar. Auf Anfrage kann eine zusätzliche Batterie für Anlagen mit 4 Leitungen installiert werden.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten. In der Ausführung FU sind die Lufffilter in das Ansauggitter eingesetzt.

KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausführung und des Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfigurationsbeispiel abgebildet.

KONFIGURATOR

[^0]6 Steuertafel
0 Nicht vorhanden
1 CB-Onboard-Stufenschalter
2 TB-Stufenschalter und Thermostat
3 TIB-Stufenschalter, Thermostat und S/W-Modus-Schalter
4 TED 2T Fermbedienung/ Mikroprozessorregler für 2 Rohr
5 TED 4T Fernbedienung/Mikroprozessorregler für 4 Rohr
6 TED 10 Fernbedienung/ Mikroprozessorregler für BLDC
A MCBE-MyComfort Base
B MCME-MyComfort Medium
C MCLE-MyComfort Large
D LED 503
E EVOBOARD-Schnittstelle
F EVOBOARD + EVODISP-(Schnitststlle + Display)
G Schnittstelle EVOBOARD + WI-FI-Modul NAVEL
7 Fühler
0 Nicht vorhanden
1 SA-Externer Fühler für Luft für MYCOMFORT, LED503 und EVO
2 SW - Wasserfühler für MYCOMFORT, LED503 und EVO
3 SU-Feuchtefühler für MYCOMFORT und EVO
4 SA+SW - Externer Fühler für Luft und Wasser für MYCOMFORT, LED503 und EVO
5 SA + SU - Externer Fühler für Luft und Feuchte für MYCOMFORT und EVO
6 SA+SU+SW- Externer Fühler für Luft, Wasser und Feuchte fürrCOMFORT und EVO
A TC-Thermostat für minimale Wassertemperatur
B SA - Fernfühler für Luft für TED
(SW-Wasserfühler für TED
D SA + SW - Luft- und Wasserfühler für TED
8 Verschiedenes Zubehör
0 Nicht vorhanden
2 JONIX
4 BV -Zusätziche Kondensatwanne
5 BH-Zusätziche Kondensatwanne
6 GIVK-Isolierschale
9 Filter
0 Standard Lufffilter
10 Release
00
A A

Hydronische Endgeräte ESTRO

TECHNISCHE NENNDATEN - 2 ROHR

ESTRO			1			2			3			4		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	0,75	0,90	1,12	1,02	1,21	1,50	1,24	1,48	1,69	1,34	1,66	1,91
Sensible Kühlleistung	(1)(E)	kW	0,57	0,68	0,84	0,77	0,94	1,16	0,93	1,10	1,25	0,98	1,20	1,37
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	1/h	129	155	193	176	208	258	214	255	291	231	286	329
Druckverlust	(2)(E)	kPa	4	5	7	7	9	13	8	11	14	7	10	13
Heizleistung	(3)(E)	kW	0,95	1,11	1,32	1,21	1,48	1,82	1,45	1,72	1,84	1,50	1,81	2,15
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	164	191	227	208	255	313	250	296	317	258	312	370
Druckverlust	(3)(E)	kPa	5	6	8	8	11	15	9	12	14	6	9	12
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	127	189	231	167	233	319	210	271	344	214	271	344
Leistungsaufnahme	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Globale Schallleistung	(4)(E)	dB(A)	30	32	40	37	42	47	38	44	49	40	44	50
ESTRO			4M			5			6			6M		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	1,48	1,81	2,19	1,57	1,99	2,36	1,73	2,34	2,87	1,90	2,60	3,23
Sensible Kühlleistung	(1)(E)	kW	1,04	1,28	1,55	1,15	1,53	1,82	1,23	1,66	2,05	1,30	1,79	2,24
Klasse FCEER	(E)		D			E			D			D		
Wasserdurchsatz	(2)	1/h	255	312	377	270	343	406	298	403	494	327	448	556
Druckverlust	(2)(E)	kPa	10	14	20	8	12	16	6	9	13	7	12	17
Heizleistung	(3)(E)	kW	1,53	1,88	2,29	1,74	2,26	2,70	1,76	2,37	2,94	1,94	2,68	3,37
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	263	324	394	300	389	465	303	408	506	334	461	580
Druckverlust	(3)(E)	kPa	9	12	17	8	12	17	5	8	11	6	10	15
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	211	271	344	267	341	442	293	341	442	241	341	442
Leistungsaufnahme	(E)	W	30	45	66	29	44	57	29	43	56	29	43	56
Globale Schallleistung	(4)(E)	dB(A)	41	45	51	35	43	48	36	42	48	35	43	49
ESTRO			7			7M			8			8M		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	1,94	2,58	3,45	2,44	3,33	4,48	2,47	3,21	4,23	2,74	3,64	4,86
Sensible Kühlleistung	(1)(E)	kW	1,41	1,99	2,69	1,69	2,31	3,12	1,76	2,39	3,05	1,90	2,53	3,40
Klasse FCEER	(E)		E			D			D			D		
Wasserdurchsatz	(2)	1/h	334	444	594	420	573	771	425	553	728	472	627	837
Druckverlust	(2)(E)	kPa	4	7	12	6	11	18	5	8	12	7	12	20
Heizleistung	(3)(E)	kW	2,39	3,13	4,05	2,51	3,40	4,57	2,47	3,24	4,24	2,80	3,70	4,95
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	412	539	697	432	585	787	425	558	730	482	637	852
Druckverlust	(3)(E)	kPa	5	8	13	5	9	15	4	6	10	6	10	17
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	331	450	640	320	450	640	420	497	706	361	497	706
Leistungsaufnahme	(E)	W	40	50	65	37	61	98	38	61	98	38	61	98
Globale Schallleistung	(4)(E)	dB(A)	35	43	52	36	44	53	35	43	53	36	44	54

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchhtkugel (47% relative Feuchtigkeit) ausgedrü̈ck gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 2 ROHR

ESTRO			9			9M			95			10		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	2,95	3,59	4,41	3,47	4,30	5,30	3,37	4,12	5,15	3,88	5,14	6,53
Sensible Kühlleistung	(1)(E)	kW	2,27	2,85	3,55	2,42	3,00	3,72	2,29	2,93	3,72	2,75	3,70	4,73
Klasse FCEER	(E)		D			D			D			E		
Wasserdurchsatz	(2)	1/h	508	618	759	598	740	913	580	709	887	668	885	1124
Druckverlust	(2)(E)	kPa	7	10	14	11	16	24	10	14	21	5	9	12
Heizleistung	(3)(E)	kW	3,31	4,08	4,98	3,53	4,37	5,39	3,52	4,32	5,49	3,97	5,17	6,49
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	570	703	858	608	753	928	606	744	945	684	890	1118
Druckverlust	(3)(E)	kPa	7	10	14	10	14	20	8	12	18	4	7	10
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	527	605	785	470	605	785	601	615	814	661	771	1011
Leistungsaufnahme	(E)	W	47	68	98	47	68	98	52	73	107	86	127	182
Globale Schallleistung	(4)(E)	dB(A)	43	49	56	44	50	57	44	51	58	47	54	61
ESTRO			10M			11			11M			12		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	4,32	5,69	7,20	4,00	6,07	7,78	4,55	6,81	8,74	6,76	8,53	10,7
Sensible Kühlleistung	(1)(E)	kW	2,98	3,93	4,99	2,94	4,46	5,72	3,18	4,78	6,15	4,91	6,22	7,76
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	1/h	744	980	1240	689	1045	1340	784	1173	1505	1164	1469	1841
Druckverlust	(2)(E)	kPa	8	14	21	6	13	20	9	19	29	14	22	32
Heizleistung	(3)(E)	kW	4,28	5,56	6,96	4,39	6,53	8,37	4,75	7,02	9,00	7,45	9,29	12,2
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	737	957	1199	756	1124	1441	818	1209	1550	1283	1600	2101
Druckverlust	(3)(E)	kPa	7	11	16	6	12	18	8	16	25	14	20	33
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	570	771	1011	682	1022	1393	642	1022	1393	1154	1317	1850
Leistungsaufnahme	(E)	W	86	127	182	109	169	244	109	169	244	210	240	310
Globale Schallleistung	(4)(E)	dB(A)	48	55	62	49	60	67	50	61	68	60	64	71

[^1]
TECHNISCHE NENNDATEN - 4 ROHR

ESTRO			1			2			3			4		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	0,74	0,88	1,10	0,97	1,11	1,42	1,22	1,44	1,64	1,24	1,52	1,74
Sensible Kühlleistung	(1)(E)	kW	0,56	0,67	0,83	0,73	0,87	1,10	0,91	1,07	1,22	0,96	1,18	1,41
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	I/h	127	152	189	167	191	245	210	248	282	214	262	300
Druckverlust	(2)(E)	kPa	4	5	7	6	8	12	8	11	14	7	10	13
Heizeistung	(3)(E)	kW	1,18	1,31	1,49	1,31	1,49	1,66	1,36	1,56	1,76	1,36	1,56	1,76
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	102	113	128	113	128	143	117	134	152	117	134	152
Druckverlust	(3)(E)	kPa	2	3	4	3	4	4	4	5	7	4	5	6
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	146	184	226	174	225	307	205	261	330	205	261	327
Leistungsaufnahme	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Globale Schallleistung	(4)(E)	dB(A)	30	32	40	33	39	45	40	44	49	38	44	50

ESTRO			5			6			7		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	1,55	1,96	2,32	1,70	2,29	2,81	1,92	2,54	3,36
Sensible Kühlleistung	(1)(E)	kW	1,14	1,50	1,79	1,21	1,62	2,01	1,40	1,96	2,61
Klasse FCEER	(E)		E			D			E		
Wasserdurchsatz	(2)	1/h	267	338	400	293	394	484	331	437	579
Druckverlust	(2)(E)	kPa	8	12	16	5	8	11	4	7	12
Heizleistung	(3)(E)	kW	1,78	2,18	2,53	1,88	2,31	2,68	2,82	3,47	4,20
Klasse FCCOP	(E)						E				
Wasserdurchsatz	(3)	I/h	153	188	218	162	199	231	243	299	362
Druckverlust	(3)(E)	kPa	2	3	3	2	3	4	8	12	16
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	238	334	432	237	332	431	316	444	628
Leistungsaufnahme	(E)	W	29	44	57	29	43	56	37	61	98
Globale Schalleistung	(4)(E)	dB(A)	34	43	48	33	41	47	36	45	53

ESTRO			8			9			95		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	2,44	3,17	4,16	3,06	3,74	4,57	3,49	4,27	5,31
Sensible Kühlleistung	(1)(E)	kW	1,74	2,36	2,99	2,23	2,80	3,47	2,38	3,01	3,78
Klasse FCEER	(E)		D								
Wasserdurchsatz	(2)	//h	420	546	716	527	644	787	601	735	914
Druckverlust	(2)(E)	kPa	5	7	12	7	10	14	10	14	20
Klasse FCCOP	(E)						E				
Heizeistung	(3)(E)	kW	2,73	3,22	3,82	3,55	4,07	4,64	3,70	4,20	4,84
Wasserdurchsatz	(3)	I/h	235	277	329	306	350	400	319	362	417
Druckverlust	(3)(E)	kPa	8	10	14	5	6	8	7	9	12
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	356	490	690	460	593	763	478	603	792
Leistungsaufnahme	(E)	W	38	61	98	47	68	98	52	73	107
Globale Schallleistung	(4)(E)	$d B(A)$	39	46	56	48	53	58	46	52	59

ESTRO			10			11			12		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	3,84	5,10	6,46	3,96	5,99	7,64	6,70	8,44	10,5
Sensible Kühlleistung	(1)(E)	kW	2,73	3,67	4,67	2,91	4,40	5,61	4,86	6,15	7,63
Klasse FCEER	(E)		E								
Wasserdurchsatz	(2)	I/h	661	878	1112	682	1031	1316	1154	1453	1806
Druckverlust	(2)(E)	kPa	5	8	12	5	10	16	14	21	30
Klasse FCCOP	(E)						E				
Heizleistung	(3)(E)	kW	5,02	6,02	6,97	4,85	6,29	7,35	6,93	8,01	9,52
Wasserdurchsatz	(3)	I/h	432	518	600	418	542	633	597	690	820
Druckverlust	(3)(E)	kPa	14	19	24	14	22	29	24	31	42
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	565	765	998	636	1007	1362	999	1300	1814
Leistungsaufnahme	(E)	W	86	127	182	109	169	244	210	240	310
Globale Schallleistung	(4)(E)	dB(A)	46	54	60	48	58	66	63	64	71

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatu $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel $(47 \%$ relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742

FC-46 ${ }^{\text {(E) }}$ EUROVENTZertifikate

MASSZEICHNUNG

MASSZEICHNUNG

ESTRO FA

LEGENDE	
$\mathbf{1}$	Freiraum für Wasseranschlü̈se
2	Zubehör für die Wandinstallation
3	Freiraum für Stromanschlüsse
4	Wasseranschlüsse Standardbatterie
4DF	Wasseranschlüsse zusuatzliche Batterie mit 1 Reihe DF
5	Kondenswasserablass

ESTRO FA	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	10	10M	11	11M	12	
Motoren ON/OFF mit3 Geschwindigkeiten	x	x	x	x	X	x	x	x	x	x	x	x	X	X	x	X	x	X	x	
Motoren ON/OFF mit 6 Geschwindigkeiten	x	-	x	X	x	x	x	x	x	X	x	x	X	X	-	-	-	-	-	
Invertergesteuerter Motor	x	-	x	x	x	x	x	x	x	-	x	-	X	X	-	-	x	x	-	
GreenTech Invertergesteuerter Motor	x	-	x	x	x	x	x	x	x	-	x	-	x	X	-	-	-	-	-	
$x=$ verfügbar																				
ESTRO $\begin{gathered}\text { A } \\ \end{gathered}$	B mm	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	D mm		E mm	$\underset{\mathrm{mm}}{\mathrm{~F}}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \end{gathered}$	L mm		$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$	R mm	4		4DF	$\begin{gathered} 5 \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{kg}}{\stackrel{\mathrm{Bg}}{2}}$
1-2-3-4-4M 774	228	498	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	22
5-6-6M 984	228	708	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	26
7-7M-8-8M-9-9M 1194	228	918	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	32
10-10M-11-11M 1404	253	1128	50		497	188	259	155	170	220		195	348	120	478	3/4		1/2	16	42
121614	253	1338	50		497	188	259	155	170	220		195	348	120	478	3/4		1/2	16	50

MASSZEICHNUNG

MASSZEICHNUNG

ESTRO FP

ESTRO FP	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12	
Motoren ON/OFF mit 3 Geschwindigkeiten	X	x	x	x	x	X	x	x	X	X	x	X	X	X	x	X	X	x	x	X	
Motoren ON/OFF mit 6 Geschwindigkeiten	X	-	x	x	x	X	x	x	X	X	x	X	x	x	x	-	-	-	-		
Invertergesteuerter Motor	x	-	x	x	x	x	x	x	x	-	x	-	x	X	x	-	-	x	x	-	
GreenTech Invertergesteuerter Motor	x	-	x	x	x	x	x	x	x	-	x	-	x	x	-	-	-	-	-	-	
$x=$ verfügbar																					
ESTRO $\begin{gathered}\text { A } \\ \end{gathered}$	$\begin{gathered} B \\ m m \end{gathered}$	mm		$\begin{gathered} \text { D } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	F mm		G mm	$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	N mm		P mm	R mm	S mm		T mm				5 mm	$\stackrel{\mathrm{Ba}}{\mathrm{~kg}}$
1-2-3-4-4M 774	226	498		51	458	163		263	187	335		99	486	208		198	1/2	1/2		16	22
5-6.6M 984	226	708		51	458	163		263	187	335		99	486	208		198	1/2	1/2		16	29
7-7M-8-8M-9-9M 1194	226	918		51	458	163		263	187	335		99	486	208		198	1/2	1/2		16	35
951194	251	918		48	497	185		259	195	348		120	478	234		208	3/4	1/2		16	36
10-10M-11-11M 1404	251	1128		48	497	185		259	195	348		120	478	234		208	3/4	1/2		16	45
$12 \quad 1614$	251	1338		48	497	185		259	195	348		120	478	234		208	3/4	1/2		16	55

MASSZEICHNUNG

ESTRO FC	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9		9M	95	10	10M	11	11M	12	
Motoren ON/OFF mit 3 Geschwindigkeiten	X	X	x	x	X	X	X	X	x	X	X	X	X		x	X	x	x	X	X	X	
Motoren ON/OFF mit 6 Geschwindigkeiten	x	-	X	X	X	X	X	X	x	x	x	X	X		X	X	-	-	-	-	-	
Invertergesteuerter Motor	x	-	x	x	x	x	X	x	x	-	x	-	x		X	X	-	-	x	x	X	
GreenTech Invertergesteuerter Motor	X	-	X	X	X	X	X	X	X	-	x	-	X		X	-	-	-	-	-	X	
$x=$ verfügbar																						
ESTRO $\begin{gathered}\text { A } \\ \end{gathered}$	B mm	$\begin{gathered} c \\ \mathrm{~mm} \end{gathered}$	D mm	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	F mm	G mm	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	L mm	M mm	N mm	P mm		Q mm	R mm		S mm	T mm	U mm	V mm	Y mm	$\begin{aligned} & 4 \\ & n \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~kg} \end{aligned}$
1-2-3-4-4M 584	224	498	51	458	163	263	149	198	187	335	99		189	486		208	198	436	464	61	1/2	18
5-6-6M 794	224	708	51	458	163	263	149	198	187	335	99		189	486		208	198	646	674	61	1/2	23
7-7M-8-8M-9-9M 1004	224	918	51	458	163	263	149	198	187	335	99		189	486		208	198	856	884	61	1/2	27
951004	249	918	48	497	185	259	155	220	195	348	120		215	478		234	208	856	884	67	3/4	27
10-10M-11-11M 1214	249	1128	48	497	185	259	155	220	195	348	120		215	478		234	208	1066	1094	67	3/4	37
121424	249	1338	48	497	185	259	155	220	195	348	120		215	478	2	234	208	1276	1304	67	3/4	43

MASSZEICHNUNG

ESTRO FF

LEGENDE

ESTRO FF	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9N	95	10	10M	11	11M	12	
Motoren ON/OFF mit 3 Geschwindigkeiten	x	X	x	x	x	x	X	X	x	X	X	x	X	x	x	X	x	x	x	x	
Motoren ON/OFF mit 6 Geschwindigkeiten	X	-	X	x	x	x	x	X	x	x	x	X	X	x	x	-	-	-	-	-	
Invertergesteuerter Motor	x	-	x	x	x	x	X	x	x	-	x	-	x	x	-	-	-	x	x	-	
GreenTech Invertergesteuerter Motor	x	-	x	x	x	x	x	x	x	-	x	-	x	x	-	-	-	-	-	-	
$x=$ verfügbar																					
$\begin{array}{cc}\text { ESTR0 } & \text { A } \\ & \mathrm{mm}\end{array}$	$\begin{gathered} \text { B } \\ \mathrm{mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{C}}$	$\begin{gathered} \text { D } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$	Q			$\begin{gathered} \mathrm{S} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{U} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { W } \\ \text { mm } \end{gathered}$	4	$\underset{\mathrm{kg}}{\mathrm{~kg}}$
1-2-3-4-4M 584	224	498	51	458	163	263	149	198	187	335	99	189		486	208	198	436	464	61	1/2	18
5-6.6M 794	224	708	51	458	163	263	149	198	187	335	99	189		486	208	198	646	674	61	1/2	23
7-7M-8-8M-9-9M 1004	224	918	51	458	163	263	149	198	187	335	99	189		486	208	198	856	884	61	1/2	27
951004	249	918	48	497	185	259	155	220	195	348	120	215		478	234	208	856	884	67	3/4	27
10-10M-11-11M 1214	249	1128	48	497	185	259	155	220	195	348	120	215		478	234	208	1066	1094	67	3/4	37
121424	249	1338	48	497	185	259	155	220	195	348	120	215		478	234	208	1276	1304	67	3/4	43

MASSZEICHNUNG

JONIX

Inverter Technology

Energieersparnis und Komfort in einer einzigen Lösung

Die das ESTRO-Projekt kennzeichnende kontinuierliche Innovation hat zur Fertigung von Gebläsesätzen mit invertergesteuerten EC -Permanentmagnetmotoren geführt.
Der Einsatz dieses Motortyps erlaubt eine signifikante Reduzierung der Leistungsaufnahme, einen besseren gefühlten thermohygrometrischen Komfort und eine bedeutende Reduzierung der Schallemission.
Analysen und Prüfungen haben gezeigt, wie die Reduzierung der Leistungsaufnahme gegenüber herkömmlichen AC-Motoren sogar 70% beim integrierten Betrieb beträgt, bei einer entsprechenden Reduzierung des CO_{2}-Ausstoßes.
Die DC-Invertertechnologie erlaubt das kontinuierliche Anpassen des Luftdurchsatzes an die effektiven Umgebungsbedingungen, was die für die stufenweise Regelung typischen Temperaturschwankungen signifikant reduziert. Die durchgehende Modulation des Luftdurchsatzes bewirkt die Anpassung der gelieferten Wärmeleistung und folglich ein schnelles Erreichen der eingestellten Raumtemperatur sowie außerordentlich niedrige Schallpegel während der Aufrechterhaltungsphasen.
Die Gebläsekonvektoren ESTRO i verwenden Mikroprozessorsteuertafeln MYCOMFORT LARGE und EVO, die dank der Analog- und Digital-Eingänge und raffinierter Regelungslogiken perfekt den Betrieb der Motoren EC und der Modulierventile verwalten.

PLUS

» Invertergesteuerter Motor EC
" Niedrigen Energieverbrauch
» Modulierender Betrieb
" Maximale Laufruhe
» Batterie bis 4 Reihen
» Inkorporierbare JONIX-Reinigungssystem

ESTRO FLi	Wandinstallation mit Verkleidung	ESTRO FCi	Vertikal- und Horizontal-Unterputzinstallation mit Ansaugung hinten
ESTRO FA i	Wandnischeninstallation mit Verkleidung	ESTRO FFi	Vertikal- und Horizontal-Unterputzinstallation mit Ansau-
ESTROCLi	Wandinstallation mit Verkleidung	ESTRO FFi	gung vorne
ESTRO FUi	Boden- und Deckeninstallation mit Verkleidung	ESTRO FBC i	Vertikal- und Horizontal-Unterputzinstallation mit Ansau-
ESTRO FP i	Deckeninstallation mit Verkleidung		gung vorne, niedrige Bauhöhe
ESTRO FB i	Boden- und Deckeninstallation mit Verkleidung (niedrige Bauhöhe)		

HAUPTBESTANDTEILE

Verkleidung

Besteht aus einer lackierten Stahlblechta－ fel；Seitenteile，Luftausblasgitter（um 180° verstellbar）und Sauggitter bestehen aus ABS．

Ventilatoren

Zentrifugallüfter mit Doppelansaugung， statisch und dynamisch ausgewuch－ tet；gefertigt aus antistatischem ABS， Schaufeln mit Flügelprofil，versetzte Mo－ dule．Die Lüfter sind eingebaut in eine ABS－Hochleistungsschnecke．

Struktur

Gefertigt aus starkem，verzinktem Stahl－ blech，wärme－und schallisoliert mit selbstlöschenden Tafeln Klasse 1．Die Ausführungen FUi － FBi － FCi －FFi und FBCi sind dank dem doppelten Kondens－ wassersammel－und－ablasssystem so－ wohl für die vertikale als die horizontale Installation vorgerüstet．

EC－Elektromotor

Permanentmagnetmotor Die Einheit ist mit Inverterkarte zur Kontrolle des Motors ausgestattet，die eine präzise Einstellung der Drehgeschwindigkeit des Motors er－ laubt（Steuersignal 0－10V）．

Wärmetauscherbatterie

Mit hohem Wirkungsgrad，aus Kupferroh－ ren und Aluminiumrippen，ausgestattet mit Verteilern aus Messing und Entlüf－ tungsventil．Die Hydraulikanschlüsse sind bei der Installation umkehrbar．Auf Anfra－ ge kann eine zusätzliche Batterie für An－ lagen mit 4 Leitungen installiert werden．

Luftiliter

Regenerierbarer Filter aus Polypropylen－ waben，leicht abnehmbar für Wartungs－ arbeiten．In den Ausführungen FUi und FBi sind die Lufffilter in das Ansauggitter eingesetzt．

ZUBEHÖR			
Elektronische Mikroprozessorsteuertafeln mit display		ZIG	Standfïise mit Blende und mit Vordergitter für ESTRO FL
DIST	Distanzhalter Steuerung MYCOMFORT zur Wandmontage	Rückpaneel	
EVO－2－TOUCH	Touchscreen－Bedienoberfläche 2，8＂für EVO－Steuerung	PH	Lackiertes Rückpaneel，horizontale Geräteinstallation mitVerkleidung
EVOBOARD	Leistungsplatine fir Steuerung EVO	PV	Lackiertes Rückpaneel，vertikale Geräteinstallation mit Verkleidung
EVODISP	Anwerderschnittstelle mit Display zur EV0－Steuerung	Luftausb	und Luftansauggitter
EYNAVEL	Vorrichtung für die Kommunikation über WiFi der Bluetooth zwischen EVOBOARD und Smartphone	GE	Außenluftansauggitter aus Aluminium mit Gegenrahmen
KBE	Installationskit MY COMFORT am Gerät	GEF	Außenluftansauggitter aus Aluminium mit Gegenrahmen und Lufffilter
MCLE	Mikroprozessorsteuerung mit MYCOMFORT LARGE－Display	GM	Luftausblasgitter aus Aluminium，mit doppelten Rang，mit Gegenrahmen
MCSUE	Feuchtigkeitsfühler für Steuerungen MYCOMFORT（MEDIUM und LARGE），EVO	RGC	Mischkammer mit runden Bünden für Luftauslassgitter
MCSWE	Wasserfühler für Steuerungen MYCOMFORT，EVO	Mischkammer und Anschliusse	
Elektronische Mikroprozessorsteuertafeln		RA90	Winkel Sauganschluss
KBA	Kiif fir die Installation der TED－Steuerungen an ESTRO FA	RAD	Gerader Sauganschluss
KBLDX	Kit für die Installation der TED－Steurungen RECHTS an ESTRO FL／FU／FB	RADC	Mischkammer Ansaugung mit runden Bünden
KBLSX	Kit fuir die Installation der TED－Steuerungen LINKS an ESTRO FL／FU／FB	RM90	Winkelausblas Anschluss
TED 10	Elektronische Steuerung zur Regelung des Lüfters Inverter EC und 1 oder 2 Ventile ON／OFF 230 V	RM90C	WärmeisolierterWinkelausblasanschluss
TED SWA	Luft－oder Wassertemperaturfühler für TED－Steuerungen	RMCD	Wärmeisolierter gerader Ausblasanschluss
Leistungsschnittstelle und Steuerungen für Schieber		RMCDC	Mischkammer Auslass mit runden Bünden
CSB	Steuerung am Geät zum proportionalen Öffnen und Schließen des angetriebenen Schiebers	RMD	Gerader Ausblasanschluss
CSD	Unterputzwandsteuerung zum proportionalen Offnen und Schließen des angetriebenen Schiebers SM	Außenluftansaugschieber	
Zusätzliche Batterie für Anlagen mit 4 Rohren		SM	Angetriebener Schieber，Motor rechts，mit Transformator
DF	Zusitzliche Batterie mit einer Reihe für Anlagen mit 4 Rohren（nicht verwendbar für die Modelle M）	SM	Angetriebener Schieber，Motor links，mit Transformator
Zusätzliche Kondenswassersammelbecken，Isolationsschalen，Kondenswasserablasspumpen		SM	Motorisierte Luftklappe
BH	Zusätzliches Becken für Gebläskonvektoren zur horizontalen Installation	SMC	Angetriebener Schieber，Motor rechts，mitzentralisierter Steuerung
BV	Zusätzliches Becken für Gebläsekonvektoren zur vertikalen Installation	SMC	Angetriebener Schieber，Motor links，mitzentralisierter Steuerung
GIVKL	Isolationsschal für Ventil VKS，Hydralikanschlüsse links	Ventile	
GIVKR	Isolationsschale für Ventil VKS，Hydraulikanschlusse rechts	KV	2－Wege－Venti，EIN／AUS－Stellantrieb，230－V－Stromversorgung，Hydrauliksatz auf der Anschlussseite，
KSC	Kondenswasserablass－kit		für Hauptbatterie
Standfüỉe mit Blende		KVM	2－Wege－Ventil，modulierungs－Stellantrieb，24－V－Stromversorgung，Hydraulik－Kits an den Anschlüssen，
ZA	Standfußpaar mit Blende für ESTRO FA		für Hauptbatterie
ZAG	Standfußppar mit Blende und mit Vordergitter für ESTRO FA	VPIC	2－Wege－Ventile pressure independent，EIN／AUS－oder modulierende－Stellantriebe，230－V－oder 24－V－ Stromversorgung，Hydraulik－Kits，für Hauptbatterie und Zusatzbatterie
ZC	Standfußpaar mit Blende für ESTROCL	Reinigungssystem	
2CG	Standuß3paar mit Blende und mit Vordergitter fiur ESTRO CL		
Zl	Standfußpaar mit Blende für STRO FL	JNX－O	Reinigungsmodur ONX Kur nistalation am Gerat

Fan coil ESTRO i

TECHNISCHE NENNDATEN - 2 ROHR

ESTRO ${ }^{\text {i }}$			1			3			4			4M		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	4,00	5,30	6,50	5,20	6,90	8,40	5,20	6,90	8,40	5,20	6,90	8,40
Gesamtkühlleistung	(1)(E)	kW	0,77	0,91	1,14	1,25	1,51	1,72	1,35	1,69	1,94	1,49	1,84	2,22
Sensible Kühlleistung	(1)(E)	kW	0,59	0,69	0,86	0,94	1,13	1,28	1,04	1,30	1,49	1,05	1,31	1,58
Klasse FCEER	(E)													
Wasserdurchsatz	(2)	I/h	133	157	196	215	260	296	232	291	334	257	317	382
Druckverlust	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	10	14	20
Heizleistung	(3)(E)	kW	0,95	1,11	1,32	1,45	1,72	1,84	1,50	1,81	2,15	1,53	1,88	2,29
Klasse FCCOP	(E)			C			B			B			C	
Wasserdurchsatz	(3)	I/h	164	191	227	250	296	317	258	312	370	263	324	394
Druckverlust	(3)(E)	kPa	5	6	8	9	12	14	6	9	12	9	12	17
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	149	189	231	211	271	344	211	271	344	211	271	344
Leistungsaufnahme	(E)	W	6	8	9	7	9	19	7	9	19	9	12	24
Globale Schallleistung	(4)(E)	$d B(A)$	30	32	40	38	44	49	40	44	50	41	45	51
ESTRO ${ }^{\text {i }}$			5			6			6M			7		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	3,80	5,70	7,30	3,80	5,70	7,30	3,80	5,70	7,30	3,60	5,40	8,00
Gesamtkühlleistung	(1)(E)	kW	1,59	2,02	2,40	1,75	2,37	2,91	1,92	2,63	3,27	1,97	2,62	3,49
Sensible Kühlleistung	(1)(E)	kW	1,17	1,56	1,86	1,25	1,69	2,09	1,32	1,82	2,28	1,44	2,03	2,73
Klasse FCEER	(E)		A			A			A			C		
Wasserdurchsatz	(2)	I/h	274	348	413	301	408	501	331	453	563	339	451	601
Druckverlust	(2)(E)	kPa	8	12	16	5	8	11	7	12	17	4	7	12
Heizleistung	(3)(E)	kW	1,74	2,26	2,70	1,76	2,37	2,94	1,74	2,41	3,03	2,39	3,13	4,05
Klasse FCCOP	(E)		A			A			B			C		
Wasserdurchsatz	(3)	1/h	300	389	465	303	408	506	300	415	522	412	539	697
Druckverlust	(3)(E)	kPa	8	12	17	5	8	11	6	10	15	5	8	13
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	241	341	442	241	341	442	241	341	442	320	450	640
Leistungsaufnahme	(E)	W	6	8	16	8	10	20	6	8	16	10	17	34
Globale Schalleistung	(4)(E)	dB(A)	35	43	48	36	42	48	35	43	49	35	46	52
ESTRO ${ }^{\text {i }}$			8			9			9M			95		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	3,70	5,40	8,00	5,00	6,70	8,90	5,00	6,70	8,90	4,80	6,10	8,30
Gesamtkühhleistung	(1)(E)	kW	2,50	3,26	4,30	2,99	3,64	4,48	3,51	4,35	5,37	3,41	4,17	5,22
Sensible Kühlleistung	(1)(E)	kW	1,79	2,44	3,12	2,31	2,90	3,62	2,46	3,05	3,79	2,47	3,11	3,95
Klasse FCEER	(E)		A			B			A			A		
Wasserdurchsatz	(2)	I/h	430	561	740	515	627	771	604	749	925	587	718	899
Druckverlust	(2)(E)	kPa	6	10	15	7	10	14	11	16	24	10	14	21
Heizleistung	(3)(E)	kW	2,47	3,24	4,24	3,36	4,11	4,88	3,53	4,37	5,39	3,52	4,32	5,49
Klasse FCCOP	(E)		B											
Wasserdurchsatz	(3)	I/h	425	558	730	579	708	840	608	753	928	606	744	945
Druckverlust	(3)(E)	kPa	5	8	14	7	9	13	10	14	20	8	12	18
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	361	497	706	470	605	785	470	605	785	488	615	814
Leistungsaufnahme	(E)	W	10	13	27	15	20	41	17	23	47	15	18	43
Globale Schallleistung	(4)(E)	$d B(A)$	35	43	53	43	49	56	44	50	57	44	51	58

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
(4) Schalleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 2 ROHR

ESTRO ${ }^{\text {i }}$				11			11M	
Velindigkeit			Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	3,60	6,20	8,60	3,60	6,20	8,60
Gesamtkühlleistung	(1)(E)	kW	4,11	6,24	8,02	4,65	6,94	8,89
Sensible Kühlleistung	(1)(E)	kW	3,05	4,63	5,96	3,28	4,91	6,30
Klasse FCEER	(E)			B			A	
Wasserdurchsatz	(2)	I/h	708	1075	1381	801	1195	1531
Druckverlust	(2)(E)	kPa	6	13	20	9	19	29
Heizleistung	(3)(E)	kW	4,39	6,53	8,37	4,75	7,02	9,00
Klasse FCCOP	(E)							
Wasserdurchsatz	(3)	1/h	756	1124	1441	818	1209	1550
Druckverlust	(3)(E)	kPa	6	12	18	8	16	25
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	642	1022	1393	642	1022	1393
Leistungsaufnahme	(E)	W	17	50	114	13	38	87
Globale Schallleistung	(4)(E)	$d B(A)$	49	60	67	50	61	68

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Fan coil ESTRO i

TECHNISCHE NENNDATEN - 4 ROHR

ESTRO i			1			3			4			5		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	4,00	5,30	6,50	5,10	6,60	8,10	5,10	6,60	8,10	3,70	5,50	7,20
Gesamtkühlleistung	(1)(E)	kW	0,75	0,89	1,12	1,23	1,47	1,67	1,25	1,55	1,77	1,57	1,99	2,37
Sensible Kühlleistung	(1)(E)	kW	0,57	0,68	0,85	0,92	1,10	1,25	0,97	1,21	1,44	1,16	1,53	1,84
Klasse FCEER	(E)		C			B			B			A		
Wasserdurchsatz	(2)	1/h	129	153	193	212	253	288	215	267	305	270	343	408
Druckverlust	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	8	12	16
Heizleistung	(3)(E)	kW	1,18	1,31	1,49	1,36	1,56	1,76	1,36	1,56	1,76	1,78	2,18	2,53
Klasse FCCOP	(E)		B			B			B			B		
Wasserdurchsatz	(3)	1/h	102	113	128	117	134	152	117	134	152	153	188	218
Druckverlust	(3)(E)	kPa	2	3	4	4	5	7	4	5	6	2	3	3
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	146	184	226	205	261	330	205	261	327	238	334	432
Leistungsaufnahme	(E)	W	7	8	9	7	8	18	7	8	18	8	10	19
Globale Schallleistung	(4)(E)	dB(A)	29	32	40	40	44	49	38	44	50	34	43	48
ESTROi			6				7				8			
Velindigkeit			Min	med		Max	Min	med		Max	Min			Max
Eingangsspannung	(E)	V	3,80	5,70		7,30	3,60	5,40		8,00	3,70			8,00
Gesamtkühlleistung	(1)(E)	kW	1,72	2,32		2,86	1,95	2,59		3,44	2,47			4,24
Sensible Kühlleistung	(1)(E)	kW	1,23	1,65		2,06	1,43	2,01		2,69	1,77			3,07
Klasse FCEER	(E)		A											
Wasserdurchsatz	(2)	1/h	296	400		492	336			592	425			730
Druckverlust	(2)(E)	kPa	5	8		11	4			12	5			12
Heizleistung	(3)(E)	kW	1,88	2,31		2,68	2,82			4,20	2,73			3,82
Klasse FCCOP	(E)		B				B				A			
Wasserdurchsatz	(3)	1/h	162	199		231	243			362	235			329
Druckverlust	(3)(E)	kPa	2	3		4	8			16	8			14
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	237	332		431	316			628	356			690
Leistungsaufnahme	(E)	W	6	11		17	9			17	9			25
Globale Schalleistung	(4)(E)	dB(A)	33	41		47	36			53	39			56

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

TECHNISCHE NENNDATEN－ 4 ROHR

ESTRO ${ }^{\text {i }}$			9			95			11		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Eingangsspannung	（E）	V	5，00	6，70	8，90	4，80	6，10	8，30	3，60	6，20	8，60
Gesamtkühlleistung	（1）（E）	kW	3，10	3，79	4，64	3，53	4，32	5，39	3，76	5，67	7，20
Sensible Kühlleistung	（1）（E）	kW	2，27	2，85	3，54	2，42	3，06	3，86	3，00	4，52	5，73
Klasse FCEER	（E）		B			A			B		
Wasserdurchsatz	（2）	1／h	534	653	799	608	744	928	647	976	1240
Druckverlust	（2）（E）	kPa	7	10	14	10	14	20	5	10	16
Heizleistung	（3）（E）	kW	3，55	4，07	4，64	3，70	4，20	4，84	4，85	6，29	7，35
Klasse FCCOP	（E）						B				
Wasserdurchsatz	（3）	1／h	306	350	400	319	362	417	418	542	633
Druckverlust	（3）（E）	kPa	7	8	11	7	9	12	14	22	29
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	460	593	763	478	603	792	636	1007	1362
Leistungsaufnahme	（E）	W	19	25	48	13	16	34	18	51	116
Globale Schallleistung	（4）（E）	dB（A）	48	53	58	46	52	59	48	58	66

（1）Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$ ，Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel， $19^{\circ} \mathrm{C}$ Feuchtkugel（ 47% relative Feuchtigkeit）ausgedrückt gemäß EN1397：2021
（2）Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$ ，Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel， $19^{\circ} \mathrm{C}$ Feuchtkugel（ 47% relative Feuchtigkeit）
（3）Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$ ，Lufttemperatur $20^{\circ} \mathrm{C}$
（4）Schallleistung gemessen gemäß ISO 3741 und ISO 3742
（E）EUROVENT Zertifikate

Gebläsekonvektor mit Designer-Verkleidungsmöbel 17 cm

FLAT S 1-3 kW

Die Antwort auf die neuen Planungsansprüche in Wohngebäuden

Die Serie FLAT von Galletti wird SLIM: In der Tat gewährleistet FLAT S mit einer Tiefe von nur 17 cm kompakte Abmessungen und ist daher leicht in jede Umgebung integrierbar, was den neuen Planungstrends im Wohnungsbau (aber nicht nur) entspricht.
Die Mini-Serie FLATS bedeutet auch in Bezug auf die Planung Innovation, um absolut hervorragende Schalldruckleistungen bieten zu können, mit dem Vorteil eines exklusiven Designs, das sich sowohl in Wohnbereiche als auch in Geschäftsbereiche gut einfügt.
Das Designer-Verkleidungsmöbel in der Farbe RAL9010 zeichnet sich durch geringe Abmessungen aus und besteht aus Stahlblech und UV beständigem Kunststoff (ABS). Das obere Gitter besteht aus einer Flap und ausrichtbaren Flügeln mit einem Mikroschalter, der den Betrieb der Einheit unterbricht, wenn diese geschlossen wird. Die Verwendung von UV-beständigem Kunststoff (ABS) für die die Verkleidung bildenden Teile und antistatischem ABS für die Lüftergruppe (Schnecke und Zentrifugallüfter) gewährleistet ein ansprechendes Design und Laufruhe über die gesamte Lebensdauer des Produkts.

PLUS

" Designer-Möbel mit Tiefe 17 cm
" Mikroschalter am Luftauslass-Flap
» Verwendung von UV-beständigem ABS
» Umkehrbare Wasseranschlüsse
» Motoren mit 3 Geschwindigkeiten
» Zentrifugallüfter aus ABS
» Inkorporierbare JONIX-Reinigungssystem

HAUPTBESTANDTEILE

Verkleidung

Design-Verkleidungsmöbel Farbe RAL9010, Tiefe nur 17 cm , Fronttafel aus Stahlblech. Seitenteile, oberes Gitter und Seitenklappen aus UV-beständigem Kunststoff (ABS), um die Farbveränderungen im Laufe der Zeit zu vermeiden. Das obere Gitter besteht aus einem Flap und ausrichtbaren Flügeln. Der Flap ist mit einem Mikroschalter ausgestattet, der den Betrieb der Einheit unterbricht, wenn er geschlossen wird

Struktur

Gefertigt aus starkem, verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1

Wärmetauscherbatterie

Mit hohem Wirkungsgrad, aus Kupferrohren und Aluminiumrippen, ausgestattet mit Verteilern aus Messing und Entlüftungsventil. Die Hydraulikanschlüsse sind bei der Installation umkehrbar. Auf Anfrage kann eine zusätzliche Batterie für Anlagen mit 4 Leitungen installiert werden.

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, statisch und dynamisch ausgewuchtet; gefertigt aus antistatischem ABS, Schaufeln mit Flügelprofil, versetzte Module. Die Lüfter sind eingebaut in eine ABS-Hochleistungsschnecke.

Elektromotor

Auf Schwingungsdämpfer montiert, mit ständig eingeschaltetem Verflüssiger und Überlastungsschutz der Wicklungen, direkt mit den Lüftern gekoppelt. Wird sowohl mit 3 als mit 6 Drehgeschwindigkeiten angeboten, um allen spezifischen Ansprüche hinsichtlich Leistungen, Laufruhe und Stromverbrauch zu entsprechen.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausführung und des Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfigurationsbeispiel abgebildet.

Ausführung:	Bereiche	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
FLATS13	L	0	M	$\mathbf{0}$	1	E	0	0	0	0	A	

Zum Prüfen der Kompatibilität der Optionen wird gebeten, die Auswahlsoftware oder die Preisliste zu verwenden.

KONFIGURATOR

1 Ausführung:
L L- Wundgerät mit Gehäuse

Motor

0 Motoren mit3 Geschwindigkeiten
I EC-Motor
3 Anschlussseite des Hauptwärmetauschers
L Wasseranschlüsse auf der linken Seite
R Wasseranschlüsse auf der rechten Seite
4 Anschlussseite des Zusatz-Wärmetauschers/Heizelement
0 Nichtvorhanden
L Wasseranschlüsse auf der linken Seite
R Wasseranschlüsse auf der rechten Seite Ventile
0 Nicht vorhanden
1 VKS - 3-Wege-Ventil-230V - ON/OFF - komplettes Hydraulikanbindungskit
2 KV-2-Wege-Ventil-230V-ON/OFF
3 VKMS - 3 -Wege-Ventil- 24 V - MODULIEREND- komplettes Hydraulikanbindungskit
4 KVM- 2 -Wege-Ventil 24V - MODULIEREND
5 VKS24-3-Wege-Ventil -24V-ON/OFF-komplettes Hydraulikanbindungskit
6 KV24-2-Wege-Ventil-24V-ON/OFF
A VKSND-3-Wege-Ventil-230V-ON/OFF-Hydraulikanbindungskit
B VKMSND-3-Wege-Ventil -24V - MODULIEREND- Hydraulikanbindungskit
(VKS24ND-3-Wege-Ventil-24V-ON/OFF-Hydraulikanbindungskit
6 Steuertafel
0 Nichtvorhanden
1 CB-Onboard-Stufenschalter
2 TB- Stufenschalter und Thermostat
3 TIB-Stufenschalter, Thermostat und S/W-Modus-Schalter
4 TED 2T Fernbedienung/Mikroprozessorregler für 2 Rohr

5 TED 4T Ferrbedienung/Mikroprozessorregler für 4 Rohr
TED 10 Fernbedienung/ Mikroprozessorregler für EC
MCBE-MyComfort Base
MCME-MyComfort Medium
MCLE-MyComfort Large
EVOBOARD - Schnittstelle
Schnittstelle EVOBOARD + WI-FI-Modul NAVEL
7 Fühler
0 Nicht vorhanden
SA - Externer Fühler für Luff für MYCOMFORT, LED503 und EVO
2 SW - Wasserfühler für MYCOMFORT, LED503 und EVO
SU - Feuchtefühler für MYCOMFORT und EVO
SA+SW - Externer Fühler für Luft und Wasser für MYCOMFORT, LED503 und EVO
SA+SU - Externer Fühler für Luft und Feuchte für MYCOMFORT und EVO
SA+SU+SW- Externer Fühler für Luft, Wasser und Feuchte für YCOMFORT und EVO
TC -Thermostat für minimale Wassertemperatur
SA - Fernfühler für Luft für TED
SW - Wasserfühler für TED
SA + SW - Luft- und Wasserfühler für TED

Verschiedenes Zubehor

Nicht vorhanden
JONIX
4 BV -Zusäzliche Kondensatwanne
6 GIVK-Isolierschale
9 Filter
0 Standard Luftrilter
10 Release
0
A A

ZUBEHÖR

Elektromechanische Steuertafeln

CB Geschwindigkeitsschalter am Gerät

CD	Geschwindigkeitsumschalter zur Unterputzwandmontage
TC	Thermostat für niedrigste Wassertemperatur in Betriebsart

$\begin{array}{ll}\text { TC } & \text { Thermostat für niedrigste Wassertemperatur in Betriebsart Heizen }\left(42^{\circ} \mathrm{C}\right) \\ \text { TIB } & \text { Scrar }\end{array}$ Schalter, Thermostat und Jahreszeitenwahl am Gerät

Elektronische Mikroprozessorsteuertafeln mit display

COB	Pla
COG	Pla
COW	Pla
DIST	Dis

EVO-2-TOUCH Touchscreen-Bedienoberfläche 2,8" für EVO-Steuerung
EVOBOARD Leistungsplatine für Steuerung EVO
EVODISP Anwerderschnittstelle mit Display zur EVO-Steuerung
EYNAVEL Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone
KBFLAE Installationskit für Steuerung MY COMFORT am Gerät FLAT
LED503 Elektronische Steuertafel mit Display zum Einbauen in die Wand LED 503
MCBE Mikroprozessorsteuerung mit MYCOMFORT BASE Display
MCLE \quad Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCME \quad Mikroprozessorsteuerung mit MYCOMFORT MEDIUM-Display
MCSUE \quad Feuchtigkeitsfühler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE Wasserfühler für Steuerungen MYCOMFORT, EVO
Elektronische Mikroprozessorsteuertafeln
KB F Kit für die Installation der TED-Steuerungen an FLAT/FLATS
TED 2T Elektronische Steuerung zur Regelung des Lüfters und 1 Ventil ON/OFF 230V
TED 4T Elektronische Steuerung zur Regelung des Lüfters und 2 Ventile ON/OFF 230V
TED SWA Luft- oderWassertemperaturfühler für TED-Steuerungen
Leistungsschnittstelle und Steuerungen für Schieber
KP Leistungsschnittstelle für den Parallelanschluss von max. 4 Ventilkonvektoren mit einer einzigen Steuerung.
Zusätzliche Batterie für Anlagen mit 4 Rohren
DF Zusätzliche Batterie mit einer Reihe für Anlagen mit 4 Rohren

Zusätzliche Kondenswassersammelbecken, Isolationsschalen, Kondenswasserablasspumpen	
BVK	Zusätziches Becken für Gebläsekonvektoren zur vertikalen Installation
GIVKL	Isolationsschale für Ventil VKS, Hydraulikanschlüsse links
GIVKR	Isolationsschale für Ventil VKS, Hydraulikanschlüsse rechts
Standfüße mit Blende	
ZLS	Standfußpaar mit Blende für FLATS
Rückpaneel	
PV	Lackiertes Rückpaneel, vertikale Geräteinstallation mit Verkleidung
Ventile	
KV	2-Wege-Ventil, EIN/AUS-Stellantrieb, 230-V-Stromversorgung, Hydrauliksatz auf der Anschlussseite, für Hauptbatterie
KV24DF	2-Wege-Ventile, EIN/AUS-Stellantriebe, 24-V-Stromversorgung, Hydraulik-Kits an den Anschlüssen, für Hauptbatterie und Zusatzbatterie
V2VDF+STD	2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie und Zusatzbatterie
V2VSTD	2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie
V3VDF	3-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Zusatzbatterie
V3VSTD	3-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie
VKDF24	3-Wege-Ventil, EIN/AUS-Stellantrieb, 24-V-Stromversorgung, kompletter Hydrauliksatz, für Zusatzabtterie
VKMS	3-Wege-Ventil, modulierungs-Stellantrieb, 24-V-Stromversorgung, kompletter Hydrauliksatz, für Hauptbatterie
VKMSND	3-Wege-Ventil, modulierungs-Stellantrieb, 24-V-Stromversorgung, Hydrauliksatz ohne Halter, für Hauptbatterie
VKSND	3-Wege-Ventil, EIN/AUS-Stellantrieb, 230-V-Netzteil, Hydrauliksatz ohne Halter, für Hauptbatterie
VPIC	2-Wege-Ventile pressure independent, EIN/AUS-Stellantriebe, 230-V-Stromversorgung, HydraulikKits, für Hauptbatterie und Zusatzbatterie
Reinigungssystem	
JONIX inside	Reinigungsmodul JONIX fur Installation am Gerät

Fan coil FLAT S

TECHNISCHE NENNDATEN - 2 ROHR

FLATS			13			23			33			43		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,39	1,73	2,28	1,75	2,12	2,75
Sensible Kühlleistung	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Klasse FCEER	(E)													
Wasserdurchsatz	(2)	1/h	148	168	213	186	230	300	243	303	399	303	368	477
Druckverlust	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Heizleistung	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,59	1,52	1,85	2,40	1,85	2,22	2,86
Klasse FCCOP	(E)			D			D			E			D	
Wasserdurchsatz	(3)	1/h	155	176	221	174	211	277	264	321	417	321	386	497
Druckverlust	(3)(E)	kPa	2	3	4	3	5	8	3	4	7	4	6	9
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	200	250	340	250	310	420
Leistungsaufnahme	(E)	W	12	17	23	14	20	27	25	31	41	25	31	42
Globale Schallleistung	(4)(E)	dB(A)	30	35	40	35	40	46	32	38	46	37	42	49

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN 1397 :2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Fuchthugel $(47 \%$ relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schalleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENTZertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 4 ROHR

Flats			13			23			33			43		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,40	1,74	2,29	1,75	2,12	2,75
Sensible Kühlleistung	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Klasse FCEER	(E)		D											
Wasserdurchsatz	(2)	I/h	148	168	213	186	230	300	243	303	399	303	368	477
Druckverlust	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Heizleistung	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	1,88	2,16	2,69	2,16	2,45	3,02
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	1/h	91	100	119	118	136	167	165	189	235	189	215	264
Druckverlust	(3)(E)	kPa	2	2	3	4	5	7	1	2	3	2	2	3
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	200	250	340	250	310	420
Leistungsaufnahme	(E)	W	12	17	23	14	20	27	23	28	37	25	31	42
Globale Schallleistung	(4)(E)	dB(A)	30	35	40	35	40	46	32	38	46	37	42	49

[^2]
MASSZEICHNUNG

Gebläsekonvektor mit Designer-Verkleidungsmöbel 17 cm und EC-Motor

FLAT Si1-3 kW

Die Antwort auf die neuen Planungsansprüche in Wohngebäuden

Die Serie FLAT von Galletti wird SLIM: In der Tat gewährleistet FLAT S mit einer Tiefe von nur 17 cm kompakte Abmessungen und ist daher leicht in jede Umgebung integrierbar, was den neuen Planungstrends im Wohnungsbau (aber nicht nur) entspricht.
Die Mini-Serie FLAT S bedeutet auch in Bezug auf die Planung Innovation, um absolut hervorragende Schalldruckleistungen bieten zu können, mit dem Vorteil eines exklusiven Designs, das sich sowohl in Wohnbereiche als auch in Geschäftsbereiche gut einfügt.
Die hydronischen Endgeräte FLAT S i i von Galletti sind mit einem Elektromotor mit Permanentmagneten (brushless) ausgestattet, der durch einen Inverter gesteuert wird und die kontinuierliche Veränderung der Lüfterdrehzahl erlaubt.
Zusätzlich zur signifikanten Reduzierung der Stromaufnahme gegenüber AC-Motoren erlaubt die Nutzung der EC Inverter-Technologie das kontinuierliche Anpassen des Betriebs der Einheit an die effektive thermo-hygrometrische Last der Umgebung, was zu offensichtlichen Vorteilen hinsichtlich Komfort und Laufruhe führt. Diese Technologie ist besonders wirksam bei häufigem Betrieb bei Teillasten, was häufig der Fall ist, wenn die Regellogik stark reduzierte Motorgeschwindigkeiten erlaubt, was zu ausgezeichneten Reduzierungen des Stromverbrauchs und der Schallemissionen führt. Der Betrieb der Einheit mit Brushless-Motor wird durch die Steuertafel mit Mikroprozessor EVO oder MYCOMFORT LARGE unter Verwendung eines Analogausgangs ($0-10 \mathrm{~V}$), der an den Inverter angeschlossen wird, verwaltet.

PLUS

" Designer-Möbel mit Tiefe 17 cm
» Niedrigen Energieverbrauch
» Modulierender Betrieb
" Mikroschalter am Luftauslass-Flap
" Umkehrbare Wasseranschlüsse
» Invertergesteuerter Motor EC
" Zentrifugallüfter aus ABS
" Inkorporierbare JONIX-Reinigungssystem

HAUPTBESTANDTEILE

Verkleidung

Design-Verkleidungsmöbel Farbe RAL9010, Tiefe nur 17 cm , Fronttafel aus Stahlblech. Seitenteile, oberes Gitter und Seitenklappen aus UV-beständigem Kunststoff (ABS), um die Farbveränderungen im Laufe der Zeit zu vermeiden. Das obere Gitter besteht aus einem Flap und ausrichtbaren Flügeln. Der Flap ist mit einem Mikroschalter ausgestattet, der den Betrieb der Einheit unterbricht, wenn er geschlossen wird

Elektromotor

Die Einheit ist mit einer Inverter-Karte zur Steuerung des Motors ausgestattet, die getrennt oder am Motor selbst positioniert sein kann und eine präzise Einstellung der maximalen Drehgeschwindigkeit des Motors gewährleistet (Steuersignal 0-10 V), auch in den Fällen, in denen eine Begrenzung der Drehgeschwindigkeit zum Verringern der Schallpegel erforderlich ist.

Struktur

Gefertigt aus starkem, verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, statisch und dynamisch ausgewuchtet; gefertigt aus antistatischem ABS, Schaufeln mit Flügelprofil, versetzte Module. Die Lüfter sind eingebaut in eine ABS-Hochleistungsschnecke.

ZUBEHÖR

Elektronische Mikroprozessorsteuertafeln mit display

DISI Distanzhalter Steuerung MYCOMFORT zur Wandmontage

EVO-2-TOUCH	Touchscreen-Bedienoberfläche 2,8" für EVO-Steuerung
EVOBOARD	Leistungsplatine für Steuerung EVO

EVODISP	Anwerderschnittstelle mit Display zur EVO-Steuerung
EYNAVEL	Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone

KBFLAE Installationskit für Steuerung MY COMFORT am Gerät FLAT
MCLE Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCSUE Feuchtigkeitsfühler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE Wasserfühler für Steuerungen MYCOMFORT, EVO

Elektronische Mikroprozessorsteuertafeln

KB F Kit für die Installation der TED-Steuerungen an FLAT/FLATS
TED 10 Elektronische Steuerung zur Regelung des Lüfters Inverter EC und 1 oder 2 Ventile ON/OFF 230V
TED SWA Luft- oder Wassertemperaturfühler für TED-Steuerungen
Zusätzliche Batterie für Anlagen mit 4 Rohren
DF Zusätzliche Batterie mit einer Reihe für Anlagen mit 4 Rohren
Zusätzliche Kondenswassersammelbecken, Isolationsschalen, Kondenswasserablasspumpen
BV Zusätzliches Becken für Gebläsekonvektoren zur vertikalen Installation
GIVKL Isolationsschale für Ventil VKS, Hydraulikanschlüsse links
GIVKR Isolationsschale für Ventil VKS, Hydraulikanschlüsse rechts
Standfüße mit Blende
ZLS Standfußpaar mit Blende für FLATS
RV Lackpaneel \quad Lackiertes Rückpaneel, vertikale Geräteinstallation mit Verkleidung
Ventile
kv
2-Wege-Ventil, EIN/AUS-Stellantrieb, 230-V-Stromversorgung, Hydrauliksatz auf der Anschlussseite, für Hauptbatterie
KV24 2-Wege-Ventil, EIN/AUS-Stellantrieb, 24-V-Stromversorgung, Hydraulik-Kits an den Anschlüssen, für 2-Wege-Ventli,
Hauptbatterie
2-Wege-Ventile, EIN/AUS-Stellantriebe, 24-V-Stromversorgung, Hydraulik-Kits an den Anschlüssen, für Hauptbatterie und Zusatzbatterie

Fan coil FLA T S i

TECHNISCHE NENNDATEN - 2 ROHR

FLATSi			13			23			43		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Gesamtkühlleistung	(1)(E)	kW	0,85	0,97	1,23	0,93	1,19	1,53	1,75	2,12	2,75
Sensible Kühlleistung	(1)(E)	kW	0,60	0,69	0,88	0,74	0,93	1,20	1,26	1,54	2,01
Klasse FCEER	(E)						B				
Wasserdurchsatz	(2)	I/h	148	168	213	186	230	300	303	368	477
Druckverlust	(2)(E)	kPa	3	3	5	6	8	12	5	7	10
Heizleistung	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,54	1,85	2,22	2,86
Klasse FCCOP	(E)						-				
Wasserdurchsatz	(3)	1/h	155	176	221	174	211	277	321	386	497
Druckverlust	(3)(E)	kPa	2	3	4	5	8	11	4	6	9
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	250	310	420
Leistungsaufnahme	(E)	W	7	8	10	7	8	11	10	12	21
Globale Schallleistung	(4)(E)	$d B(A)$	30	35	40	35	40	46	37	42	49

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 4 ROHR

FLATSi			13			23			43		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Gesamtkühlleistung	(1)(E)	kW	0,85	0,97	1,23	1,08	1,33	1,74	1,75	2,12	2,75
Sensible Kühlleistung	(1)(E)	kW	0,60	0,69	0,88	0,74	0,92	1,21	1,26	1,54	2,01
Klasse FCEER	(E)						B				
Wasserdurchsatz	(2)	I/h	148	168	213	186	230	300	303	368	477
Druckverlust	(2)(E)	kPa	3	3	5	4	7	11	5	7	10
Heizleistung	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	2,16	2,45	3,02
Klasse FCCOP	(E)			C			B			B	
Wasserdurchsatz	(3)	1/h	91	100	119	118	136	167	189	215	264
Druckverlust	(3)(E)	kPa	2	2	3	4	5	7	2	2	3
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	250	310	420
Leistungsaufnahme	(E)	W	7	8	10	7	8	11	10	12	21
Globale Schallleistung	(4)(E)	dB(A)	30	35	40	35	40	46	37	42	49

[^3]
MASSZEICHNUNG

\left.	FLATSi	A	L
			$\right)$

Designer-Gebläsekonvektoren mit Zentrifugallüfter

FLAT 2-5 kW

PLUS

" Design-Verkleidung
» Mikroschalter am Luftauslass-Flap
" Verwendung von UV-beständigem ABS
» Umkehrbare Wasseranschlüsse
" Motoren mit 3 oder 6 Geschwindigkeiten
" Zentrifugallüfter aus ABS
" Inkorporierbare JONIX-Reinigungssystem

FLAT Galletti: Leistungen und Design in einem einzigen Endgerät

FLAT Galletti: Leistungen und Design in einem einzigen Endgerät Die Einzigartigkeit von FLAT besteht in der Verwendung von Materialien höchster Qualität, die das Produkt besonders widerstandsfähig machen und gleichbleibende Leistungen im Laufe der Zeit gewährleisten.
FLAT optimiert dank dem integrierten Luftausblasgitter die Luftverteilung im Raum und erlaubt die Ausrichtung der behandelten und gefilterten Luft in 4 Richtungen. Der Haupt-Flap ist mit einem Mikroschalter ausgestattet, der den Lüfterbetrieb unterbricht und die Ventile auf OfF stellt, wenn der Flap geschlossen wird. Der Flap ist nützlich, um Staubablagerungen während des Nichtgebrauchs zu vermeiden.
Die Verwendung von UV-beständigem Kunststoff (ABS) für die Bestandteile der Verkleidung und antistatischem ABS für die Lüftergruppe (Schnecke und Zentrifugallüfter) gewährleistet ein ansprechendes Design und Laufruhe über die gesamte Lebensdauer des Produkts.
Besondere Sorgfalt wurde der Entwicklung der Lüftungsmotoreinheiten geschenkt, die sowohl bei der Motorisierung mit 3 als mit 6 Geschwindigkeiten ausgezeichnete Schalleistungen bieten.

HAUPTBESTANDTEILE

Verkleidung

Farbe RAL9010, Fronttafel aus Stahlblech. Seitenteile, oberes Gitter und Seitenklappen aus UV-beständigem ABS, um die Farbveränderungen im Laufe der Zeit zu vermeiden. Das obere Gitter besteht aus einem Flap und ausrichtbaren Flügeln. Der Flap ist mit einem Mikroschalter ausgestattet, der den Betrieb der Einheit unterbricht, wenn er geschlossen wird.

Struktur

Gefertigt aus starkem, verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1.

Wärmetauscherbatterie

Mit hohem Wirkungsgrad, aus Kupferrohren und Aluminiumrippen, ausgestattet mit Verteilern aus Messing und Entlüftungsventil. Die Hydraulikanschlüsse sind bei der Installation umkehrbar. Auf Anfrage kann eine zusätzliche Batterie für Anlagen mit 4 Leitungen installiert werden.

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, statisch und dynamisch ausgewuchtet; gefertigt aus antistatischem ABS, Schaufeln mit Flügelprofil, versetzte Module. Die Lüfter sind eingebaut in eine ABS-Hochleistungsschnecke.

Elektromotor

Auf Schwingungsdämpfer montiert, mit ständig eingeschaltetem Verflüssiger und Überlastungsschutz der Wicklungen, direkt mit den Lüftern gekoppelt. Wird sowohl mit 3 als mit 6 Drehgeschwindigkeiten angeboten, um allen spezifischen Ansprüche hinsichtlich Leistungen, Laufruhe und Stromverbrauch zu entsprechen.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausführung und des
Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfigurationsbeispiel abgebildet.

Ausführung:	Bereiche	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10	11
FLAT10		L	0	M	0	1	E	0	0	0	0	A

Zum Prüfen der Kompatibilität der Optionen wird gebeten, die Auswahlsoftware oder die Preisliste zu verwenden.

KONFIGURATOR

1 Ausführung:
L L- Wundgerät mit Gehäuse
2 Motor
0 Motoren mit3 Geschwindigkeiten
I BLDC-Motor
6-stufiger Motor
3 Anschlussseite des Hauptwärmetauschers
L Wasseranschluisse auf der linken Seite
R Wasseranschluisse auf der rechten Seite
4 Anschlussseite des Zusatz-Wärmetauschers/Heizelement
0 Nichtvorhanden
L Wasseranschliusse auf der linken Seite
R Wasseranschlüsse auf der rechten Seite
5 Ventile
0 Nicht vorhanden
1 VKS-3-Wege-Ventil-230V - ON/OFF - komplettes Hydraulikanbindungskit
2 KV - 2 -Wege-Ventil-230V-ON/OFF
3 VKMS - 3 -Wege-Ventil- 24 V - MODULIEREND- komplettes Hydraulikanbindungskit
4 KVM-2-Wege-Ventil-24V-MODULIEREND
5 VKS24-3-Wege-Ventil -24V-ON/OFF - komplettes Hydraulikanbindungskit
6 KV24-2-Wege-Ventil-24V-ON/OFF
A VKSND-3-Wege-Ventil-230V - ON/OFF - Hydraulikanbindungskit
B VKMSND - 3 -Wege-Ventil- 24V - MODULIEREND-Hydraulikanbindungskit
(VKS24ND-3-Wege-Ventil-24V-ON/OFF-Hydraulikanbindungskit

Steuertafel

0 Nicht vorhanden
1 CB-Onboard-Stufenschalter
3 TIB-Stufenschalter, Thermostat und S/W-Modus-Schalter
4 TED 2T Fernbedienung/ Mikroprozessorregler für 2 Rohr
5 TED 4T Fernbedienung/ Mikroprozessorregler für 4 Rohr
6 TED 10 Fernbedienung/ Mikroprozessorregler für BLDC

ACBE-MyComfort Base
MCME-MyComfort Medium
MCLE-MyComfort Large EVOBOARD - Schnittstelle
EVOBOARD - Schnitststelle + WI-FI-Modul NAVEL
7 Fühler

Nicht vorhanden

SA - Externer Fühler für Luff für MYCOMFORT, LED503 und EVO
SW - Wasserfühler für MYCOMFORT, LED503 und EVO
SU-Feuchtefühler für MYCOMFORT und EVO
SA+SW - Externer Fühler für Luft und Wasser für MYCOMFORT, LED503 und EVO
SA+SU - Externer Fühler für Luft und Feuchte für MYCOMFORT und EVO
SA+SU+SW- Externer Fühler für Luft, Wasser und Feuhte für YCOMFORT und EVO
TC- Thermostat für minimale Wassertemperatur
SA-Fernfühler für Luff für TED
CW-Wasserfühler für TED
SA + SW - Luft- und Wasserfühler für TED
8 Verschiedenes Zubehör
Nicht vorhanden
2 JONIX
4 BV -Zusätzliche Kondensatwanne
GIVK-Isolierschale
Luftentionisierung
C Luftentionisierung mit Bedienfeld
9 Filter
0 Standard Luftfiliter
10 Release
$0 \quad 0$
A A
11 Release
A A

ZUBEHÖR

Elektromechanische Steuertafeln	
CB	Geschwwdigkeitsshalter am Gerät
CD	Geshwindigkeitsumschalter zur Unterputzwandmontage
CDE	Geschwindigkeitsumschalter zur Wandmontage
TA	Raumthermosta, Wandmontage
TA2	Raumthermostat mit Jahreszeitenwah, Wandmontage
TC	Thermostat für niedrigste Wassertemperatur in Betriebsart Heizen ($42^{\circ} \mathrm{C}$)
TIB	Schalter, Thermostat und Jahreszeitenwahl am Gerät
Elektronische Mikroprozessorsteuertafeln mit display	
COB	Plattefür LED503, Farbe Schwarz B (RAL 9005)
COG	Platte für LED503, Farbe Grau G (RAL 7031)
COW	Platte für LED503, Farbe WeißW (RAL 9003)
DIST	Distanzhalter Steuerung MYCOMFORT zur Wandmontage
EVO-2-TOUCH	Touchscreen-Bedienoberfläche 2,8"fiur EVO-Steuerung
EVOBOARD	Leistungsplatine für Steuerung EVO
EVODISP	Anwerderschnittstelle mit Display zur EV0-Steuerung
EYNAVEL	Vorrichtung für die Kommunikation über WiFio oder Bluetooth zwischen EVOBOARD und Smartphone
KBFLAE	Installationskit fuir Steuerung MY COMFORT am Gerät FLAT
LED503	Elektronische Steuertafel mit Display zum Einbauen in die Wand LED 503
MCBE	Mikroprozessorsteuerung mit MYCOMFORT BASE Display
MCLE	Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCME	Mikroprozessorsteuerung mit MYCOMFORT MEDIUM-Display
MCSUE	Feuchtigkeitsfïhler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE	Wasserfühler fuir Steuerungen MYCOMFORT, EVO
Elektronische Mikroprozessorsteuertafeln	
KBF	Kit für die Installation der TED-Steuerungen an FLAT/FLATS
TED 2T	Elektronische Steuerung zur Regelung des Lüfters und 1 Ventil ON/OFF 230V
TED 4T	Elektronische Steuerung zur Regelung des Lüfters und 2 Ventile ON/OFF 230V

TECHNISCHE NENNDATEN - 2 ROHR

FLAT			10			20			30			40		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	1,19	1,34	1,77	1,38	1,71	2,22	1,44	2,01	2,66	1,67	2,29	2,87
Sensible Kühlleistung	(1)(E)	kW	0,86	0,96	1,27	1,02	1,27	1,66	1,10	1,53	2,03	1,27	1,75	2,20
Klasse FCEER	(E)		D			E			E			E		
Wasserdurchsatz	(2)	I/h	205	231	305	238	294	382	248	346	458	288	394	494
Druckverlust	(2)(E)	kPa	6	7	12	6	8	13	3	5	7	4	6	10
Heizleistung	(3)(E)	kW	1,16	1,29	1,71	1,38	1,67	2,17	1,55	2,04	2,72	1,76	2,32	2,89
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	200	222	294	238	288	374	267	351	468	303	400	498
Druckverlust	(3)(E)	kPa	4	5	9	6	8	12	2	4	6	3	5	8
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	212	226	305	227	284	378	239	344	467	277	407	520
Leistungsaufnahme	(E)	W	19	23	33	25	38	57	28	43	57	29	45	60
Globale Schalleistung	(4)(E)	$d B(A)$	34	38	44	38	44	50	30	38	44	33	42	48
FLAT			50			60			70					
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max			
Gesamtkühlleistung	(1)(E)	kW	2,05	2,56	3,26	2,21	2,92	4,08	2,53	3,30	4,38			
Sensible Kühlleistung	(1)(E)	kW	1,61	2,00	2,53	1,76	2,33	3,28	2,04	2,69	3,60			
Klasse FCEER	(E)		E			E			D					
Wasserdurchsatz	(2)	1/h	353	441	561	381	503	703	436	568	754			
Druckverlust	(2)(E)	kPa	4	5	8	3	5	8	8	13	23			
Heizleistung	(3)(E)	kW	2,24	2,67	3,36	2,64	3,36	4,61	2,96	3,76	4,96			
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	$1 / \mathrm{h}$	386	460	579	455	579	794	510	647	854			
Druckverlust	(3)(E)	kPa	3	4	5	4	7	11	8	14	22			
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	338	466	593	365	552	800	418	659	911			
Leistungsaufnahme	(E)	W	40	56	75	38	58	88	41	65	96			
Globale Schallleistung	(4)(E)	dB(A)	36	42	50	42	52	59	43	51	58			

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 4 ROHR

FLAT			10			20			30			40		
Velindigkeit			Min	med	Max									
Gesamtkühlleistung	(1)(E)	kW	1,23	1,39	1,76	1,32	1,64	2,04	1,39	1,95	2,51	1,61	2,22	2,70
Sensible Kühlleistung	(1)(E)	kW	0,88	1,00	1,28	0,97	1,22	1,54	1,06	1,48	1,93	1,22	1,70	2,08
Klasse FCEER	(E)		D			E			E			E		
Wasserdurchsatz	(2)	1/h	212	239	303	227	282	351	239	336	432	277	382	465
Druckverlust	(2)(E)	kPa	5	6	9	5	8	12	2	4	7	3	6	9
Heizleistung	(3)(E)	kW	1,35	1,46	1,76	1,44	1,65	1,96	1,78	2,13	2,59	1,96	2,35	2,74
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	116	126	152	124	142	169	153	183	223	169	202	236
Druckverlust	(3)(E)	kPa	3	3	5	3	4	6	6	9	12	7	10	13
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	187	215	289	205	270	359	232	332	451	273	393	502
Leistungsaufnahme	(E)	W	28	34	49	25	38	57	28	43	57	29	45	60
Globale Schallleistung	(4)(E)	$d B(A)$	34	41	47	40	45	50	31	39	45	35	43	49

TECHNISCHE NENNDATEN - 4 ROHR

FLAT			50			60			70		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	1,96	2,46	3,06	2,12	2,82	3,82	2,43	3,18	4,09
Sensible Kühlleistung	(1)(E)	kW	1,55	1,92	2,40	1,69	2,24	3,10	1,96	2,59	3,40
Klasse FCEER	(E)		E								
Wasserdurchsatz	(2)	1/h	338	424	527	365	486	658	418	548	704
Druckverlust	(2)(E)	kPa	3	4	6	6	8	15	5	8	12
Heizleistung	(3)(E)	kW	2,55	2,87	3,36	2,70	3,15	3,91	2,98	3,46	4,16
Klasse FCCOP	(E)						E				
Wasserdurchsatz	(3)	1/h	220	247	289	232	271	337	257	298	358
Druckerlust	(3)(E)	kPa	4	6	8	5	8	10	3	3	5
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	356	447	569	390	530	768	462	631	873
Leistungsaufnahme	(E)	W	40	56	75	38	58	88	41	65	96
Globale Schalleeistung	(4)(E)	$d B(A)$	36	45	50	42	48	56	43	51	58

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatu $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel $(47 \%$ relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

MASSZEICHNUNG

Designer-Gebläsekonvektor mit Zentrifugallüfter und Motor EC

FLATi2-5 kW

Technologie und Design in einer einzigen Lösung

Die hydronischen Endgeräte FLAT i i von Galletti sind mit einem Elektromotor mit Permanentmagneten (brushless) ausgestattet, der durch einen Inverter gesteuert wird und die kontinuierliche Veränderung der Lüfterdrehzahl erlaubt.
Zusätzlich zur signifikanten Reduzierung der Stromaufnahme gegenüber AC-Motoren erlaubt die Nutzung der EC Inverter-Technologie das kontinuierliche Anpassen des Betriebs der Einheit an die effektive thermo-hygrometrische Last der Umgebung, was zu offensichtlichen Vorteilen hinsichtlich Komfort und Laufruhe führt. Diese Technologie ist besonders wirksam bei häufigem Betrieb bei Teillasten, was häufig der Fall ist, wenn die Regellogik stark reduzierte Motorgeschwindigkeiten erlaubt, was zu ausgezeichneten Reduzierungen des Stromverbrauchs und der Schallemissionen führt. Der Betrieb der Einheit mit Brushless-Motor wird durch die Steuertafel mit Mikroprozessor EVO, MYCOMFORT LARGE oder TED unter Verwendung eines Analogausgangs ($0-10 \mathrm{~V}$), der an den Inverter angeschlossen wird, verwaltet.

PLUS

» Invertergesteuerter Motor EC
" Niedrigen Energieverbrauch
» Modulierender Betrieb
" Zentrifugallüfter aus ABS
" Designer-Verkleidung aus UV-beständigem ABS
» Mikroschalter am Luftauslass-Flap
" Umkehrbare Wasseranschlüsse
» Inkorporierbare JONIX-Reinigungssystem

FLATLi

Wandinstallation, Verkleidung mit vertikaler Luftausblasung.

HAUPTBESTANDTEILE

Verkleidung mit elegantem Design

Farbe RAL9010, Fronttafel aus Stahlblech. Seitenteile, oberes Gitter und Seitenklappen aus UV-beständigem ABS, um die Farbveränderungen im Laufe der Zeit zu vermeiden. Das obere Gitter besteht aus einem Flap und ausrichtbaren Flügeln. Der Flap ist mit einem Mikroschalter ausgestattet, der den Betrieb der Einheit unterbricht, wenn er geschlossen wird.

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, statisch und dynamisch ausgewuchtet; gefertigt aus antistatischem ABS, Schaufeln mit Flügelprofil, versetzte Module. Die Lüfter sind eingebaut in eine ABS-Hochleistungsschnecke.

Struktur

Gefertigt aus starkem, verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1

EC-Elektromotor

Die Einheit ist mit einer Inverter-Karte zur Steuerung des Motors ausgestattet, die getrennt oder am Motor selbst positioniert sein kann und eine präzise Einstellung der maximalen Drehgeschwindigkeit des Motors gewährleistet (Steuersignal 0-10 V), auch in den Fällen, in denen eine Begrenzung der Drehgeschwindigkeit zum Verringern der Schallpegel erforderlich ist.

Wärmetauscherbatterie

Mit hohem Wirkungsgrad, aus Kupferrohren und Aluminiumrippen, ausgestattet mit Verteilern aus Messing und Entlüftungsventil. Die Hydraulikanschlüsse sind bei der Installation umkehrbar. Auf Anfrage kann eine zusätzliche Batterie für Anlagen mit 4 Leitungen installiert werden.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

ZUBEHÖR		
Elektronische Mikroprozessorsteuertafeln mit display	GIVKL	Isolationsschal für VentilVKS, Hydraulikanschliusse links
DIST Distanzhalter Steuerung MYCOMFORT zur Wandmontage	GIVKR	Isolationsschale fir Ventil VKS, Hydraulikanschlusse rechts
EVO-2-TOUCH Touchscreen-Bedienoberfläche 2,8"fiur EVO-Steuerung	Standfüße m	
EVOBOARD Leistungsplatine für Steuerung EVO	ZL	Standuußpaar mit Blende für FLATL
EVODISP Anwerderschnittstelle mit Display zur EVO-Steuerung	Rückpaneel	
EYNAVEL Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone	PH	Lackiertes Rückpaneel, horizontale Geräteinstallation mit Verkleidung
KBFLAE Installationskit für Steuerung MY COMFORT am Geät FLAT	PV	Lackiertes Rückpaneel, vertikale Geräteinstallation mit Verkleidung
MCLE Mikroprozessorsteuerung mitMYCOMFORT LARGE-Display	Ventile	
MCSUE \quad Feuchtigkeitsfihler fuir Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO	V2VDF+STD	2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung,
MCSWE Wasserfühlerfuir Steuerungen MYCOMFORT, EVO	V20F+SID	Hydraulik-Kits, für Hauptbatterie und Zusatzzatterie
Elektronische Mikroprozessorsteuertafeln	V2VSTD	2-Wege-Ventile, EN/AUS- oder modulierende-Stellantriebe, 230-V oder 24-V-Stromversorgung,
KB F Kit für die Installation der TED-Steuerungen an FLAT/FLATS		Hydraulik-Kits, für Hauptbatterie
TED 10 Elektronische Steuerung zur Regelung des Lüfters Inverter EC und 1 oder 2 Ventile ON/OFF 230V	V3VDF	3-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Zusatzbatterie
TED SWA Luft-oderWassertemperatufühler fuir TED-Steuerungen		
Zusätliche Batterie für Anlagen mit 4 Rohren	V3VSTD	3-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie
DF Zusätliche Batterie mite einer Reihe für Anlagen mit 4 Rohren		
Zusätzliche Kondenswassersammelbecken, Solationsschalen, Kondenswasserablasspumpen	VPIC	2-Wege-Ventile pressure independent, EIN/AUS-Stellantriebe, 230-V-Stromversorgung, HydraulikKits, für Hauptbatterie und Zusatzbatterie
BH Zusätliches Becken fuir Geblasekonvektoren zur horizontalen Installation	Reinigungssystem	
BV Zusätliches Becken für Gebläsekonvektoren zur vertikalen Installation	JONIX inside	Reinigungsmodu JONX fur Installation am Gerät

Fan coil FLAT i

TECHNISCHE NENNDATEN - 2 ROHR

FLATi			20			40			70		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90
Gesamtkühlleistung	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,56	3,34	4,43
Sensible Kühlleistung	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	2,07	2,73	3,65
Klasse FCEER	(E)						B				
Wasserdurchsatz	(2)	1/h	239	300	389	251	344	430	441	575	763
Druckverlust	(2)(E)	kPa	6	8	13	4	6	10	6	8	16
Heizleistung	(3)(E)	kW	1,52	1,84	2,39	1,76	2,32	2,89	2,96	3,76	4,96
Klasse FCCOP	(E)						B				
Wasserdurchsatz	(3)	1/h	262	317	412	303	400	498	510	647	854
Druckverlust	(3)(E)	kPa	6	8	12	3	5	8	5	9	14
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	216	284	378	283	407	520	482	659	911
Leistungsaufnahme	(E)	W	7	11	22	9	15	31	13	21	49
Globale Schalleeistung	(4)(E)	$d B(A)$	38	44	53	33	42	48	43	51	58

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN - 4 ROHR

FLATi			20			40			70		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90
Gesamtkühlleistung	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,46	3,22	4,14
Sensible Kühlleistung	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	1,99	2,63	3,45
Klasse FCEER	(E)		C			A			B		
Wasserdurchsatz	(2)	1/h	208	260	324	281	387	472	424	554	713
Druckverlust	(2)(E)	kPa	5	8	12	3	6	9	4	6	9
Heizleistung	(3)(E)	kW	1,44	1,65	1,96	1,96	2,35	2,74	2,98	3,46	4,16
Klasse FCCOP	(E)		C			B			B		
Wasserdurchsatz	(3)	1/h	124	142	169	169	202	236	257	298	358
Druckverlust	(3)(E)	kPa	3	4	6	7	10	13	3	3	5
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	205	270	359	273	393	502	462	631	873
Leistungsaufnahme	(E)	W	10	16	31	7	12	24	13	21	49
Globale Schallleistung	(4)(E)	dB(A)	40	45	50	35	43	49	43	51	58

[^4]
MASSZEICHNUNG

FLAT Li	\mathbf{A}	L	mm
$\mathbf{m m}$	534	820	$\mathbf{k g}$
$\mathbf{4 0}$	704	990	19
70	874	1160	23

Ventilkonvektoren zum Einbauen mit Einbaukasten

CFV 1-4 kW

PLUS

» Invertergesteuerter Motor EC
» Niedrigen Energieverbrauch
» Modulierender Betrieb
" Einfacher Zugang zum Gebläsekonvektor
» Anstreichbare Frontblende

UNSICHTBARE GEBÄUDEKLIMATISIERUNG FÜR AUSSERORDENTLICHEN KOMFORT

CFV ist die perfekte Lösung, um Projektanforderungen, den Gebläsekonvektor komplett unsichtbar zu gestalten, umzusetzen. Im Zentrum dieses Produktes steht der Gebläsekonvektor CF. Er ist mit seiner Tiefe von nur $12,6 \mathrm{~cm}$ für jede Art der Installation geeignet. Durch den invertergesteuerten EC-Motor besitzt das Gerät kompakte Abmessungen und einen geringen Energieverbrauch. Dieser Energieverbrauch ist zu herkömmlichen AC-Motoren im jährlichen Vergleich um bis zu 70% geringer.
Der Gebläsekonvektor befindet sich im Einbaukasten CYC. Dieser besteht aus verzinktem Stahl und kann sowohl vertikal als auch horizontal eingebaut werden. Die Metallstruktur ist an den Stellen für die hydraulischen und elektrischen Anschlüsse vorgestanzt; dies vereinfacht die Installation.
Die Frontblende CYP verdeckt den Gebläsekonvektor einerseits und macht ihn andererseits für Wartungstätigkeiten leicht zugänglich. Da die Frontblende überstreichbar ist, gelingt die Integration in die Wand hervorragend. Das Gerät verschwindet buchstäblich in dem zu klimatisierenden Raum.

AUSFÜHRUNGEN

CFVVERTIKALE INSTALLATION

1. Frontblende CYPV
2. Gebläsekonvektor CF
3. Einbaukasten CYC

CFV HORIZONTALE INSTALLATION

1. Frontblende CYPH
2. Gebläsekonvektor CF
3. Einbaukasten CYC
4. Teleskopkanal CYRMCD
5. Ausblasgitter mit geradem Profil CY8048

HINTERGRUND

KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausführung und des
Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfgura-
tionsbeispiel abgebildet.

Ausführung:	Bereiche	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
CF10	C	I	L	0	1	7	0	0	0	0	A	

Zum Prüfen der Kompatibilitäat der Optionen wird gebeten, die Auswahlsoftware oder die Preisliste zu verwenden.
KONFIGURATOR

1	Ausführung:	2	2 Wege - On/Off 230 V
C	Einbau	6	Steuertafel
2	Motor	7	Schaltkarte in der Maschine zum Anschluss an MY COMFORT LARGE
1	Motor mit Umrichter	7	Fühler
3	Anschlussseite des Hauptwärmetauschers	2	SW -Wassersensor fuir Steuerbefehl MY COMFORT
L	Links	8	Verschiedenes Zubehör
R	Rechts	0	Nicht vorhanden
4	Anschlussseite des Zusatz-Wärmetauschers / Heizelement	9	Filter
0	Nicht vorhanden	0	Standardlufffilter anstelle von GO
L	DF links	10	Release
R	DF rechts	0	O
5	Ventile	A	A
1	3 Wege - On/off 230 V		

ZUBEHÖR		
Elektronische Mikroprozessorsteuertafeln mit display	RMCD	Teleskopischer Luftzufuhrkanal
CYBOARD Schaltkarte in der Maschine zum Anschluss an MYCOMFORT	Verschiedenes Zubehör	
DIST Distanzhalter Steuerung MYCOMFORT zur Wandmontage	(*OAOO	Einbaukasten aus Zinkblech fïr die 2 -Rohr-Ausfürrung
MCLE Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display	${ }^{*} 0 \mathrm{OAO}$	Einbaukasten aus Zinkblech für die 4 -Rohr-Ausfïhrung
Luftausblasgitter und Luftansauggitter	P*0AHO	Deckenverkleidungspaneel mit Rahmen und Ansauggitter für die 2-Rohr-Ausührung
8048 Luftauslassgitter aus Aluminium, mit doppelter Anordnung	P*0AH1	Deckenverkleidungspaneel mit Rahmen und Ansauggiter für die 4-Rohr-Ausührung
Ventile	P*OAVO	Wandverkleidungspaneel mit Rahmen, Ansauggitter und Auslassklappe für die Ausührung mit2
K45 \quad 3-Wege-Ventilsatz für Anlagen mit 4 Rohren		
$\begin{array}{ll}\text { KV24K } & \text { 2-Wege-Ventilstatuir Anlagen mit } 4 \text { Rohren } \\ \text { KVK }\end{array}$	P*OAV1	Wandverkleidungspaneel mit Rahmen, Ansauggitter und Auslassklappe für die Ausführung mit 4 Rohren
KVK 2-Wege-Ventisatz, thermoelektrischer Motor		
Plenum und saug- und auslassanschlüsse und verkleidung	I	Anschlusskabel für den Motor, um auf der Baustelle die Hydraulikanschliusse von links nach rechts zu wechseln
RMC90 Luftzufuhrkanal, 90°-Kurve		

TECHNISCHE NENNDATEN - 2 ROHR

CFV			10			20			30			40			50		
Velindigkeit			Min	med	Max												
Eingangsspannung	(E)	V	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0
Gesamtkühlleistung	(1)(E)	kW	0,43	0,73	0,91	0,75	1,36	2,12	1,15	2,08	2,81	1,32	2,39	3,30	1,36	2,57	3,71
Sensible Kühlleistung	(1)(E)	kW	0,29	0,51	0,71	0,59	1,04	1,54	0,83	1,51	2,11	1,02	1,84	2,65	1,05	1,98	2,90
Klasse FCEER	(E)		C			B			A			A			A		
Wasserdurchatz	(2)	1/h	74	126	157	129	234	365	198	358	484	227	412	568	234	443	639
Druckverlust	(2)(E)	kPa	6	10	12	2	4	8	3	10	17	3	9	18	3	11	21
Heizleistung	(3)(E)	kW	0,37	0,69	1,02	0,82	1,53	2,21	1,20	2,16	3,02	1,47	2,59	3,81	1,49	2,82	4,32
Klasse FCCOP	(E)			D			B			B			B			B	
Wasserdurchsatz	(3)	I/h	64	119	176	141	263	381	207	372	520	253	446	656	257	486	744
Druckverlust	(3)(E)	kPa	3	7	9	2	4	9	3	9	19	3	9	21	3	7	23
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	49	90	146	118	210	294	180	318	438	247	410	567	262	479	663
Leistungsaufnahme	(E)	W	5	7	11	4	8	19	6	11	20	5	11	29	6	12	33
Globale Schalleeistung	(4)(E)	dB(A)	37	47	54	37	47	54	37	47	54	37	47	55	37	48	57

[^5]
TECHNISCHE NENNDATEN - 4 ROHR

CFV			10			20			30			40			50		
Velindigkeit			Min	med	Max												
Eingangsspannung	(E)	V	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10
Gesamtkühlleistung	(1)(E)	kW	0,40	0,73	0,84	0,75	1,34	1,93	1,08	1,95	2,50	1,21	2,20	2,92	1,30	2,30	3,21
Sensible Kühlleistung	(1)(E)	kW	0,27	0,51	0,65	0,59	1,02	1,39	0,78	1,42	1,87	0,94	1,70	2,28	1,01	1,79	2,53
Klasse FCEER	(E)		C			B			A			A			A		
Wasserdurchsatz	(2)	I/h	69	126	144	129	230	332	186	335	430	208	378	502	224	396	552
Druckverlust	(2)(E)	kPa	5	10	11	2	4	7	2	9	14	2	8	15	3	9	17
Heizleistung	(3)(E)	kW	0,30	0,51	0,45	0,63	0,94	1,10	0,92	1,28	1,51	1,30	1,94	2,21	1,39	2,11	2,54
Klasse FCCOP	(E)		D			C			B			B			B		
Wasserdurchsatz	(3)	1/h	52	88	77	108	162	189	158	220	260	224	334	380	239	363	437
Druckverlust	(3)(E)	kPa	2	2	2	2	2	4	4	4	6	2	3	4	2	3	6
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	46	91	132	124	207	260	194	291	370	302	367	476	364	416	542
Leistungsaufnahme	(E)	W	4	6	11	4	8	19	4	9	20	4	10	29	5	12	33
Globale Schalleistung	(4)(E)	dB(A)	37	44	51	37	47	54	37	47	54	37	47	55	37	48	57

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

MASSZEICHNUNG

MASSZEICHNUNG

CF 4 Rohre

Wand-Gebläsekonvektor, hoch

FM 2-4 kW

Inverter
inverter

PLUS

» Elektronisch gesteuerter EC-Motor
» Reduzierte Abmessungen, die für die gesamte Gerätepalette gelten
» Integriertes 2-Wege-Ventil ON/OFF
» PID-Regelung
» Entwicklung adressierbarer globaler Netze mit externer Überwachung

Neues hydronisches Endgerät von Galletti, das Laufruhe, Formschönheit und Komfortmanagement vereint

FM unterscheidet sich dank dem Einsatz eines EC-Motors, eingebauter Regelventile und serieller Kommunikation durch einen hohen technologischen Inhalt.
Die automatische Luftgeschwindigkeitsregelung wird durch eine proportionale, integrative und derivative Logik verwaltet, die in der Lage ist, Stabilität, Präzision und ein schnelles Ansprechen zu gewährleisten.
Die serielle Kommunikation ermöglicht eine Vernetzung von bis zu 32 Einheiten und gewährleistet ein globales Management mit automatischer Änderung der Parameter aller koordinierter Einheiten von einem einzigen Punkt aus.
Mit dem Zubehör WALLPAD können die mit dem System verbundenen Einheiten einzeln nacheinander gesteuert werden.
FM kann mittels Modbus-Kommunikation mit einem Uberwachungssystem verbunden werden.
Wo einerseits das bereits am Gerät montierte Ventil und das Schlauchsystem eine schnelle und sichere Installation erlauben, bieten andererseits die Lüftertechnologie mit EC-Motor und die Batterie für einen optimierten Wärmetausch dem Anwender ein leises Endgerät, hohe Leistung und niedrigen Verbrauch.

Modelle 022/032/042

Die Modelle mit bereits am Gerät installiertem 2-Wege-Ventil passen sich perfekt Systemen an, in denen ein modulierender Umwälzer oder andere Vorrichtungen zum Verändern des Wasserdurchsatzes vorhanden sind.

HAUPTBESTANDTEILE

Verkleidung

Die formschöne Ventilgruppe aus ABS wurde derart entwickelt, dass sie sich jedem Umgebungstyp anpasst. Der integrierte Luftauslass ist mit einer angetriebenen, automatischen oder vom Anwender einstellbaren Luftausblasklappe und mit ausrichtbaren Flügeln ausgestattet, um eine gleichmäßige Luftverteilung im Raum zu gewährleisten. Die Fronttafel ist mit einem Anzeigedisplay für Betriebsmodus und Raumtemperatur ausgestattet.

Wärmetauscherbatterie

Der Rippenpaket-Wärmetauscher besteht aus Kupferrohr und Jalousierippen aus Aluminium.
Die hydrophile Behandlung der Rippen garantiert einen optimalen Wärmetausch auch bei Kondensatbildung auf der Oberfläche.

Ventilgruppe

Bereits verkabelte 2-Wege-Ventile ON/ OFF sind im Endgerät installiert. Die Verbindung mit der Anlage erfolgt mittels an der Rückseite der Einheit angebrachter Schläuche.
Ohne eine Erhöhung der Abmessungen und eine umständlichere Installation schließt sich das Ventil bei Erreichen des Sollwerts, wälzt das Wasser um und verhindert dessen Eintreten in die Batterie.

EC-Motor

WALLPAD

Die wahre Stärke dieser Steuerung liegt in der Bildung von Kommunikationsnetzen. Bei der Verbindung von bis zu 32 Einheiten über einen Netz-Bus und bei Verbindung der WALLPAD-Steuerung mit einer dieser Einheiten (Master) kann deren Betrieb gesteuert werden.
Insbesondere kann der Anwender wählen, ob er gleichzeitig mit allen verbundenen Einheiten kommunizieren will, indem zum Beispiel die Betriebsweise der gesamten Anlage geändert wird, oder ob er mit jeder einzelnen Einheit dialogieren will, indem die Regelparameter der verschiedenen Fan coils differenziert werden. Die Wahl zwischen einer "globalen" Kommunikation oder einem einzelnen Endgerät erfolgt mittels einer einfachen Taste.

WALLPAD

Elektronischer Motor mit Permanentmagneten zur Gewährleistung einer durchgehenden Lüftungsgeschwindigkeit bei mehr als halbierter Stromaufnahme gegenüber Asynchronmotoren

Tangentialü̈fter mit niedrigen Betriebsgeräuschen.

ZUBEHÖR

Kabelfernbedienung

Fan coil FM

TECHNISCHE NENNDATEN

[^6]Modelle mit eingebautem 2-Wege-Ventil 022 / 032 / 042
Modelle mit eingebautem 3-Wege-Ventil 023 / 033 / 043 (auf Anfrage)

MASSZEICHNUNG

Design modul mit Coanda-Effect

EFFETTO

Die perfekte Harmonie zwischen Komfort und Design

Galletti präsentiert EFFETTO, das Designmodul für die Luftansaugung und -verteilung, das entwickelt wurde, um sich mit der Zuverlässigkeit und dem Komfort der Gebläsekonvektorkassetten ACQVARIA und ACQVARIA i (Modell $600 \times 600 \mathrm{~mm}$) zu vereinen. EFFETTO bricht mit den Standardschemata der klassische Gebläsekonvektorkassetten mit verstellbaren Lamellen und präsentiert ein Designmodul, das den Coandă-Effekt nutzt.
Die Advanced Design Unit von Galletti hat eine Gebläsekonvektorkassette Made in Italy mit einem essentiellen und geradlinigen Design entworfen, die sich, auch farblich, in den Stil jeder Umgebung integrieren lässt.
EFFETTO steht nicht nur für Ästhetik, sondern auch für Komfort, da diese Kassette dank des Coandă-Effekts für eine optimale Luftverteilung sorgt.
Die Dibond-Metalltafel von EFFETTO besteht aus einem SandwichPaneel aus Aluminium und Polyethylen.
Die raffinierte metallische Oberfläche verhindert in Kombination mit der isolierenden Wirkung von Polyethylen die Bildung von Kondenswasser. Das Ansauggitter aus Stahl bildet eine einzige Oberfläche mit dem Paneel, was die Flachheit des Produkts unterstreicht. Der Filter ist für Wartungsarbeiten leicht herausnehmbar.
Das Leitblech besteht aus schwarzem Polystyrol RAL 9005, das sich farblich perfekt einfügt; seine Geometrie ist so konzipiert, dass die Luftverteilung im Raum optimiert wird.
Der Glanz des Aluminiums ermöglicht es dem Gitter, sich an jede Situation anzupassen, wobei die gefräste Kante der Tafel, die deren Form definiert, auch bei schlechten Lichtverhältnissen immer gut sichtbar bleibt. Das von der Decke abgelöste Modul interagiert mit allen Elementen und Lichtquellen der Umgebung.
EFFETTO ist die perfekte Wahl, um für die zu klimatisierende Umgebung ein lineares und sauberes Layout zu garantieren.

VERFÜGBARE VERSIONEN

Es sind drei Farbvarianten erhättlich: Aluminium Natur gebürstet, weiß RAL9010 und schwarz RAL9005. Die schwarze Farbe wird auch auf alle Komponenten der inneren Struktur und den technischen Teilen aufgetragen, um einen Schatteneffekt auf den umgebenden Oberflächen zu erzeugen, der die Tafel in der Luft schweben lässt.

Grey - Aluminium, natur gebuirstet

White - Weiß RAL9010

Black - Schwarz RAL9005

NUMERISCHE STRÖMUNGSSIMULATIONEN

LEITBLECH

Mithilfe von rechnergestützten Strömungsdynamik-Simulationen (CFD) konnte die Luftverteilung im Raum untersucht werden, um den Coandă-Effekt optimal zu nutzen: Der Luftstrom fließt die Zimmerdecke entlang, ohne den Bewohner direkt zu treffen, und vermeidet so Iokales Auftreten von Unbehaglichkeit.
Schnitt des EFFETTO-Moduls, in dem die Luffflüsse hervorgehoben sind.

CASE STUDY HEIZUNG

In den CFD-Simulationen wurde ein Speisesaal für etwa 100 Personen in Betracht gezogen, der mit 9 ACQVARIA-Gebläsekonvektorkassetten mit EFFETTO-Modul ausgestattet ist. Die Projektbedingungen für den Sommer sind: Außenlufttemperatur $5^{\circ} \mathrm{C}$, Raumtemperatur Sollwert $20^{\circ} \mathrm{C}$
Die Norm UNI EN ISO 7730 legt Indizes fest, die Situationen von thermo-hygrometrischer Unbehaglichkeit definieren: Fußbodentemperatur, erhöhte Abweichung der Temperatur in der Vertikalen, Luftströme, voraussehbare mittlere Beurteilung.

CASE STUDY KÜHLBETRIEB

In den CFD-Simulationen wurde ein Speisesaal für etwa 100 Personen in Betracht gezogen, der mit 9 ACQVARIA-Gebläsekonvektorkassetten mit EFFETTO-Modul ausgestattet ist. Die Projektbedingungen für den Sommer sind: Außenlufttemperatur $33^{\circ} \mathrm{C}$, Raumtemperatur Sollwert $26^{\circ} \mathrm{C}$
Die Geometrie der schwarzen Polystyrol-Förderer wurde mit Hilfe von CFD-Simulationen und experimentellen Tests in den R\&D-Labors von Galletti
Ziel war es, sicherzustellen, dass der Luftstrahl die Decke und die Wände berührt, ohne durch den Coandä-Effekt direkt auf den Bewohner zu treffen. Die Luftverteilung im Raum ist homogen, der linke Bereich hat eine überdurchschnittlich hohe Lufttemperatur, da er an die Küche angrenzt.

SCHLUSSFOLGERUNGEN

Alle betrachteten Komfortindizes bestätigten, dass die thermo-hygrometrischen Komfortbedingungen auch bei Vorhandensein einer Luftschichtung in den an die Zimmerdecke angrenzenden Bereichen gewährleistet sind, ein in der Heizperiode weit verbreitetes Phänomen.

Designmodul mit Coandă-Effekt - EFFETTO

EFFEII?
 the

EFFETTO AIRCLISSI

Häufig erfolgt die Beurteilung von Gebläsekonvektoren nur nach ihrer technischen Leistung Tatsächlich sind thermodynamische und akustische Eigenschaften wichtig, aber nur dann, wenn sie Bestandteil eines generellen, ganzheitlichen Konzepts sind. Heutzutage sollen Gebläsekonvektoren mit allen Einrichtungselementen der zu klimatisierenden Räume so harmonieren, dass eine Plattform entsteht, die mit dem Erscheinungsbild der Umgebung und den in ihr lebenden Menschen in Kommunikation tritt. Die aktuelle Interaktion ist noch eindringlicher; Gebläsekonvektrokassetten definieren sich über die neue emotionale Ausdrucksmöglichkeit des Lichts
EFFETTO ist jetzt in AirClissi integriert und präsentiert sich weltweit als die erste Gebläsekon-vektor-Leuchtkassette mit Coandă-Effekt - eine Kassette, in der sich die Elemente Luft und Licht in einem einzigartigen Design vereinen. Galletti verleiht dem Konzept von Gebläsekonvektorkassetten mit EFFETTO AirClissi eine vollständig neue Ästhetik, bei der das Licht den Raum verzaubert.

VERFÜGBARE VERSIONEN

Das Airclissi-Lichtmodul ist in der neutralen Farbe 4000 K erhältlich. Diese chromatische Version ist mit EFFETTO Grey, White und Black kompatibel.

Die Lichtintensität lässt sich mit dem Mikroprozessorregler EVO modulieren. Dieser eine Regler reicht aus, um volle Kontrolle über die thermohygrometrischen Raumeigenschaften zu besitzen - und jetzt auch über die Beleuchtung. Die erhabene Eleganz von AirClissi entfaltet sich durch eine geschickte Kombination aus minimaler Linienführung, Charakter, dem Material Dibond und Licht.

MASSZEICHNUNG

Kassetten-Gebläsekonvektoren

ACQVARIA 3-10 kW

JONIX

PLUS

" Zuverlässigkeit und Robustheit in einer kompakten Struktur
» Frischluft mit direkter oder gemischter Zuführung
» Wärmetauscher bis 3 Reihen
» Kondensatablasspumpe für Höhenunterschiede bis $0,9 \mathrm{~m}$
» Reduzierte Installations- und Inbetriebnahmezeiten
» Inkorporierbare JONIX-Reinigungssystem

VERFÜGBARE VERSIONEN

Neben den 2 ABS-Gitter mit verstellbaren Finnen gibt es jetzt auch EFFETTO und EFFETTO AirClissi.

EFFETTO, modul für Absaugung und Luftdiffusion mit Coandă-Effekt.
EFFETTO Airclissi, die das Licht mit dem Coandă-Effekt der Luftdiffusion verbindet.

Solidität und Leistung in einem einzigen

Produkt.

Die Hydronikkassetten-Serie ACQVARIA mit 3-Gang-Motor besteht aus 6 Modellen 2-Rohr-Anlagen und 6 Modellen für 4-Rohr-Anlagen. Entwickelt in zwei Größen (Modularität $600 \times 600 \mathrm{~mm}$ und 900×900 $\mathrm{mm})$, zeichnet sie sich dank der besonderen Aufmerksamkeit, die der Entwicklung von Wärmetauschern und Lüftungseinheiten gewidmet wurde, durch hohe Leistungen und extrem niedrige Schallpegel aus.
Die Einheit in der Zwischendecke enthält alle Komponenten, Wärmetauscher, die Lüftungsmotorgruppe und das Kondensatsam-mel- und Kondensatablassystem. Ihre Struktur ist vorgerüstet für das Einbringen von Primärluft in den Raum, deren Vermischung mit Umluft und die Zuführung der behandelten Luft aus der Kassette in angrenzende Räume.
Die für Höhenunterschiede bis zu 90 cm geeignete Kondensatablasspumpe wird durch einen Schwimmerschalter mit 3 Aktivierungsstufen für maximale Laufruhe und Betriebssicherheit gesteuert
Das Design und die Farbe RAL9003 oder RAL9010, des Luftansauggitters und des Gitters für die Luftverteilung im Raum garantieren eine optimale Integration in die Zwischendeckenpaneele. Leichter Zugang zum Luftfilter für Reinigungsarbeiten.
Die Kassetten ACQVARIA können mit allen an der Wand installierten Steuertafeln mit Benutzerschnittstelle, elektronisch oder mikroprozessorgesteuert, kombiniert werden.
Auf Wunsch werden der Regler EVO BOARD, Luft-, Wasser- und Feuchtigkeitsfühler sowie 2-oder 3-Wege-Ventile mit ON-OFFoder modulierendem Stellantrieb an der Maschine installiert.
Es sind auch druckunabhängiger Regelventile geliefert werden, deren Einsatz die Inbetriebnahmezeiten deutlich reduziert.

HAUPTBESTANDTEILE

Struktur

Gefertigt aus verzinktem Stah|blech mit Innenverkleidung aus Polyurethanschaum und Außenverkleidung aus PES beflockt zur Gewährleistung der Wärme- und Schallisolierung. Die Frischluftzufuhr in den Raum kann direkt durch die Einheit erfolgen, da die Anschlüsse für neutrale oder gemischte Luftzufuhr vorgesehen sind. Für den Anschluss an die Versorgungskanäle steht entsprechendes Zubehör zur Verfügung. Am Gerät sind die Systeme zur Verankerung der Einheit an der Decke vorhanden. Die elektrische Verkabelung erfolgt in einem leicht zugänglichen Kasten, was einen leichten Anschluss ermöglicht.

Wärmetauscherbatterie

Aus Kupferrohren und Aluminiumflügeln mit hohem Wirkungsgrad, die im Treibverfahren an den Rohren befestigt sind. Mit mindestens zwei Reihen bei den Modellen für 2-Rohr-Anlagen, ist in der $2+1$ Konfiguration bei den Modellen für 4-Rohr-Anlagen verfügbar. Das Register ist mit manuellen Entü̈ftungsventilen ausgestattet. Auf Wunsch können Ventile zur Regelung und Ausgleichung des Betriebs der Einheit an das Register angeschlossen werden.

Lüftungsmotoreinheit

Elektromotor mit 3 Geschwindigkeiten, direkt verbunden mit einem Zentrifugallǘter mit rückwärtsgekrümmten Schaufeln und einem für die Betriebsstabilität bei allen Drehzahlen optimierten Profi.

Luftiliter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

Gitter

Quadratische Form für die Ansaugung und Verteilung der Luft im Raum, gefertigt aus ABS in der Farbe RAL9003 oder RAL9010. Das Ansauggitter kann für den Zugang zum Lufffilter geöffnet werden. Die Luftverteilung im Raum erfolgt durch die 4 Seiten, die jeweils mit einem verstellbaren, angemessen wärmegedämmten Flügel ausgestattet sind.
Das neue Modul ist jetzt auch verfügbar Designmodul für Absaugung und Luftdiffusion mit Coandă-Effekt.

Steuerungsweise

Galletti erneuert die Steuerungsweisen für den Gebläsekonvektor indem sie die neue, EVO Benutzerschnittstelle und das NAVEL-Geräts die Verwaltung mittels Smartphone auf der Plattform EVO-2TOUCH integriert.

EVO-2-TOUCH

ist eine Benutzerschnittstelle mit kapazitivem 2,8"-Display mit integrierten Temperatur- und Feuchtigkeitsfühlern für eine einfache Bedienung durch den Endbenutzer.

NAVEL

ist das mit EVOBOARD gekoppelte Gerät, das die WI-FI- oder Bluetooth-Kommunikation mit dem Smartphone ermöglicht, in dem sich GALLETTI APP befindet (verfügbar für iOS und Android).

JONIX Non Thermal Plasma Technology (Optional)

Hygienisiert die Räume durch Nutzung von Lufteigenschaften. Diese werden durch die Energie aktiviert, die von den speziellen NTP-Generatoren erzeugt wird (von JONIX patentiert). Die auf diese Weise aktivierte Luft enthält „angeregte" Molekülen (reactive species), die einen Angriff auf Schadstoffmoleküle (die sie zerstören) und Mikroorganismen ausführen. Letztere schädigen sie strukturell und funktionell in einer Weise, dass sie inaktiv werden (biozide und viruzide Wirkung). Die Jonix- Geräte vom Typ „Non Thermal Plasma Technology" wirken bei richtiger Verwendung und Bemessung gegen viele krankmachende Stoffe, beispielsweise gegen Viren, Bakterien, Schimmelpilze, Allergene, flüchtige chemische Verbindungen und auch gegen alle Gerüche. Sie tragen auf diese Weise dazu bei, dass sich Krankheiten nicht über die Luff verbreiten (Covid-19 eingeschlossen).

ZUBEHÖR

Elektronische Mikroprozessorsteuertafeln mit display	
DIST	Distanzhalter Steuerung MYCOMFORT zur Wandmontage
EVO-2-TOUCH	Touchscreen-Bedienoberfläche 2,8" für EVO-Steuerung
EVOBOARD	Leistungsplatine für Steuerung EVO
EVODISP	Anwerderschnittstelle mit Display zur EVO-Steuerung
EYNAVEL	Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone
LED503	Elektronische Steuertafel mit Display zum Einbauen in die Wand LED 503
MCBE	Mikroprozessorsteuerung mit MYCOMFORT BASE Display
MCLE	Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCME	Mikroprozessorsteuerung mit MYCOMFORT MEDIUM-Display
MCSUE	Feuchtigkeitsfühler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE	Wasserfühler für Steuerungen MYCOMFORT, EVO
Elektronische Mikroprozessorsteuertafeln	
TED 2T	Elektronische Steuerung zur Regelung des Lüfters und 1 Ventil ON/OFF 230V
TED 4T	Elektronische Steuerung zur Regelung des Lüfters und 2 Ventile ON/OFF 230V
TED SWA	Luft- oder Wassertemperaturfühler für TED-Steuerungen

Leistungsschnittstelle und Steuerungen für Schieber	
KP	Leistungsschnittstelle für den Parallelanschluss von max. 4 Ventilkonvektoren mit einer einzigen Steuerung.
Ventile	
PIC-AQ	2-Wege-Ventile, PRESSURE INDEPENDENT
V2-AQ	2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für modelle mit 1 oder 2 Wärmetauschern
V3-AQ	3-Wege-Ventile, ENN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für modelle mit 1 oder 2 Wärmetauschern
Plenum und saug- und auslassanschlüsse und verkleidung	
BAR	Spigot für gemishte Frischluftzufuhr
MOB	Verkleidung für kassetten
PAR	Frischluftansaugkammer ungemisht
PMAA	Plenum für Luftversorgung
Reinigungssystem	
JONIX-	Reinigungsmodul JONX X fur Installation am Gerät

Kassetten ACQVARIA

TECHNISCHE NENNDATEN 2 ROHRE

ACQVARIA			AQ10QOBO			AQ20QOBO			AQ30QOBO		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	1,70	1,97	2,53	2,39	3,55	4,31	3,40	4,61	5,00
Sensible Kühlleistung	(1)(E)	kW	1,33	1,60	2,14	1,66	2,53	3,18	2,43	3,44	3,79
Klasse FCEER	(E)		C			C			D		
Wasserdurchsatz	(1)	1/h	295	342	441	416	616	749	593	803	873
Druckverlust	(1)(E)	kPa	3	4	6	9	19	26	9	16	18
Heizleistung	(2)(E)	kW	1,97	2,33	3,10	2,29	3,44	4,30	3,49	4,92	5,35
Klasse FCCOP	(E)		C			D			E		
Wasserdurchsatz	(2)	1/h	342	404	539	399	597	747	607	855	930
Druckverlust	(2)(E)	kPa	3	5	8	7	15	22	8	15	17
Nennluffdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	297	379	557	306	487	640	479	717	805
Leistungsaufnahme	(E)	W	18	23	42	32	40	50	57	74	89
Globale Schallleistung	(3)(E)	$d B(A)$	33	37	45	40	44	50	47	55	58
ACQVARIA			AQ40QOBO			AQ50QOBO			AQ60QOBO		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung	(1)(E)	kW	4,64	5,36	7,01	5,16	6,11	8,24	6,34	8,61	9,73
Sensible Kühlleistung	(1)(E)	kW	3,42	3,99	5,29	3,68	4,37	6,10	4,59	6,40	7,35
Klasse FCEER	(E)		C								
Wasserdurchsatz	(1)	1/h	805	930	1223	893	1060	1434	1097	1498	1696
Druckverlust	(1)(E)	kPa	14	18	28	12	16	26	16	26	32
Heizleistung	(2)(E)	kW	5,16	6,06	8,17	5,22	6,53	9,18	6,71	9,53	11,1
Klasse FCCOP	(E)		D			C			D		
Wasserdurchsatz	(2)	1/h	897	1053	1420	908	1136	1596	1167	1656	1930
Druckverlust	(2)(E)	kPa	14	18	30	10	15	26	15	26	33
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	801	997	1494	718	902	1380	902	1380	1651
Leistungsaufnahme	(E)	W	47	64	108	47	64	108	64	108	147
Globale Schallleistung	(3)(E)	dB(A)	35	40	51	35	40	51	40	51	56

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) aussedrückt gemäß EN1397:2021
(2) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(3) Schalleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 4 ROHRE

ACQVARIA			AQ10Q0BB			AQ20QOBB			AQ30QOBB		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung DF	(1)(E)	kW	1,56	1,85	2,35	2,01	2,83	3,38	2,58	3,38	3,62
Sensible Kühlleistung DF	(1)(E)	kW	1,24	1,49	1,94	1,49	2,22	2,77	2,00	2,77	3,02
Klasse FCEER DF	(E)		C			E			E		
Wasserdurchsatz		1/h	271	321	410	351	493	589	453	593	637
Druckverlust	(E)	kPa	3	4	6	10	16	22	5	8	9
Heizleistung	(2)(E)	kW	2,53	2,88	3,55	2,75	3,62	4,22	3,67	4,54	4,81
Klasse FCCOP	(E)		C			D			E		
Wasserdurchsatz	(2)	1/h	222	258	311	241	317	369	322	398	421
Druckverlust	(2)(E)	kPa	4	5	8	6	9	12	5	8	9
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	289	366	533	306	487	640	479	717	805
Leistungsaufnahme	(E)	W	18	23	42	35	55	73	57	74	89
Globale Schallleistung	(3)(E)	$d B(A)$	33	37	45	40	44	50	47	55	58
ACQVARIA			AQ3500BB			AQ40QOBB			AQ60QOBB		
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max
Gesamtkühlleistung DF	(1)(E)	kW	3,50	4,39	4,68	4,73	6,60	7,45	5,83	8,48	9,00
Sensible Kühlleistung DF	(1)(E)	kW	2,56	3,17	3,50	3,47	5,04	5,81	4,29	6,56	6,98
Klasse FCEER DF	(E)		D			C			D		
Wasserdurchsatz		1/h	602	755	805	822	1148	1299	1010	1477	1571
Druckverlust	(E)	kPa	8	12	15	10	20	25	16	31	34
Heizleistung	(2)(E)	kW	2,57	2,94	3,18	6,57	8,76	9,67	8,64	11,7	12,4
Klasse FCCOP	(E)		E			C			C		
Wasserdurchsatz	(2)	$1 / \mathrm{h}$	221	253	273	634	840	929	757	1026	1083
Druckverlust	(2)(E)	kPa	7	12	14	12	19	23	16	27	30
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	479	717	805	718	1147	1380	902	1544	1651
Leistungsaufnahme	(E)	W	44	67	75	47	86	108	64	128	147
Globale Schallleistung	(3)(E)	$d B(A)$	47	55	58	39	47	51	40	54	56

[^7]
Kassetten ACQVARIA

MASSZEICHNUNG

ACQVARIA 10-20-30-35

1

LEGENDE	
1	Verteilungskasten
2	Kondenswasserablass $\varnothing 10$
3	Wasserauslauf $1 / 22^{\prime \prime}$ Innengewinde gas
4	Wassereinlauf $1 / 2$ " Innengewinde gas
5	Wasserauslauf $¢ 1 / 2^{\prime \prime}$ Innengewinde gas DF
6	Wassereinlauf $1 / 2$ " Innengewinde gas DF
	NG: Das EFFETTO und EFFETTO AirClissi-Modul kann mit den ACQVARIA $60 \times 60 \mathrm{~cm}$ Kassetten kombiniert werden, Abmessungen siehe Seite 87

MASSZEICHNUNG

ACQVARIA i 3-10 kW

PLUS

" GreenTech-Technologie
" $E C$-Motor mit Permanentmagneten für eine präzise und kontinuierliche Steuerung
» Niedrigen Energieverbrauch
" Frischluft mit direkter oder gemischter Zuführung
» Kondensatablasspumpe für Höhenunterschiede bis $0,9 \mathrm{~m}$
» Reduzierte Installations- und Inbetriebnahmezeiten
» Inkorporierbare JONIX-Reinigungssystem

VERFÜGBARE VERSIONEN

Neben den 2 ABS-Gitter mit verstellbaren Finnen gibt es jetzt auch EFFETTO und EFFETTO AirClissi.

EFFETTO, modul für Absaugung und Luftdiffusion mit Coandă-Effekt.
EFFETTO Airclissi, die das Licht mit dem Coandă-Effekt der Luftdiffusion verbindet.

Komfort, Ruhe und Effizienz in perfekter Harmonie!

Die neue Hydronikkassetten-Serie ACQVARIA i mit invertergesteuertem EC-Dauermagnetmotor besteht aus sechs Modellen (10-20-30-40-50-60) für 2-Rohr-Anlagen und fünf Modellen (10-30-35-4060) für 4-Rohr-Anlagen.

Die Konstruktionsweise der Einheit erlaubt die Entwicklung von bis zu 5 kW in der Kühlphase bei Standardzwischendeckenmodulen $600 \times 600 \mathrm{~mm}$, über 10 kW bei Modulen $860 \times 860 \mathrm{~mm}$, bei außergewöhnlich niedrigen Schallpegeln in den Erhaltungsphasen des Umgebungskomforts.
Die bekannten Vorteile der EC-Motoren werden mit der GreenTech -Technologie kombiniert (bei den Modellen 10-20-30-35), die den Inverter direkt in die Lüftungsmotorgruppe integriert.
ACQVARIA i Sie nutzt die gesamte Plattform von MikroprozessorControllern Galletti, MYCOMFORT, EVO und TED10, die eine verfeinerte Regellogik auf der Basis von Lufttemperatur, Luftfeuchtigkeit und Wassertemperatur integrieren.
Die Vorteile liegen in einer größeren Genauigkeit bei der Erreichung und Aufrechterhaltung der gewünschten Komfortbedingungen dank der entsprechenden Modulation der Lüftungsgeschwindigkeit und der Reduzierung der Schallemissionen, die sich an die tatsächliche Wärmelast anpassen.
Der Stromverbrauch liegt um bis zu 75\% niedriger als bei herkömmlichen AC-Motoren mit fester Drehzahl.
Die Einheit in der Zwischendecke enthält alle Komponenten, Wärmetauscher, die Lüftungsmotorgruppe und das Kondensatsam-mel- und Kondensatablassystem. Ihre Struktur ist vorgerüstet für das Einbringen von Primärluft in den Raum, deren Vermischung mit Umluft und die Zuführung der behandelten Luft aus der Kassette in angrenzende Räume.
Das Design und die Farbe RAL9003 oder RAL9010, des Luftansauggitters und des Gitters für die Luftverteilung im Raum garantieren eine optimale Integration in die Zwischendeckenpaneele. Leichter Zugang zum Luftfilter für Reinigungsarbeiten.
Die Einheit kann komplett mit Ventilen, einschließlich Ausgleichsund druckunabhängiger Regelventile geliefert werden, deren Einsatz die Inbetriebnahmezeiten deutlich reduziert.

HAUPTBESTANDTEILE

Struktur

Gefertigt aus verzinktem Stahlblech mit Innenverkleidung aus Polyurethanschaum und Außenverkleidung aus PES beflockt zur Gewährleistung der Wärme- und Schallisolierung. Die Frischluftzufuhr in den Raum kann direkt durch die Einheit erfolgen, da die Anschlüsse für neutrale oder gemischte Luftzufuhr vorgesehen sind. Für den Anschluss an die Versorgungskanäle steht entsprechendes Zubehör zur Verfügung. Am Gerät sind die Systeme zur Verankerung der Einheit an der Decke vorhanden. Die elektrische Verkabelung erfolgt in einem leicht zugänglichen Kasten, was einen leichten Anschluss ermöglicht.

Wärmetauscherbatterie

Aus Kupferrohren und Aluminiumflügeln mit hohem Wirkungsgrad, die im Treibverfahren an den Rohren befestigt sind. Mit mindestens zwei Reihen bei den Modellen für 2-Rohr-Anlagen, ist in der $2+1$ Konfiguration bei den Modellen für 4-Rohr-Anlagen verfügbar. Das Register ist mit manuellen Entlüftungsventilen ausgestattet. Auf Wunsch können Ventile zur Regelung und Ausgleichung des Betriebs der Einheit an das Register angeschlossen werden.

Kondenswassersammel- und -ablasssystem

Unter dem Wärmetauscher ist das Hauptbecken aus Polystyren angebracht, das in Profile eingesetz tist, die für die Verteilung der Luft in die Umgebung optimiert sind. Die Kondensatablasspumpe ist in der Lage, das Kondensat bis auf eine Höhe von 0,9 m über den Punkt zu pumpen, an dem es aus der Maschine austritt. Der Betrieb der Pumpe wird durch einen Schwimmer mit drei Auslösungsstufen gesteuert, der sie aktiviert und stoppt und bei Überschreitung des kritischen Niveaus den Betrieb des Kastenlüfters stoppt und das Wasserventil schließt. Die Lieferung wird durch das zusätzliche Sammelbecken für das von den Regelventilen kommende Kondenswasser vervollständigt.

Steuerungsweise

Galletti erneuert die Steuerungsweisen für den Gebläsekonvektor indem sie die neue, EVO Benutzerschnittstelle und das NAVEL-Geräts die Verwaltung mittels Smartphone auf der Plattform EVO-2TOUCH integriert.

Lüftungsmotoreinheit

Invertergesteuerter EC-Dauermagnetelektromotor (in die Greentech-Modelle integriert), direkt verbunden mit einem Zentrifugallüfter mit rückwärtsgekrümmten Schaufeln und einem für die Betriebsstabilität bei allen Drehzahlen optimierten Profil.

Luftfilter

Regenerierbarer Filter aus Polypropylenwaben, leicht abnehmbar für Wartungsarbeiten.

JONIX Non Thermal Plasma Technology

Hygienisiert die Räume durch Nutzung von Lufteigenschaften. Diese werden durch die Energie aktiviert, die von den speziellen NTP-Generatoren erzeugt wird (von JONIX patentiert). Die auf diese Weise aktivierte Luft enthält,angeregte" Molekülen (reactive species), die einen Angriff auf Schadstoffmoleküle (die sie zerstören) und Mikroorganismen ausführen. Letztere schädigen sie strukturell und funktionell in einer Weise, dass sie inaktiv werden (biozide und viruzide Wirkung). Die Jonix- Geräte vom Typ „Non Thermal Plasma Technology" wirken bei richtiger Verwendung und Bemessung gegen viele krankmachende Stoffe, beispielsweise gegen Viren, Bakterien, Schimmelpilze, Allergene, füchtige chemische Verbindungen und auch gegen alle Gerüche. Sie tragen auf diese Weise dazu bei, dass sich Krankheiten nicht über die Luft verbreiten (Covid-19 eingeschlossen).

ZUBEHÖR	
Elektronische Mikroprozessorsteuertafeln mit display	Ventile
DIST Distanzhalter Steuerung MYCOMFORT zur Wandmontage	PIC-AQ 2-Wege-Ventile,PRESSURE INDEPENDENT
EVO-2-TOUCH Touchscreen-Bedienoberfläche 2,8"für EVO-Steuerung	V2-AQ 2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung,
EVOBOARD Leistungsplatine fir Steuerung EVO	Hydraulik-Kits, für modelle mit 1 oder 2 Wärmetauschern
EVODISP Anwerderschnittstelle mit Display zur EVO-Steuerung	V3-AQ 3-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung,
EYNAVEL Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone	S-AQ Hydraulik-Kits, für modelle mit 1 oder 2 Wärmetauschern
MCLE Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display	Plenum und saug- und auslassanschliusse und verkleidung
MCSUE Feuchtigkeitsfihler fiur Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO	BAR Spigot für gemischte Frischluftzufuhr
MCSWE Wasserfühler fuir Steuerungen MYCOMFORT, EVO	MOB Verkleidung für kassetten
Elektronische Mikroprozessorsteuertafeln	PAR Frischluftansaugkammer ungemisht
TED 10 Elektronische Steuerung zur Regelung des Liutters Inverter BLDC und 1 oder 2 Ventile ON/0FF 230V	PMAA Plenum für Luftversorgung
TED SWA Luft- oder Wassertemperaturfühler fuir TED-Steuerungen	Reinigungssystem
	JONIX-on board Reinigungsmodul JoNX Xur Installation am Gerät

Kassetten ACQVARIA i

TECHNISCHE NENNDATEN 2 ROHRE

ACQVARIA			AQ10Q1B0				AQ20QIBO				AQ30QIBO			
				Min	med	Max		Min	med	Max		Min	med	Max
Velindigkeit			1	2	3	4	1	2	3	4	1	2	3	4
Eingangsspannung		V	2,00	3,50	4,50	6,00	2,00	4,00	5,50	8,00	2,00	4,00	6,50	10,0
Gesamtkühlleistung	(1)(E)	kW	1,33	1,93	2,24	2,63	1,49	2,68	3,40	4,39	1,54	2,76	3,95	5,23
Sensible Kühlleistung	(1)(E)	kW	0,99	1,51	1,81	2,20	1,03	1,94	2,54	3,41	1,05	1,98	2,96	4,11
Klasse FCEER	(E)		A											
Wasserdurchsatz	(1)	1/h	229	331	385	452	256	460	584	754	264	473	678	898
Druckverlust	(1)(E)	kPa	2	4	5	7	3	10	15	23	3	9	18	29
Heizleistung	(2)(E)	kW	1,49	2,27	2,70	3,25	1,42	2,69	3,48	4,58	1,47	2,77	4,09	5,55
Klasse FCCOP	(E)													
Wasserdurchsatz	(2)	I/h	258	395	470	565	248	468	605	797	255	481	711	965
Druckverlust	(2)(E)	kPa	2	5	6	9	3	8	13	21	3	8	16	27
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	212	397	454	583	187	397	551	796	190	397	650	980
Leistungsaufnahme	(E)	W	7	7	10	18	7	9	15	37	7	9	22	67
Globale Schallleistung	(3)(E)	$d B(A)$	28	35	40	48	28	37	44	54	29	38	49	61
ACQVARIA i			AQ40QIBO				AQ50QIBO				AQ60Q1B0			
			Min	med	Max			Min	med	Max		Min	med	Max
Velindigkeit			1	2	3	4	1	2	3	4	1	2	3	4
Eingangsspannung		V	2,00	3,00	5,00	10,0	2,00	3,00	5,00	8,00	2,00	4,00	6,50	10,0
Gesamtkühlleistung	(1)(E)	kW	4,80	5,36	6,39	8,27	5,17	5,92	7,26	9,01	5,26	6,70	8,37	10,5
Sensible Kühlleistung	(1)(E)	kW	3,80	3,92	4,75	6,35	3,66	4,24	5,31	6,78	3,69	4,80	6,15	7,97
Klasse FCEER	(E)		A				A				B			
Wasserdurchsatz	(1)	1/h	833	921	1097	1420	888	1015	1245	1545	902	1150	1436	1805
Druckverlust	(1)(E)	kPa	12	16	21	34	10	13	18	27	10	15	22	33
Heizleistung	(2)(E)	kW	5,50	6,00	7,30	9,74	5,43	6,33	7,99	10,2	5,48	7,23	9,35	12,2
Klasse FCCOP	(E)		A				B				B			
Wasserdurchsatz	(2)	1/h	953	1043	1269	1692	944	1100	1390	1779	952	1257	1625	2116
Druckverlust	(2)(E)	kPa	3	16	23	38	9	12	19	29	9	15	23	36
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	843	978	1276	1916	724	864	1143	1554	710	976	1321	1831
Leistungsaufnahme	(E)	W	14	18	36	150	14	18	36	93	14	25	60	150
Globale Schallleistung	(3)(E)	$d B(A)$	35	39	45	57	35	39	48	53	36	43	50	58

[^8]TECHNISCHE NENNDATEN 4 ROHRE

ACQVARIA i			AQ10QIBB				AQ30Q1BB				A035@1BB			
				Min	med	Max		Min	med	Max		Min	med	Max
Velindigkeit			1	2	3	4	1	2	3	4	1	2	3	4
Eingangsspannung		V	2,00	3,50	4,50	6,00	2,00	4,00	6,50	10,0	2,00	4,00	6,50	10,0
Gesamtkühlleistung	(1)(E)	kW	1,24	1,85	2,18	2,60	1,55	2,62	3,53	4,41	2,34	3,03	3,83	5,01
Sensible Kühlleistung	(1)(E)	kW	0,92	1,46	1,79	2,23	1,24	2,10	2,74	3,58	1,49	2,17	2,79	3,98
Klasse FCEER DF	(E)		A											
Wasserdurchsatz	(E)	I/h	213	317	374	447	267	451	607	759	403	521	659	862
Druckverlust	(E)	kPa	2	4	6	8	5	7	12	25	4	6	10	17
Heizleistung	(2)(E)	kW	2,03	2,90	3,34	3,86	2,35	3,73	4,38	5,51	1,92	2,39	2,88	3,43
Klasse FCCOP	(E)		A				B				B			
Wasserdurchsatz	(2)	1/h	178	254	292	338	202	321	377	474	165	206	248	295
Druckverlust	(2)(E)	kPa	3	6	8	11	3	4	8	11	4	5	10	16
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	199	356	460	610	195	395	643	982	195	395	643	982
Leistungsaufnahme	(E)	W	7	7	10	18	7	9	22	67	7	9	22	67
Globale Schalleistung	(3)(E)	dB(A)	28	35	40	48	29	38	49	61	29	38	49	61

ACQVARIA			AQ40QIBB				A060Q1BB			
			Min	med	Max			Min	med	Max
Velindigkeit			1	2	3	4	1	2	3	4
Eingangsspannung		V	2,00	3,00	5,00	10,0	2,00	4,00	6,50	10,0
Gesamtkühlleistung	(1)(E)	kW	4,61	5,34	6,61	9,07	4,70	6,09	7,62	9,50
Sensible Kühlleistung	(1)(E)	kW	3,34	3,94	5,03	7,29	3,37	4,50	5,82	7,56
Klasse FCEER DF	(E)		A				B			
Wasserdurchsatz	(E)	l/h	792	917	1135	1555	806	1045	1307	1631
Druckverlust	(E)	kPa	12	15	22	37	11	17	25	37
Heizleistung	(2)(E)	kW	7,01	7,96	9,53	12,3	7,15	8,96	10,8	12,9
Klasse FCCOP	(E)		A				B			
Wasserdurchsatz	(2)	1/h	613	697	834	1078	626	785	947	1133
Druckverlust	(2)(E)	kPa	11	14	19	30	12	18	24	33
Nennluftdurchsatz		m/h	687	841	1137	1823	673	956	1314	1823
Leistungsaufnahme	(E)	W	14	18	36	150	14	25	60	150
Globale Schallleistung	(3)(E)	dB(A)	35	39	45	57	36	43	50	58

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(3) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENTZertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Kassetten ACQVARIA i

MASSZEICHNUNG

ACQVARIA i 10-20-30 (für 2 Röhren) - 10-30-35 (für 4 Röhren)

1

LEGENDE	
1	Durchgang Stromkabel
2	Kondenswasserablass $\varnothing 10$
3	Wasserauslauf $\varnothing 1 / 2^{\prime \prime}$ Innengewinde gas
4	Wassereinlauf $\emptyset 1 / 2^{\prime \prime}$ Innengewinde gas
5	Wasserauslauf $\varnothing 1 / 2^{\prime \prime}$ Innengewinde gas DF
6	Wassereinlauf $\emptyset 1 / 2^{\prime \prime}$ Innengewinde gas DF
ANMERKUNG: Das EFFETTO und EFFETTO AirClissi-Modul kann mit den ACQVARIA i $60 \times 60 \mathrm{~cm}$	
Kassetten kombiniert werden, Abmessungen siehe Seite 87	

MASSZEICHNUNG

ACQVARIA i 40-50-60 (Größe 50 nicht für die Doppelregisterausführung verfügbar)

wos.	${ }_{4}$
hasmeo	${ }^{38+5}$
Manem	${ }^{3+5}$
	${ }_{\substack{42+5 \\ 8+5}}^{4}$

LEGENDE	
1	Verteilungskasten
2	Kondenswasserablass $\varnothing 10$
3	Wasserauslauf $¢ 3 / 44^{\prime \prime}$ Innengewinde gas
4	Wassereinlauf $\sqrt[3]{ } / 4^{\text {" }}$ Innengewinde gas
5	Wassereinlauf $¢ 1 / 2^{\prime \prime}$ Innengewinde gas DF
6	Wasserauslauf $1 / 22^{\text {" }}$ Innengewinde gas DF

Kanalisierbare Einheiten mit mittlerer Förderhöhe

 DUCTIMAX 2-8 kW

> Leistungen und Kompaktheit bei der Einbauinstallation in der Decke.

Die kanalisierbare Einheit DUCTIMAX wurde für die Klimatisierung von Umgebungen entwickelt, in denen eine leistungstarke Einheit mit mittlerer Förderhöhe und mit niedrigem Raumbedarf erforderlich ist. Das Sortiment deckt einen Luftdurchsatzbereich von 300 bis $1200 \mathrm{~m} 3 / \mathrm{h}$ und besteht aus 12 Modellen. Die Wärmetauschbatterie erlaubt die Nutzung von DUCTIMAX unter den verschiedensten Einsatzbedingungen. Die tragende Struktur enthält eine Batterie mit 3 oder 4 Reihen, die mit einem zusätzlichen Wärmetauscher mit 1 oder 2 (Auf Anfrage) Reihen kombiniert werden kann, um auch bei niedrigen Temperaturdifferentialen ausgezeichnete Leistungen zu erhalten. Die Batterien können für zentralisierte Anwendungen wie das District Cooling optimiert werden. DUCTIMAX wurde für die horizontale Installation an der Decke entwickelt. Das HauptKondenswassersammelbecken ist innerhalb der Einheit positioniert und weist gegenüber dem Ablass einen leichten Überdruck auf, um das Ablaufen des Kondenswassers zu fördern.
Es steht ein umfangreiches Angebot an Steuereinheiten zur Installation an der Wand elektromechanischen Typs und mit Mikroprozessor und Display zur Verfügung.
Zur Integration des hydronischen Betriebs werden elektrische Heizwiderstände komplett mit Sicherheitsvorrichtungen angeboten. Die Wirkung des Lufffilters G3 oder G4 kann mit dem Luftionisierungssystem kombiniert werden.

PLUS

" Motor mit mehreren Geschwindigkeiten
" Batterie bis 4 Reihen
» Umkehrbare Wasseranschlüsse
» Zentrifugallüfter aus ABS
» Inkorporierbare JONIX-Reinigungssystem

Die Struktur erlaubt es, eine umfangreiche Zubehörpalette an der Ansaugung und am Auslass zu installieren, bis die optimale Konfiguration der Einheit erhalten wird.

VERFÜGBARE VERSIONEN

DMXXDOLO...A	Einheit für Anlagen mit 2 Rohren
DMXXDOLL...A	Einheit für Anlagen mit 4 Rohren, ausgestattet mit zu- sätzlicher Batterie mit 1 Reihe für Heißwasserkreislauf
Auf Anfrage ist ein Luftreinigungssystem in spezieller Mischkammer verfügbar.	

Auf Anfrage ist ein Luftreinigungssystem in spezieller Mischkammer verfügbar.

DMXXDOLM...A

Einheit für Anlagen mit 4 Rohren, ausgestattet mit zusätzlicher Batterie mit 2 Reihen für Heißwasserkreislauf
(Auf Anfrage)

HAUPTBESTANDTEILE

Struktur

Struktur aus verzinktem Stahlblech, wärme- und schallisoliert mit selbstlöschenden Tafeln Klasse 1. Reduzierte Höhe der Einheit zwecks bequemer Installation in horizontaler Position an der Zwischendecke. Die Struktur enthält das Kondenswassersammel- und -ablassbecken.

Wärmetauscherbatterie

Wärmetauschbatterien mit hohem Wirkungsgrad mit 3 oder 4 Reihen, aus Kupferrohren und Aluminiumrippen, die mittels mechanischer Dehnung an den Rohren befestigt sind. Ausgestattet mit Verteilern aus Messing und Entlüftungsventilen. Die normalerweise mit nach links weisenden Anschlüssen montierte Batterie kann um 180° gedreht werden. Auf Anfrage stehen für District-Cooling-Anwendungen optimierte Batterien mit hohem Wirkungsgrad zur Verfügung.

Elektromotor

Asynchroner Einphasenstrommotor mit mehreren Geschwindigkeiten, mit permanent eingeschaltetem Verflüssiger und Überlastungsschutz, auf schwingungsdämpfenden Halterungen montiert.

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, gefertigt aus ABS oder Aluminium, mit statisch und dynamisch ausgewuchteten vorderen Schaufeln, direkt an den Elektromotor gekuppelt.

Luftilter

Regenerierbarer Lufffilter aus Acrylfaser, Filtrierklasse G2, G3 oder G4, an der Luftansaugung angebracht, von unten herausziehbar
KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausführung und des Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfigurationsbeispiel abgebildet.

Ausführung:	Bereiche	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	9	10	11
DM44		D	L	L	0	1	E	0	0	3	0	A

KONFIGURATOR

1 Ausführung:
D Kanalausührung
2 Motor
0 Motoren mit 3 Geschwindigkeiten
1 Motoren mit 7 Geschwindigkeiten
I BLDC-Motor
P 6-stufiger Motor
3 Anschlussseite des Hauptwärmetauschers
L Wasseranschlüsse auf der linken Seite
R Wasseranschlüsse auf der rechten Seite
4 Anschlussseite
0 Nichtvorhanden
E RE-Heizelement
L Wasseranschlüsse auf der linken Seite
R Wasseranschluisse auf der rechten Seite Ventile
0 Nicht vorhanden
1 VKS - 3-Wege-Ventil- 230 V - ON/OFF - komplettes Hydraulikanbindungskit
2 KV-2-Wege-Ventil-230V-ON/OFF
3 VKMS - 3 -Wege-Ventil-24V - MODULIEREND- komplettes Hydraulikanbindungskit
4 KVM-2-Wege-Ventil-24V-MODULIEREND
5 VKS24-3-Wege-Ventil -24V-ON/OFF - komplettes Hydraulikanbindungskit
6 KV24-2-Wege-Ventil-24V-ON/OFF
Steuertafel

Nicht vorhanden
EVOBOARD - Schnittstelle
Schnittstelle EVOBOARD + WI-FI-ModuI NAVEL

7 Fühler

Nicht vorhanden
SA - Externer Fühler für Luff für MYCOMFORT, LED503 und EVO
SW - Wasserfühler für MYCOMFORT, LED503 und EVO
SU - Feuchtefühler für MYCOMFORT und EVO
SA+SW - Externer Fühler für Luft und Wasser für MYCOMFORT, LED503 und EVO
SA+SU - Externer Fühler für Luft und Feuchte für MYCOMFORT und EVO
SA+SU+SW- Externer Fühler für Luft, Wasser und Feuchte für ${ }^{\text {r COM }}$ COORT und EVO
SA - Fernfühler für Luff für TED
SW - Wasserfühler für TED
SA + SW - Luft- und Wasserfühler für TED
Verschiedenes Zubehör
Nicht vorhanden
JONIX
BH-Zusätzliche Kondensatwanne
9 Filter
2 G2 Lufffilter
3 G3 Lufffilter
10 Release
00
A A

ZUBEHÖR

Elektromechanische Steuertafeln	
CD	Geshwindigkeitsumschalterzur Unterputzwandmontage
CDE	Geschwindigkeitsumschalter zur Wandmontage
TC	Thermostat für niedrigste Wassertemperatur in Betriebsart Heizen ($42^{\circ} \mathrm{C}$)
Elektronische Mikroprozessorsteuertafeln mit display	
COB	Platte für LED503, Farbe Schwarz B (RAL 9005)
COG	Plate fuir LED503, Farbe Grau G (RAL 7031)
COW	Platte für LED503, Farbe Weiß W (RAL 9003)
DIST	Distanzhalter Steuerung MYCOMFORT zur Wandmontage
EVO-2-TOUCH	Touchscreen-Bedienoberfläche 2,8"für EVO-Steuerung
EVOBOARD	Leistungsplatine für Steuerung EVO
EVODISP	Anwerderschnittstelle mit Display zur EVO-Steuerung
EYNAVEL	Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone
LED503	Elektronische Steuertafel mit Display zum Einbauen in die Wand LED 503
MCBE	Mikroprozessorsteuerung mit MYCOMFORT BASE Display
MCLE	Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display
MCME	Mikroprozessorsteuerung mit MYCOMFORT MEDIUM-Display
MCSUE	Feuchtigkeitstühler für Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO
MCSWE	Wasserfühler fuir Steuerungen MYCOMFORT, EVO
Elektronische Mikroprozessorsteuertafeln	
TED 2T	Elektronisch Steuerung zur Regelung des Lüfters und 1 Ventil ON/OFF 230V
TED 4T	Elektronische Steuerung zur Regelung des Lifters und 2 Ventile ON/OFF 230V
TED SWA	Luft- oder Wassertemperaurfiuhler fuir TED-Steuerungen
Leistungsschnittstelle und Steuerungen für Schieber	
	Leistungsschnittstelle für den Parallelanschluss von max. 4 Ventilkonvektoren mit einer einzigen Steuerung.
Elektrische Widerstände	
RE	Heizwiderstand mit Montagesatz, Relaiskasten und Sicherheitsvorrichtungen
Luftausblasgitter und Luftansauggitter	
GA	Luftansauggitter aus Aluminium, mit Rahmen
GM	Luftausblasgitter aus Aluminium, mit doppelten Rang, mit Gegenrahmen
Ventile	
V2VDF+STD	2-Wege-Ventile, EIN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydralik-Kits, für Hauptbatterie und Zusatzbatterie

Kanalisierbare Einheit DUCTIMAX

TECHNISCHE NENNDATEN 2 ROHRE

DUCTIMAX			13			14			23			24		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			2,5,7			2,5,7			1,5,7			1,5,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	246	276	109	246	276	171	275	341	171	275	341
Statische Nutzoforderhöhe	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Leistungsaufnahme	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Gesamtkühlleistung	(1)(E)	kW	0,92	1,72	1,90	0,95	1,91	2,11	1,27	1,90	2,27	1,36	2,11	2,53
Sensible Kühlleistung	(1)(E)	kW	0,61	1,21	1,34	0,63	1,30	1,43	0,89	1,34	1,59	0,93	1,44	1,72
Klasse FCEER	(E)		D											
Wasserdurchsatz	(2)	1/h	160	306	340	167	337	375	222	339	408	239	374	453
Druckverlust	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Heizleistung	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	1/h	153	315	346	158	345	384	231	345	408	244	382	466
Druckverlust	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Standardatterie - Anzahl Reihen			3			4			3			4		
Globale Schallleistung	(4)	dB(A)	32	49	29	28	49	52	39	50	54	39	50	54
Abgestrahle Schalleistung + Luftansaugung	(4)(E)	dB(A)	30	47	50	26	47	50	37	48	52	37	48	52
Schallleistung Luftauslass	(4)(E)	dB(A)	29	46	49	25	46	49	37	47	51	36	47	51
DUCTIMAX			33			34			43			44		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			1,6,7			1,6,7			1,4,7			1,4,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	360	402	195	360	402	305	532	652	305	532	652
Statische Nutzörderhöhe	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Leistungsaufnahme	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Gesamtkühlleistung	(1)(E)	kW	1,44	2,28	2,51	1,57	2,69	2,96	1,92	3,17	3,68	2,29	3,78	4,45
Sensible Kühlleistung	(1)(E)	kW	1,01	1,69	1,86	1,07	1,86	2,03	1,42	2,39	2,81	1,57	2,61	3,08
Klasse FCEER	(E)		D			D			E			D		
Wasserdurchsatz	(2)	I/h	252	406	449	274	476	527	343	568	664	407	673	798
Druckverlust	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Heizleistung	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	1/h	272	470	515	276	488	538	408	644	749	419	687	814
Druckverlust	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Standardbatterie - Anzahl Reihen			3			4			3			4		
Globale Schalleistung	(4)	dB(A)	39	50	54	39	50	54	38	52	58	38	52	58
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Schallleistung Luftauslass	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

DUCTIMAX			53			54			63			64		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			1,6,7			1,6,7			5,6,7			5,6,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Statische Nutzförderhöhe	(E)	Pa	12	50	61	12	50	61	40	50	53	40	50	60
Leistungsaufnahme	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Gesamtkühlleistung	(1)(E)	kW	2,22	4,22	4,63	2,44	4,79	5,23	6,15	6,66	7,21	6,91	7,49	8,12
Sensible Kühlleistung	(1)(E)	kW	1,60	3,09	3,39	1,70	3,33	3,64	4,51	4,88	5,29	4,83	5,23	5,67
Klasse FCEER	(E)		D											
Wasserdurchsatz	(2)	1/h	394	753	828	432	850	930	1095	1191	1295	1225	1333	1448
Druckverlust	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Heizleistung	(3)(E)	kW	2,54	4,76	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	1/h	442	827	898	457	875	955	1162	1256	1357	1248	1356	1472
Druckverlust	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	20	23
Standardbatterie - Anzahl Reihen			3			4			3			4		
Globale Schallleistung	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Schalleistung Luftauslass	(4)(E)	dB(A)	35	52	55	35	53	55	58	60	66	58	60	66

[^9]
TECHNISCHE NENNDATEN 4 ROHRE

DUCTIMAX			13			14			23			24		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			2,5,7			2,5,7			1,5,7			1,5,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	243	270	109	243	270	170	272	336	170	272	336
Statische Nutzförderhöhe	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Leistungsaufnahme	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Gesamtkühlleistung	(1)(E)	kW	0,92	1,70	1,86	0,95	1,88	2,06	1,26	1,88	2,24	1,35	2,09	2,49
Sensible Kühlleistung	(1)(E)	kW	0,61	1,20	1,31	0,63	1,28	1,40	0,88	1,33	1,57	0,92	1,42	1,70
Klasse FCEER	(E)		D											
Wasserdurchsatz	(2)	I/h	160	302	333	167	334	368	221	335	404	238	370	447
Druckverlust	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Heizleistung	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	//h	100	169	180	100	169	180	136	181	204	136	181	204
Druckverlust	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Batterie DF-Anzahl Reihen			1			1			1			1		
Globale Schallleistung	(4)	$d B(A)$	32	49	52	28	49	52	39	50	54	39	50	54
Abgestrahlte Schalleistung + Luftansaugung	(4)(E)	dB(A)	30	47	50	26	47	50	37	48	52	37	48	52
Schallleistung + Luftauslass	(4)(E)	$d B(A)$	29	46	49	25	46	49	36	47	51	36	47	51
ductimax			33			34			43			44		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			1,6,7			1,6,7			1,4,7			1,4,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	357	398	195	357	398	302	524	642	302	524	642
Statische Nutzförderhöhe	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Leistungsaufnahme	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Gesamtkühlleistung	(1)(E)	kW	1,44	2,26	2,48	1,57	2,67	2,93	1,89	3,13	3,64	2,27	3,73	4,40
Sensible Kühlleistung	(1)(E)	kW	1,01	1,68	1,84	1,07	1,84	2,01	1,41	2,35	2,78	1,56	2,57	3,04
Klasse FCEER	(E)		D			D			E			D		
Wasserdurchsatz	(2)	I/h	252	402	445	274	473	522	339	562	656	403	664	788
Druckverlust	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Heizleistung	(3)(E)	kW	2,09	3,09	3,29	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Klasse FCCOP	(E)		C			C			D			D		
Wasserdurchsatz	(3)	1/h	183	271	288	183	271	288	245	334	371	245	334	371
Druckverlust	(3)(E)	kPa	2	3	4	2	3	4	3	5	6	3	5	6
Batterie DF-Anzahl Reihen			1			1			1			1		
Globale Schallleistung	(4)	dB(A)	36	47	51	36	47	51	38	52	58	38	52	58
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Schallleistung + Luftauslass	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

DUCTIMAX			53			54			63			64		
Velindigkeit			Min	med	Max									
Zertifizierte VELindigkeit			1,6,7			1,6,7			5,6,7			5,6,7		
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	683	755	333	683	755	1050	1163	1289	1050	1163	1289
Statische Nutzforrderhöhe	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Leistungsaufnahme	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Gesamtkühlleistung	(1)(E)	kW	2,22	4,20	4,60	2,44	4,76	5,20	6,15	6,66	7,21	6,91	7,49	8,12
Sensible Kühlleistung	(1)(E)	kW	1,60	3,07	3,36	1,70	3,31	3,62	4,51	4,88	5,29	4,83	5,23	5,67
Klasse FCEER	(E)		D											
Wasserdurchsatz	(2)	I/h	394	749	822	432	846	925	1095	1191	1295	1225	1333	1448
Druckverlust	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Heizleistung	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Klasse FCCOP	(E)		D											
Wasserdurchsatz	(3)	1/h	297	452	477	297	452	477	562	590	618	562	590	618
Druckverlust	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Batterie DF - Anzahl Reihen			1			1			1			1		
Globale Schallleistung	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Schallleistung + Luftauslass	(4)(E)	$d B(A)$	35	52	55	35	52	55	58	60	66	58	60	66

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Kanalisierbare Einheit DUCTIMAX

MASSZEICHNUNG

dUCTIMAX 1-4

DUCTIMAX	13	14	23	24	33	34	43	44	
ON/OFF Motor	x	x	X	X	x	x	x	x	
Invertergesteuerter Motor	X	x	x	x	x	x	x	x	
$x=$ verfügbar									
DUCTIMAX		$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{C}}$	D mm	E			3 mm	$\begin{aligned} & \circ \\ & \mathrm{kg} \end{aligned}$
13-14		758	677	648	707		1/2	17	24
23-24		758	677	648	707		1/2	17	25
33-34		968	887	858	917		1/2	17	33
43-44		968	887	858	917		1/2	17	36

MASSZEICHNUNG

Kanalisierbare Einheiten mit mittlerer Förderhöhe mit Motor EC

DUCTIMAXi2-8 kW

JONIX
 pure living

Modulation und Leistung zum Einbau in die Decke

DUCTIMAX i ist die Vervollständigung der Palette unter Anwendung der Technologie EC Inverter für Elektromotoren. Zu den Besonderheiten von DUCTIMAX gesellen sich die Vorteile der BrushlessTechnologie bezüglich der Verringerung des Stromverbrauchs und der damit verbundenen Senkung des CO_{2}-Ausstoßes, eine bessere Betriebsvielseitigkeit dank der Modulation des Luftdurchsatzes und ein höherer thermo-hygrometrischer und akustischer Komfort.
Das Angebot besteht aus 12 Modellen, die einen Luftdurchsatzbereich von 300 bis $1200 \mathrm{~m}^{3} / \mathrm{h}$ decken.
Die kontinuierliche Modulierung des Luftdurchsatzes und der Einsatzvon Wärmetauschern mithohemWirkungsgrad ermöglicht den Betrieb auch bei geringen Luft/Wasser-Temperaturunterschieden. Die Wärmetauscher können ferner hinsichtlich ihren Kreislaufs für zentralisierte Anwendungen wie das District Cooling optimiert werden.
Der Betrieb wird durch Wandsteuertafeln mit Mikroprozessor und Display wie die Modelle MYCOMFORT LARGE und EVO gesteuert. Die Wirkung des Luftfilters G3 oder G4 kann mit dem als Zubehör erhältlichen Luftionisierungssystem kombiniert werden.

PLUS

" Permanentmagnetmotor EC
" Niedriger Stromverbrauch
» Leichte Lufteinstellung
» Batterie bis 4 Reihen
» Kompakte Abmessungen
" Umkehrbare Wasseranschlüsse
» Umfangreiches Zubehörsortiment
» Inkorporierbare JONIX-Reinigungssystem

Der invertergesteuerte EC-Motor bietet nicht nur einen großen Vorteil in Bezug auf Energieeffizienz, sondern gewährleistet auch eine flexible Installation und reduziert die Lufteinstellungszeiten dank der durchgehenden Modulierung des Luftdurchsatzes.

VERFÜGBARE VERSIONEN

DMXXDILO...A Einheit für Anlagen mit 2 Rohren
DMXXDILL...A Einheit für Anlagen mit 4 Rohren, ausgestattet mit zusätzil cher Batterie mit 1 Reihe für Heißwasserkreislauf

Auf Anfrage ist ein Luftreinigungssystem in spezieller Mischkammer verfügbar.

DMXXDILM...A Einheit für Anlagen mit 4 Rohren, ausgestattet mit zusätzlicher Batterie mit 2 Reihen für Heißwasserkreislauf
(Auf Anfrage)

HAUPTBESTANDTEILE

Struktur

Struktur aus verzinktem Stahlblech, wärme- und schallisoliert mit selbstöschenden Tafeln Klasse 1. Reduzierte Höhe der Einheit zwecks bequemer Installation in horizontaler Position an der Zwischendecke. Die Struktur enthält das Kondenswassersammel- und -ablassbecken. Das Haupt-Kondenswassersammelbecken ist innerhalb der Einheit positioniert und weist gegenüber dem Ablass einen leichten Überdruck auf, um das Ablaufen des Kondenswassers zu fördern.

EC-Elektromotor

Permanentmagnetmotor Die Einheit ist mit Inverterkarte zur Kontrolle des Motors ausgestattet, die eine präzise Einstellung der Drehgeschwindigkeit des Motors erlaubt (Steuersignal 0-10V),

Ventilatoren

Zentrifugallüfter mit Doppelansaugung, gefertigt aus ABS oder Aluminium, mit statisch und dynamisch ausgewuchteten vorderen Schaufeln, direkt an den Elektromotor gekuppelt.

Luftifiter

Regenerierbarer Lufffilter aus Acrylfaser, Filtrierklasse G2 oder G3, an der Luftansaugung angebracht, von unten herausziehbar.

ZUBEHÖR		
Eleltronishe Mikroporessossteuerataelen mitdidiplay		
	V3ssid	
Evosaro Lesitumplatine firsereung EVO	VPIC	2-Wege-Veratile persure inde
Evooosp Amwedershintestele mitisplay yur EV-Steu		
	Plenum und saug- und auslassanschlüsse und verkleidung MAF90 Vorderes Ansaugmodul mit flachem Luftfilter, Klasse G3	
	MaFO	Suummodul mitgevellen file, XXase 64
	Matroso	
	Paf	Vordee Saug-Msshhamme,
	PMA	
	Pmac	
	R90	
	R90¢	
	${ }^{\text {RD }}$	
Luftausblasgitter und lutanamuggitter	Verindungssclaüche und verschlusstopen	
Ventile	tifa	
	${ }^{\text {trm }}$	
	Käster lutausasas und dansuayung	
V2vSTD \quad 2-Wege-Ventile ENWALS- oder modulierende-S	${ }_{\text {c }}(\mathrm{A}$	

Kanalisierbare Einheit DUCTIMAX i

TECHNISCHE NENNDATEN 2 ROHRE

DUCTIMAX i			13			14			23			24		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	2,90	8,00	9,00	2,90	8,00	9,00	4,30	7,50	8,40	4,30	7,50	8,40
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	246	276	109	246	276	171	275	341	171	275	341
Statische Nutzforrderhöhe	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Leistungsaufnahme	(E)	W	6	25	33	6	25	33	10	24	39	10	24	39
Gesamtkühlleistung	(1)(E)	kW	0,93	1,76	1,95	0,96	1,92	2,16	1,29	1,95	2,34	1,38	2,16	2,60
Sensible Kühlleistung	(1)(E)	kW	0,62	1,25	1,39	0,64	1,34	1,48	0,91	1,39	1,66	0,95	1,49	1,79
Klasse FCEER	(E)		A											
Wasserdurchsatz	(2)	1/h	161	306	340	167	337	375	222	339	408	239	374	453
Druckverlust	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Heizleistung	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Klasse FCCOP	(E)		A											
Wasserdurchsatz	(3)	I/h	153	315	346	158	345	384	231	345	408	244	382	466
Druckverlust	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Standardatterie - Anzahl Reihen			3			4			3			4		
Globale Schallleistung	(4)	$d B(A)$	28	49	52	28	49	52	39	50	54	39	50	54
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	$d B(A)$	26	47	50	26	47	50	37	48	52	37	48	52
Schallleistung Luftauslass	(4)(E)	dB(A)	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i			33			34			43			44		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	360	402	195	360	402	305	532	652	305	532	652
Statische Nutzförderhöhe	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Leistungsaufnahme	(E)	W	10	26	35	10	26	35	22	51	77	22	51	77
Gesamtkühlleistung	(1)(E)	kW	1,46	2,33	2,59	1,59	2,74	3,04	1,98	3,26	3,79	2,35	3,87	4,56
Sensible Kühlleistung	(1)(E)	kW	1,03	1,74	1,94	1,09	1,91	2,11	1,48	2,48	2,92	1,63	2,70	3,19
Klasse FCEER	(E)		A			A			B			A		
Wasserdurchsatz	(2)	I/h	252	406	449	274	476	527	343	568	664	407	673	798
Druckverlust	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Heizleistung	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Klasse FCCOP	(E)		A											
Wasserdurchsatz	(3)	I/h	272	470	515	276	488	538	408	644	749	419	687	814
Druckverlust	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Standardbatterie - Anzahl Reihen			3			4			3			4		
Globale Schallleistung	(4)	$d B(A)$	39	50	54	39	50	54	38	52	58	38	52	58
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Schalleistung Luftauslass	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

(1) Wassertemperatur $7^{\circ} / / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Fuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß ISO 3741 und ISO 3742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 2 ROHRE

DUCTIMAX			53			54			63			64		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Statische Nutzörderhöhe	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Leistungsaufnahme	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Gesamtkühlleistung	(1)(E)	kW	2,29	4,34	4,75	2,51	4,91	5,35	6,28	6,81	7,38	7,04	7,64	8,28
Sensible Kühlleistung	(1)(E)	kW	1,67	3,21	3,51	1,77	3,45	3,76	4,64	5,03	5,46	4,96	5,38	5,84
Klasse FCEER	(E)		A			A			C			B		
Wasserdurchsatz	(2)	I/h	394	753	828	432	850	930	1094	1190	1295	1225	1332	1448
Druckverlust	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Heizleistung	(3)(E)	kW	2,54	4,74	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Klasse FCCOP	(E)		A			A			B			B		
Wasserdurchsatz	(3)	1/h	441	827	898	457	875	955	1162	1256	1356	1248	1355	1471
Druckverlust	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	19	22
Standardbatterie - Anzahl Reihen			3			4			3			4		
Globale Schallleistung	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Schallleistung Luftauslass	(4)(E)	$d B(A)$	35	52	55	35	52	55	58	60	66	58	60	66

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel $(47 \%$ relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Kanalisierbare Einheit DUCTIMAX i

TECHNISCHE NENNDATEN 4 ROHRE

DUCTIMAX i			13			14			23			24		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	2,90	7,90	8,90	2,90	7,90	8,90	4,50	7,30	8,90	4,50	7,30	8,90
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	243	270	109	243	270	170	272	336	170	272	336
Statische Nutzforrderhöhe	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Leistungsaufnahme	(E)	W	6	25	32	6	25	32	10	23	39	10	23	39
Gesamtkühlleistung	(1)(E)	kW	0,93	1,74	1,91	0,96	1,92	2,11	1,28	1,93	2,31	1,37	2,14	2,56
Sensible Kühlleistung	(1)(E)	kW	0,62	1,24	1,36	0,64	1,32	1,45	0,90	1,38	1,64	0,94	1,47	1,77
Klasse FCEER	(E)		A											
Wasserdurchsatz	(2)	1/h	161	302	333	167	334	368	221	335	404	238	370	447
Druckverlust	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Heizleistung	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Klasse FCCOP	(E)		A											
Wasserdurchsatz	(3)	1/h	100	169	180	100	169	180	136	181	204	136	181	204
Druckverlust	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Batterie DF-Anzahl Reihen			3+1			4+1			3+1			4+1		
Globale Schallleistung	(4)	$d B(A)$	28	49	52	28	49	52	39	50	54	39	50	54
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	26	47	50	26	47	50	37	48	52	37	48	52
Schallleistung + Luftauslass	(4)(E)	dB(A)	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i			33			34			43			44		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	357	398	195	357	398	302	524	642	302	524	642
Statische Nutzforrderhöhe	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Leistungsaufnahme	(E)	W	10	26	35	10	26	35	21	50	77	21	50	77
Gesamtkühlleistung	(1)(E)	kW	1,46	2,31	2,56	1,59	2,72	3,01	1,95	3,22	3,75	2,33	3,82	4,51
Sensible Kühlleistung	(1)(E)	kW	1,03	1,73	1,92	1,09	1,89	2,09	1,47	2,44	2,89	1,62	2,66	3,15
Klasse FCEER	(E)		A			A			B			A		
Wasserdurchsatz	(2)	I/h	252	402	445	274	473	522	339	562	656	403	664	788
Druckverlust	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Heizleistung	(3)(E)	kW	1,71	2,53	2,69	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Klasse FCCOP	(E)		A											
Wasserdurchsatz	(3)	I/h	183	271	288	183	271	288	245	334	371	245	334	371
Druckverlust	(3)(E)	kPa	3	4	5	2	3	4	3	5	6	3	5	6
Batterie DF-Anzahl Reihen			$3+1$			4+1			$3+1$			4+1		
Globale Schallleistung	(4)	$d B(A)$	39	50	54	39	50	54	38	52	58	38	52	58
Abgestrahlte Schalleistung + Luftansaugung	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Schallleistung + Luftauslass	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchhtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
(4) Schalleistung gemessen gemäß 1503741 und ISO 3742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 4 ROHRE

DUCTIMAX i			53			54			63			64		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	683	755	333	683	755	1050	1163	1289	1060	1163	1289
Statische Nutzoforderhöhe	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Leistungsaufnahme	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Gesamtkühlleistung	(1)(E)	kW	2,29	4,32	4,72	2,51	4,88	5,32	6,28	6,81	7,38	7,04	7,64	8,28
Sensible Kühlleistung	(1)(E)	kW	1,67	3,19	3,48	1,77	3,43	3,74	4,64	5,03	5,46	4,96	5,38	5,84
Klasse FCEER	(E)		A			A			C			B		
Wasserdurchsatz	(2)	I/h	394	749	822	432	846	925	1094	1190	1295	1225	1332	1448
Druckverlust	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Heizleistung	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Klasse FCCOP	(E)		A			A			C			C		
Wasserdurchsatz	(3)	1/h	297	452	477	297	452	477	562	589	618	562	589	618
Druckverlust	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Batterie DF-Anzahl Reihen			$3+1$			4+1			$3+1$			4+1		
Globale Schallleistung	(4)	dB(A)	38	55	58	38	55	58	61	63	69	61	63	69
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Schallleistung + Luftauslass	(4)(E)	dB(A)	35	52	55	35	52	55	58	60	66	58	60	66

[^10]
Heizlüfter mit hoher Förderhöhe

UTN 3-23 kW

JONIX
pura livipg

Installationsvielseitigkeit, um allen Ansprüchen zu entsprechen

Die Heizlüfter-Palette UTN wurde für die Klimatisierung von Räumen entwickelt, in denen kanalisierbare hydronische Endgeräte verwendet werden sollen, die in der Lage sind, Förderhöhen bis zu 180 Pa und Kühlleistungen von 3 bis 23 kW zu liefern. Die Einheiten zeichnen sich durch eine große Installationsvielseitigkeit aus, denn sie können sowohl vertikal als horizontal positioniert werden und erlauben die Änderung der Ausrichtung der Luftansaugung an der Rück-oder Vorderseite der Einheit durch einfaches Verschieben der Inspektionstafel. Alle Einheiten sind serienmäßig für die Ansaugung von Erneuerungsfrischluft und mit Langlöchern für die Schnellbefestigung an der Wand oder der Decke vorgerüstet. Die geringe Höhe (280 mm bis zur Größe 16 und 350 mm für höhere Größen) erlaubt den Einbau in normale Zwischendecken und das große Angebot an Zubehör ermöglicht eine bequeme Integrierung in Klimaanlagen. Wird abhängig vom verwendeten Rippenpaketaustauscher in der Standardausführung mit hohem Wirkungsgrad angeboten, um sich besser den Ansprüchen des zu klimatisierenden Raumes anzupassen.

PLUS

» Kompakte Abmessungen (Höhe 280 mm bis zur Größe 16 und 350 mm für höhere Größen)
» Vertikale und horizontale Installation
» Großes Zubehörangebot für eine leichte Integrierung in die Anlage
») Förderhöhe bis 180 Pa
» Hohe Installationsvielseitigkeit
» Inkorporierbare JONIX-Reinigungssystem

Komfort und Hygiene
Auf Anfrage ist ein Luftreinigungssystem in spezieller Mischkammer verfügbar.

Für Anlagen mit 2 Rohren vorgerüsteter Heizlüfter
UTXXXOLL...OA

Für Anlagen mit 4 Rohren vorgerüsteter Heizüüter (2 Wärmetauscher)

Die Ausführung mit doppelter Verkleidung wird aus vorlackiertem Blech gefertigt und ist mit einer Wärmedämmung aus flammwidriger Steinwolle Klasse 0 versehen (Auf Anfrage)

HAUPTBESTANDTEILE

Struktur

Aus verzinktem Stahlblech, mit schallschluckendem, wärmedämmendem und selbstöschendem Material mit geschlossenen Zellen isoliert, um der Bildung von Kondenswasser auf der Außenoberfläche vorzubeugen.

Filtermodul

Der Lufffilter ist als Zubehör in den Filterklassen G2 oder G4 erhätlich und besteht aus regenerierbarer Acrylfaser.

Wärmetauscherbatterie

Besteht aus Kupferrohren und aufgedornten Aluminiumrippen.
Die Wasseranschlüsse sind umkehrbar.
Es wird eine zusätzliche Batterie für die Installation der Einheit in Anlagen mit 4 Rohren angeboten.

Lüfter

Die Zentrifugallüfter sind aus Aluminium mit Doppelansaugung und versetzten Schaufeln, um die Lärmemission zu reduzieren. Sie sind statisch und dynamisch ausgewuchtet, um die auf die Motorwelle übertragenen Schwingungen zu minimieren.

Elektromotor

Elekromotor mit 3 Geschwindigkeitsstufen, auf Schwingungsdämpfer montiert, mit ständig eingeschaltetem Verflüssiger und Überlastungsschutz der Wicklungen, direkt mit den Lüftern gekoppelt.

Kondenswassersammel- und -ablasssystem Das System besteht aus zwei Becken aus verzinktem, wärmegedämmtem Blech und ist für die horizontale und vertikale Installation vorgerüstet.

KONFIGURATOR

Die Modelle sind durch die Auswahl der Ausfürrung und des
Zubehörs komplett konfigurierbar. Nebenstehend ist ein Konfigurationsbeispiel abgebildet.

Ausführung: \quad Bereiche

UTO8
Zum Prüfen der Kompatibilität der Optionen wird gebeten, die Auswahlsoftware oder die Preisliste zu verwenden.

KONFIGURATOR

1 Ausführung:
A Kanalausführung mit hoher Leistung
D Standard Kanalausführung
2 Motor
0 Motoren mit 3 Geschwindigkeiten
I BLDC-Motor
3 Anschlussseite des Hauptwärmetauschers
Wasseranschlüsse auf der linken Seite
Wasseranschlüsse auf der rechten Seite
4 Anschlussseite des Zusatz-Wärmetauschers / Heizelement
0 Nicht vorhanden
L Wasseranschlüsse auf der linken Seite
R Wasseranschlüsse auf der rechten Seite Ventile
0 Nicht vorhanden
6 Steuertafel
0 Nicht vorhanden
E EVOBOARD-Schnittstelle
G Schnitstelle EVOBOARD + WI-FI-Modul NAVEL

7 Fühler
Nicht vorhanden
SA - Externer Fühler für Luff für MYCOMFORT, LED503 und EVO
SW - Wasserfühler für MYCOMFORT, LED503 und EVO
SU- Feuchtefühler für MYCOMFORT und EVO
SA+SW - Externer Fühler für Luft und Wasser für MYCOMFORT, LED503 und EVO
SA+SU - Externer Fühler für Luft und Feuchte für MYCOMFORT und EVO
SA+SU+SW- Externer Fühle für Luft, Wasser und Feuhhte fürrCOMFORT und EVO
SA - Fernfühler für Luft für TED
SW - Wasserfühler für TED
SA + SW - Luft- und Wasserfühler für TED

Verschiedenes Zubehor

Nicht vorhanden
JONIX
Filter
Ohne Filter
Release
00
$\begin{array}{ll}0 & 0 \\ \text { A } & \text { A }\end{array}$

ZUBEHÖR		
Elektromechanische Steuertafeln	GM	Luftausblasgitter aus Aluminium, mit doppelten Rang, mit Gegenrahmen
CD Geschwindigkeitsumschalter zur Unterputzwandmontage	GR	Luftansauggitter mit Gegenrahmen
IPM Leistungsplatine fïr die Verbindung mit UTN 30-30A-40-40A zu Steuertafeln	GRF	Luftansauggitter mit Gegenrahmen und Lufffilter
TA2 Raumthermostat mit Jahreszeitenwahl, Wandmontage	Außenluftansaugschieber	
IC Thermostat für niedrigste Wassertemperatur in Betriebsart Heizen ($42^{\circ} \mathrm{C}$)	PA90	Motorisiert Außenluftansaug Schieber
TD Wandsteuerung mit Geshwindigkeitsschatter, Thermostat und Jahreszeitenwahl	Ventile	
TDC Wandsteuerung mit Geschwindigkeitschalter und Thermostat	V2VDF+STD	2-Wege-Ventile, EN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie und Zusatzbatterie
Elektronische Mikroprozessorsteuertafeln mit display		
COB Platte furl LED503, Farbe Schwarz B (RAL 9005)	V2VSTD	2-Wege-Ventile, EN/AUS- oder modulierende-Stellantriebe, 230-V oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie
COG Platte für LED503, Farbe GrauG (RAL 7031)		
COW Platte fiur LED503, Farbe Weiß W (RAL 9003)	V3VDF	3-Wege-Ventile, EN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Zustatzatterie
DIST Distanzhalter Steuerung MYCOMFORT zur Wandmontage		
EVO-2-TOUCH Touchscreen-Bedienoberflähe 2,8"für EVO-Steuerung	V3VSTD	3-Wege-Ventile, EN/AUS- oder modulierende-Stellantriebe, 230-V- oder 24-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie
EVOBOARD Leistungsplatine fïr Steuerung EVO		
EVODISP Anwerderschnitstelle mit Display zur EVO-Steuerung	VPIC	2-Wege-Ventile pressure independent, EIN/AUS-Stellantriebe, 230-V-Stromversorgung, Hydraulik-Kits, für Hauptbatterie und Zusatzbatterie
EYNAVEL Vorrichtung für die Kommunikation über WiFi oder Bluetooth zwischen EVOBOARD und Smartphone	für Hauptbatterie und Lusatzbatterie Plenum und saug- und auslassanschlüsse und verkleidung	
LED503 Elektronische Steuertafel mit Display zum Einbauen in die Wand LED 503	690	90°-Saug-und Vorlaufanschluss
MCBE Mikroprozessorsteuerung mit MYCOMFORT BASE Display	MAF	Ansaugmodul mit flachem Lufffilter, Klasse G2
MCLE \quad Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display		Saugmodul mit gewelltem Filter, Klasse G4
MCME Mikroprozesorsteuerung mitMYCOMFORT MEDUM-Display	MAFO PCOC	Paneel für den Anschlus an rechteckigen Kanal
MCSUE \quad Feuchtigkeitsfühler fuir Steuerungen MYCOMFORT (MEDIUM und LARGE), EVO	$\begin{aligned} & \text { PCOC } \\ & \hline \text { PCOF } \end{aligned}$	Paneel fuir den Anschluss an Schlauche $\emptyset 200 \mathrm{~mm}$
MCSWE Wasserfühler für Steuerungen MYCOMFORT, EVO	Verbindungsschläuche und verschlussstopfen	
Elektronische Mikroprozessorsteuertafeln	TFATFM	Schlauch, nicht wärmeisoliert, 0200 mm (6 Meter nicht teilbar)
TED 2T Elektronische Steuerung zur Regelung des Lüfters und 1 Ventil ON/OFF 230V		Schlauch, wärmeisoliert, $\varnothing 200 \mathrm{~mm}$ (6 Meter nicht teillbar)
TED 4T Elektronische Steuerung zur Regelung des Lüfters und 2 Ventile ON/OFF 230V	$\begin{aligned} & \hline \text { TFM } \\ & \hline \text { TP } \end{aligned}$	Kunstsoffstopfen $\begin{aligned} & 00 \mathrm{~mm} \\ & \text { l }\end{aligned}$
TED SWA Luft-oder Wassertemperaturfüler fuir TED-Steuerungen	Kästen luftauslass und-ansaugung	
Leistungsschnittstelle und Steuerungen für Schieber	CA Saugkasten mit Wabengitter	
CSD Unterputzwandsteuerung zum proportionalen Öffnen und Schließen des angetriebenen Schiebers SM	CAF	Saugkas ten mit Wabengitter $300 \times 600 \mathrm{~mm}$ mitfilter G2
Leistungsschnittstelle für den Parallelanschluss von max. 4 Ventilkonvektoren mit einer einzigen		Auslaskkassette, wärmeisoliert, mit Gitter
Zusätliche Kondenswassersammelbecken, Isolationsschalen, Kondenswasserablasspumpen	Verschiedenes Zubehör	
KSC Kondenswasserablas-Kit	UYBP	Nachheiz-Kit mit Heißwasserbatterie
Elektrische Widerstände	VRCH	Kondenswassersammelbecken für Einheit zur horizontalen Installation
RE Heizwiderstand mit Montagesatz, Relaiskasten und Sicherheitsvorichtungen	VRCV	Kondenswassersammelbecken für Einheit zur vertikalen Installation
Luftausblasgitter und Luftansauggitter	Reinigungssystem	
GA Luftansauggitter aus Aluminium, mit Rahmen	JONIX-mic	Reinigungsmodu JONIX" (Kanalinstallation) Reingungsmodul JONXX" (Installation im Plenum)

Kanalisierbare Einheiten UTN

TECHNISCHE NENNDATEN 2 ROHRE

UTN			6 A			6 D			8A			8 D		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	343	458	561	348	465	572	532	692	791	534	700	802
Statische Nutzörrderhöhe	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Leistungsaufnahme	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Gesamtkühlleistung	(1)(E)	kW	2,22	2,88	3,39	1,94	2,46	2,84	3,29	4,09	4,50	2,74	3,36	3,65
Sensible Kühlleistung	(1)(E)	kW	1,63	2,13	2,52	1,47	1,87	2,16	2,45	3,08	3,41	2,10	2,59	2,83
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	1/h	382	496	584	334	424	489	567	704	775	472	579	629
Druckverlust	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Heizleistung	(3)(E)	kW	2,47	3,14	3,70	2,19	2,75	3,20	3,55	4,36	4,83	3,04	3,69	4,05
Klasse FCCOP	(E)		D			E			E			E		
Wasserdurchsatz	(3)	I/h	425	541	637	377	474	551	611	751	832	523	635	697
Druckverlust	(3)(E)	kPa	4	6	8	5	8	10	7	11	13	9	13	15
Standardbatterie - Anzahl Reihen			4			3			4			3		
Globale Schallleistung	(4)	dB(A)	48	57	63	48	57	63	54	61	66	54	61	66
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	46	54	61	46	54	61	52	59	64	52	59	64
Schallleistung Luftauslass	(4)(E)	dB(A)	45	53	59	45	53	59	51	58	63	51	58	63
UTN			12A			12D			16A			16D		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1000	1107	1203	1019	1134	1238	1198	1371	1581	1207	1384	1606
Statische Nutzfororderhöhe	(E)	Pa	41	50	59	40	50	59	38	50	66	38	50	67
Leistungsaufnahme	(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
Gesamtkühlleistung	(1)(E)	kW	5,54	5,99	6,34	4,98	5,39	5,70	6,67	7,41	8,24	6,03	6,63	7,32
Sensible Kühlleistung	(1)(E)	kW	4,11	4,47	4,73	3,66	3,94	4,16	5,23	5,86	6,58	4,84	5,39	6,04
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	I/h	954	1031	1092	858	928	982	1149	1276	1419	1038	1142	1261
Druckverlust	(2)(E)	kPa	15	17	19	18	21	24	11	13	16	17	20	24
Heizleistung	(3)(E)	kW	6,29	6,80	7,26	5,59	6,03	6,42	7,28	8,04	8,93	6,47	7,11	7,88
Klasse FCCOP	(E)		E											
Wasserdurchsatz	(3)	1/h	1083	1171	1250	963	1038	1106	1254	1384	1538	1114	1224	1357
Druckverlust	(3)(E)	kPa	14	17	18	17	19	22	10	12	14	15	17	21
Standardbatterie - Anzahl Reihen			4			3			4			3		
Globale Schallleistung	(4)	dB(A)	61	63	69	59	63	69	62	67	72	62	67	72
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	56	60	66	56	60	66	60	64	70	60	64	70
Schalleistung Luftauslass	(4)(E)	dB(A)	59	59	65	55	59	65	58	63	69	58	63	69

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 2 ROHRE

UTN			19A			22A			22D			30A		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1166	1500	1577	1436	1819	2222	1483	1898	2376	2074	2604	3174
Statische Nutzörderhöhe	(E)	Pa	38	50	62	31	50	75	30	50	78	32	50	74
Leistungsaufnahme	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Gesamtkühlleistung	(1)(E)	kW	7,34	9,17	10,1	9,20	11,2	13,1	8,41	10,1	11,8	12,9	15,4	17,7
Sensible Kühlleistung	(1)(E)	kW	5,43	6,81	8,83	6,76	8,32	9,85	6,35	7,75	9,22	9,38	11,4	13,5
Klasse FCEER	(E)		E											
Wasserdurchsatz	(2)	1/h	1266	1582	1749	1584	1927	2249	1448	1743	2039	2221	2652	3048
Druckverlust	(2)(E)	kPa	20	31	36	12	17	22	15	21	29	27	37	48
Heizleistung	(3)(E)	kW	7,94	9,96	11,0	9,73	11,7	13,7	9,06	10,8	12,7	13,7	16,4	19,1
Klasse FCCOP	(E)		D			E			E			E		
Wasserdurchsatz	(3)	1/h	1365	1715	1857	1676	2020	2354	1560	1867	2190	2359	2824	3289
Druckverlust	(3)(E)	kPa	22	29	34	10	14	19	14	19	25	23	32	41
Standardbatterie - Anzahl Reihen			4			4			3			5		
Globale Schallleistung	(4)	$d B(A)$	61	67	71	60	67	74	60	67	74	69	73	78
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	$d B(A)$	59	65	69	58	65	72	58	65	72	67	71	76
Schallleistung Luftauslass	(4)(E)	$d B(A)$	57	63	68	57	64	71	57	64	71	66	70	75
UTN			30 D			40A			40D					
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max			
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	2092	2641	3207	3067	3622	4287	3129	3706	4422			
Statische Nutzförderhöhe	(E)	Pa	31	50	74	36	50	71	35	50	71			
Leistungsaufnahme	(E)	W	870	1090	1300	650	820	1150	650	820	1150			
Gesamtkühlleistung	(1)(E)	kW	11,6	13,8	15,9	17,3	19,6	22,0	15,4	17,4	19,5			
Sensible Kühlleistung	(1)(E)	kW	8,61	10,4	12,2	13,3	15,3	17,5	12,1	13,8	15,6			
Klasse FCEER	(E)		E			D			E					
Wasserdurchsatz	(2)	1/h	2003	2382	2741	3082	3505	3979	2761	3128	3551			
Druckverlust	(2)(E)	kPa	21	29	37	16	20	25	17	21	26			
Heizleistung	(3)(E)	kW	12,7	15,0	17,3	18,8	21,2	24,0	17,2	19,4	21,8			
Klasse FCCOP	(E)		E			D			D					
Wasserdurchsatz	(3)	1/h	2183	2592	2977	3263	3693	4177	2986	3364	3799			
Druckverlust	(3)(E)	kPa	18	25	31	18	22	28	18	23	28			
Standardbatterie - Anzahl Reihen			4			5			4					
Globale Schallleistung	(4)	dB(A)	69	73	78	70	74	79	70	74	79			
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	$d B(A)$	67	71	76	68	72	77	68	72	77			
Schallleistung Luftauslass	(4)(E)	dB(A)	66	70	75	67	71	76	67	71	76			

[^11]
Kanalisierbare Einheiten UTN

TECHNISCHE NENNDATEN 4 ROHRE

UTN			6 A			6 D			8A			8D		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	342	455	557	346	463	567	529	686	783	531	694	793
Statische Nutzförderhöhe DF	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Leistungsaufnahme DF	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Gesamtkühlleistung DF	(1)(E)	kW	2,21	2,86	3,37	1,93	2,44	2,82	3,27	4,06	4,46	2,73	3,33	3,61
Sensible Kühlleistung DF	(1)(E)	kW	1,62	2,11	2,50	1,46	1,86	2,15	2,43	3,06	3,38	2,09	2,57	2,80
Klasse FCEER DF	(E)		E											
Wasserdurchsatz DF	(2)	1/h	381	492	580	332	420	486	563	699	768	470	573	622
Druckverlust DF	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Heizleistung DF	(3)(E)	kW	2,56	2,99	3,31	2,58	3,02	3,34	3,23	3,66	3,89	3,23	3,68	3,91
Klasse FCCOP DF	(E)		D			D			E			E		
Wasserdurchsatz DF	(3)	1/h	220	257	285	222	260	288	278	315	335	278	317	337
Druckverlust DF	(3)(E)	kPa	3	4	5	3	5	5	5	6	7	5	6	7
Batterie DF-Anzahl Reihen			1			1			1			1		
Globale Schalleistung DF	(4)	dB(A)	48	57	63	48	57	63	54	61	66	54	61	66
Abgestrahlte Schallleistung + Luftansaugung DF	(4)(E)	dB(A)	46	54	61	46	54	61	52	59	64	52	59	64
Schallleistung Luftauslass DF	(4)(E)	dB(A)	45	53	59	45	53	59	51	58	63	51	58	63
UTN			12A			12D			16A			16D		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	985	1088	1182	1005	1115	1211	1184	1349	1550	1192	1362	1576
Statische Nutzförderhöhe DF	(E)	Pa	41	50	59	41	50	59	38	50	66	38	50	67
Leistungsaufnahme DF	(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
Gesamtkühlleistung DF	(1)(E)	kW	5,47	5,91	6,24	4,93	5,32	5,60	6,60	7,31	8,10	5,97	6,54	7,21
Sensible Kühlleistung DF	(1)(E)	kW	4,06	4,40	4,66	3,60	3,89	4,08	5,17	5,77	6,46	4,79	5,31	5,94
Klasse FCEER DF	(E)		E											
Wasserdurchsatz DF	(2)	I/h	942	1018	1075	849	916	964	1137	1259	1395	1028	1126	1242
Druckverlust DF	(2)(E)	kPa	15	17	19	18	21	23	10	13	15	16	19	23
Heizleistung DF	(3)(E)	kW	5,21	5,45	5,65	5,25	5,51	5,72	6,99	7,44	7,94	7,02	7,47	7,99
Klasse FCCOP DF	(E)		E											
Wasserdurchsatz DF	(3)	1/h	449	469	486	452	474	492	602	641	684	604	643	688
Druckverlust DF	(3)(E)	kPa	10	11	12	12	13	14	20	22	25	8	9	10
Batterie DF-Anzahl Reihen			1			1			1			1		
Globale Schalleistung DF	(4)	dB(A)	61	64	69	59	63	69	62	67	72	62	67	72
Abgestrahlte Schallleistung + Luftansaugung DF	(4)(E)	dB(A)	56	60	66	56	60	66	60	64	70	60	64	70
Schallleistung Luftauslass DF	(4)(E)	dB(A)	55	59	65	59	62	65	58	63	69	58	63	69

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchhtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 4 ROHRE

UTN			19A			22A			22D			30A		
Velindigkeit			Min	med	Max									
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1143	1470	1545	1423	1795	2184	1468	1871	2332	2065	2590	3154
Statische Nutzforrderhöhe DF	(E)	Pa	38	50	62	31	50	74	23	50	78	32	50	74
Leistungsaufnahme DF	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Gesamtkühlleistung DF	(1)(E)	kW	7,17	8,98	10,0	9,12	11,0	12,9	8,34	10,0	11,7	12,9	15,3	17,7
Sensible Kühlleistung DF	(1)(E)	kW	5,30	6,67	8,59	6,71	8,22	9,68	6,29	7,66	9,07	9,34	11,3	13,4
Klasse FCEER DF	(E)		E											
Wasserdurchsatz DF	(2)	1/h	1237	1549	1732	1570	1903	2216	1436	1722	2010	2216	2633	3041
Druckverlust DF	(2)(E)	kPa	20	30	35	12	16	22	15	21	28	27	37	48
Heizleistung DF	(3)(E)	kW	7,80	9,80	10,8	10,6	12,3	13,9	10,9	12,6	14,4	14,8	17,0	19,2
Klasse FCCOP DF	(E)		D			D			D			E		
Wasserdurchsatz DF	(3)	1/h	1338	1679	1854	916	1059	1194	935	1087	1242	1273	1466	1652
Druckverlust DF	(3)(E)	kPa	22	29	34	6	8	10	6	8	10	12	16	20
Batterie DF - Anzahl Reihen			1			2			2			2		
Globale Schallleistung DF	(4)	$d B(A)$	61	67	71	60	67	74	60	67	74	69	73	78
Abgestrahlte Schallleistung + Luftansaugung DF	(4)(E)	$d B(A)$	59	65	69	58	65	72	58	65	72	67	71	76
Schallleistung Luftauslass DF	(4)(E)	$d B(A)$	57	63	68	57	64	71	57	64	71	66	70	75
UTN			30D			40A			40D					
Velindigkeit			Min	med	Max	Min	med	Max	Min	med	Max			
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	2083	2626	3187	3345	4002	4837	3073	3637	4321			
Statische Nutzforrderhöhe DF	(E)	Pa	31	50	74	35	50	73	36	50	70			
Leistungsaufnahme DF	(E)	W	870	1090	1300	650	820	1150	650	820	1150			
Gesamtkühlleistung DF	(1)(E)	kW	11,6	13,8	15,8	18,6	21,2	24,2	15,2	17,2	19,2			
Sensible Kühlleistung DF	(1)(E)	kW	8,58	10,4	12,2	14,4	16,8	19,5	11,9	13,5	15,3			
Klasse FCEER DF	(E)		E			D			E					
Wasserdurchsatz DF	(2)	1/h	1996	2371	2728	3297	3779	4347	2722	3085	3493			
Druckverlust DF	(2)(E)	kPa	24	32	41	16	21	26	17	23	29			
Heizleistung DF	(3)(E)	kW	14,9	17,2	19,3	18,3	20,2	22,2	18,5	20,4	22,6			
Klasse FCCOP DF	(E)		E			D			D					
Wasserdurchsatz DF	(3)	1/h	1281	1478	1662	1601	1766	1948	1620	1790	1983			
Druckverlust DF	(3)(E)	kPa	13	17	21	9	11	13	9	11	13			
Batterie DF-Anzahl Reihen			2			2			2					
Globale Schallleistung DF	(4)	$d B(A)$	69	73	78	70	74	79	70	74	79			
Abgestrahlte Schallleistung + Luftansaugung DF	(4)(E)	$d B(A)$	67	71	76	68	72	77	68	72	77			
Schallleistung Luftauslass DF	(4)(E)	dB(A)	66	70	75	67	71	76	67	71	76			

[^12]
Kanalisierbare Einheiten UTN

MASSZEICHNUNG

UTN 06-19

LEGENDE	
$\mathbf{1}$	6SChnellanschlusslanglöcher
2	Kondenswasserablass, Vertikalinstallation
3	Kondenswasserablass, Vertikalinstallation
4	Wasseranschlüsse rechts
4DF	Wasseranschlüsse zusätliche Batterie
5	Luftauslass
6	Luftansaugung
$6-A$	Lieferzustand
$6-B$	Bei der Installation veränderbar
7	Vorgeschnitten, rund ($(100 \mathrm{~mm})$ für Frischluftzuführung

UTN	A	B	C	D	4	4DF	2	3	\bigcirc
	mm	mm	mm	mm	${ }^{\prime}$	"	mm	mm	kg
6D-6A-8D-8A	754	707	676	646	3/4	3/4	17	17	33
12D-12A	964	917	886	856	3/4	3/4	17	17	42
16D-16A-19A	1174	1127	1096	1066	3/4	3/4	17	17	49

[^13]
MASSZEICHNUNG

UTN 22-40

LEGENDE	
1	6Schnellanschlusslanglöcher
2	Kondenswasserablass, Vertikalinstallation
3	Kondenswasserablass, Vertikalinstallation
4	Wasseranschlüsse rechts
4 WF	Wasseranschlüsse zusätzliche Batterie
5	Luftauslass
6	Luftansaugung
$6-A$	Lieferzustand
$6-B$	Bei der Installation veränderbar
7	Vorgeschnitten, rund ($(100 \mathrm{~mm})$ für Frischluftzuführung

UTN	A	B	C	D	4	4DF	2	3	\bigcirc
	mm	mm	mm	mm	"	"	mm	mm	kg
22D-22A	1174	1127	1096	1066	1	1	17	17	67
30D-30A	1384	1337	1306	1276	1	1	17	17	80
40D -40A	1594	1547	1516	1486	1	1	17	17	90

Heizlüfter mit hoher Förderhöhe mit EC-Motor

UTNi4-18 kW

JONIX
 pure living

Hoher Wirkungsgrad und niedrige Schallemissionen für kanalisierte Anwendungen

Die Heizuüfter der Palette UTN i mit Invertermotor zu 4 bis 18 kW Kühlleistung sind eine Weiterentwicklung der Serie UTN: Unter Anwendung der Energiesparnormen und der Normen zum Wirkungsgrad von Anlagen wie auch der jüngsten technologischen Fortschritte im Bereich der Elektromotoren bietet Galletti kanalisierbare Einheiten mit invertergesteuertem EC-Motor mit Permanentmagneten an. Diese Lösung erlaubt es, die Stromaufnahme um bis zu 70\% gegenüber einem herkömmlichen Asynchronmotor zu senken, und bietet gleichzeitig die Möglichkeit, den Luftdurchsatz dank der kontinuierlichen Veränderung der Lüfterdrehzahl präzise einzustellen. Die die Serie UTN kennzeichnenden besonderen Eigenschaften, d.h. die Höhe von 280 mm, die den Einbau in Zwischendecken ermöglicht, die Installationsvielseitigkeit und die Verbindung mit den Luftkanalisierungen sowie das große Zubehörangebot wurden übernommen, um die gleichen Qualitätsstandards zu gewährleisten. Die Verfügbarkeit von Wärmetauschern mit einer hohen Anzahl von Reihen erlaubt ferner während der Heizphasen die Verwendung eines Wärmeträgermediums mit niedriger Temperatur für eine weitere Senkung des Energieverbrauchs.

Komfort und leiser Betrieb

UTN i passt sich dank der präzisen Regelung der Motordrehzahl Räumen an, in denen ein besonders leiser Betrieb gefordert ist.

Auf Anfrage ist ein Luftreinigungssystem in spezieller Mischkammer verfügbar.

UTXXXILO...OA Für Anlagen mit 2 Rohren vorgerüsteter Heizlüfter
UTXXXILL....OA Für Anlagen mit 4 Rohren vorgerüsteter Heizlüfter (2 Wärmetauscher)

UTXXXILO... 02(2

HAUPTBESTANDTEILE

Struktur

Aus verzinktem Stahlblech, mit schallschluckendem, wärmedämmendem und selbstöschendem Material mit geschlossenen Zellen isoliert, um der Bildung von Kondenswasser auf der Außenoberfläche vorzubeugen.

Wärmetauscherbatterie

Besteht aus Kupferrohren und aufgedornten Aluminiumrippen.
Die Wasseranschlüsse sind umkehrbar. Es wird eine zusätzliche Batterie für die Installation der Einheit in Anlagen mit 4 Rohren angeboten.

EC-Elektromotor

Motore a magneti permanenti. L'unità è dotata di scheda inverter di controllo del motore, che permette un preciso settaggio della velocità di rotazione (segnale di controllo 0-10 V).

Lüfter

Die Zentrifugallüfter sind aus Aluminium mit Doppelansaugung und versetzten Schaufeln, um die Lärmemission zu reduzieren. Sie sind statisch und dynamisch ausgewuchtet, um die auf die Motorwelle übertragenen Schwingungen zu minimieren.

Kondenswassersammel- und -ablasssystem

Das System besteht aus zwei Becken aus verzinktem, wärmegedämmtem Blech und ist für die horizontale und vertikale Installation vorgerüstet.

Filtermodul

Der Lufffilter ist als Zubehör in den Filterklassen G2 oder G4 erhältlich und besteht aus regenerierbarer Acrylfaser.

Kanalisierbare Einheiten UTN i

TECHNISCHE NENNDATEN 2 ROHRE

UTNi			8A			8D			12A			12D		
Velindigkeit			Min	med	Max									
Eingangsspannung	(E)	V	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	532	692	791	534	700	802	1000	1107	1203	1019	1134	1238
Statische Nutzforrderhöhe	(E)	Pa	30	50	65	29	50	65	41	50	59	40	50	59
Leistungsaufnahme	(E)	W	40	73	112	40	73	112	102	125	152	102	125	170
Gesamtkühlleistung	(1)(E)	kW	3,38	4,20	4,65	2,83	3,47	3,80	5,78	6,25	6,65	5,22	5,65	6,01
Sensible Kühlleistung	(1)(E)	kW	2,54	3,19	3,56	2,19	2,70	2,98	4,35	4,73	5,04	3,90	4,20	4,47
Klasse FCEER	(E)		B			C			C			C		
Wasserdurchsatz	(2)	1/h	582	723	801	487	598	654	995	1076	1145	899	973	1035
Druckerlust	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	24
Heizleistung	(3)(E)	kW	3,55	4,36	4,83	3,04	3,69	4,05	6,29	6,80	7,26	5,59	6,03	6,42
Klasse FCCOP			B			B			C			C		
Wasserdurchsatz	(3)	1/h	611	751	832	523	635	697	1083	1171	1250	963	1038	1106
Druckverlust	(3)(E)	kPa	7	11	13	9	13	15	14	17	18	17	19	22
Standardaatterie - Anzahl Reihen			4			3			4			3		
Globale Schallleistung	(4)	dB(A)	54	61	66	54	61	66	61	63	69	59	63	69
Abgestrahlte Schalleistung + Luftansaugung	(4)(E)	dB(A)	52	59	64	52	59	64	56	60	66	56	60	66
Schallleistung Luftauslass	(4)(E)	dB(A)	51	58	63	51	58	63	59	59	65	55	59	65

UTNi			16A			16D			19A			22A		
Velindigkeit			min	med	max									
Eingangsspannung	(E)	V	6,70	7,70	8,90	6,70	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1198	1371	1581	1207	1384	1606	1166	1500	1577	1436	1819	2222
Statische Nutzforrderhöhe	(E)	Pa	38	50	66	38	50	67	38	50	62	31	50	75
Leistungsaufnahme	(E)	W	124	170	248	124	170	248	109	190	247	135	210	285
Gesamtkühlleistung	(1)(E)	kW	6,84	7,62	8,49	6,20	6,84	7,57	7,50	9,36	10,4	9,43	11,5	13,6
Sensible Kühlleistung	(1)(E)	kW	5,40	6,07	6,83	5,01	5,60	6,29	7,35	9,17	10,3	6,99	8,65	10,3
Klasse FCEER	(E)		C			C			C			B		
Wasserdurchsatz	(2)	1/h	1178	1312	1462	1068	1178	1304	1289	1663	1789	1644	2010	2366
Druckverlust	(2)(E)	kPa	11	13	16	17	20	24	20	31	36	12	17	22
Heizleistung	(3)(E)	kW	7,28	8,04	8,93	6,47	7,11	7,88	7,94	9,96	11,0	9,73	11,7	13,7
Klasse FCCOP			C			C			B			B		
Wasserdurchsatz	(3)	1/h	1254	1384	1538	1114	1224	1357	1365	1715	1857	1676	2020	2354
Druckverlust	(3)(E)	kPa	10	12	14	15	17	21	22	29	34	10	14	19
Standardatterie - Anzahl Reihen			4			3			4			4		
Globale Schallleistung	(4)	$d B(A)$	62	67	72	62	67	72	61	67	71	60	67	74
Abgestrahlte Schalleistung + Luftansaugung	(4)(E)	dB(A)	60	64	70	60	64	70	59	65	69	58	65	72
Schalleeistung Luftauslass	(4)(E)	dB(A)	58	63	69	58	63	69	57	63	68	57	64	71

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schalleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 2 ROHRE

UTNi				22D			30A			300	
Velindigkeit			min	med	max	min	med	max	min	med	max
Eingangsspannung	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Nennluftdurchsatz	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1483	1898	2376	2074	2604	3174	2092	2641	3207
Statische Nutzforrderhöhe	(E)	Pa	30	50	78	32	50	74	31	50	74
Leistungsaufnahme	(E)	W	140	220	320	195	310	445	200	320	445
Gesamtkühlleistung	(1)(E)	kW	8,64	10,4	12,2	13,6	16,2	18,6	12,3	14,6	16,8
Sensible Kühlleistung	(1)(E)	kW	6,58	8,07	9,66	10,1	12,2	14,3	9,29	11,2	13,0
Klasse FCEER	(E)			C			B			C	
Wasserdurchsatz	(2)	1/h	1509	1827	2163	2365	2823	3270	2145	2561	2953
Druckverlust	(2)(E)	kPa	15	21	29	27	37	48	21	29	37
Heizleistung	(3)(E)	kW	9,06	10,8	12,7	13,7	16,4	19,1	12,7	15,0	17,3
Klasse FCCOP				C			B			C	
Wasserdurchsatz	(3)	1/h	1560	1867	2190	2359	2824	3289	2183	2592	2977
Druckverlust	(3)(E)	kPa	14	19	25	23	32	41	18	25	31
Standardaatterie - Anzahl Reihen				3			5			4	
Globale Schallleistung	(4)	$d B(A)$	60	67	74	69	73	78	69	73	78
Abgestrahlte Schallleistung + Luftansaugung	(4)(E)	dB(A)	58	65	72	67	71	76	67	71	76
Schallleistung Luftauslass	(4)(E)	dB(A)	57	64	71	66	70	75	66	70	75

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN 1397 :2021
(2) Wassertemperatur $7^{\circ} / 112^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Kanalisierbare Einheiten UTN i

TECHNISCHE NENNDATEN 4 ROHRE

UTNi			8A			8D			12A			12D		
Velindigkeit			min	med	max									
Eingangsspannung	(E)	V	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	529	686	783	531	694	793	985	1088	1182	1005	1115	1211
Statische Nutzförderhöhe DF	(E)	Pa	30	50	65	29	50	65	41	50	59	41	50	59
Leistungsaufnahme DF	(E)	W	40	73	112	45	73	112	102	125	152	102	125	152
Gesamtkühlleistung DF	(1)(E)	kW	3,36	4,17	4,61	2,82	3,44	3,76	5,71	6,17	6,55	5,17	5,58	5,91
Sensible Kühlleistung DF	(1)(E)	kW	2,52	3,17	3,53	2,18	2,68	2,95	4,30	4,66	4,97	3,84	4,15	4,39
Klasse FCEER DF	(E)		B			C			C			C		
Wasserdurchsatz DF	(2)	I/h	579	718	794	486	592	647	983	1062	1128	890	961	1018
Druckverlust DF	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	23
Heizleistung DF	(3)(E)	kW	3,23	3,66	3,89	3,23	3,68	3,91	5,21	5,45	5,65	5,25	5,51	5,72
Klasse FCCOP DF	(E)		B			B			B			C		
Wasserdurchsatz DF	(3)	I/h	278	315	355	278	317	337	449	469	486	452	474	492
Druckverlust DF	(3)(E)	kPa	5	6	7	5	6	7	10	11	12	12	13	14
Batterie DF-Anzahl Reihen			1			1			1			1		
Globale Schallleistung DF	(4)	$d B(A)$	54	61	66	54	61	66	61	64	69	59	63	69
Abgestrahlte Schalleistung + Luftansaugung DF	(4)(E)	dB(A)	52	59	64	52	59	64	56	60	66	56	60	66
Schallleistung Luftauslass DF	(4)(E)	$d B(A)$	51	58	63	51	58	63	55	59	65	55	59	65
UTNi			16A			16D			19A			22A		
Velindigkeit			min	med	max									
Eingangsspannung	(E)	V	6,70	7,70	8,90	7,00	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1184	1349	1550	991	1094	1212	1143	1470	1545	1423	1795	2184
Statische Nutzförderhöhe DF	(E)	Pa	38	50	66	38	50	61	38	50	62	31	50	74
Leistungsaufnahme DF	(E)	W	124	170	248	124	170	248	109	190	247	138	210	305
Gesamtkühlleistung DF	(1)(E)	kW	6,77	7,52	8,35	6,14	6,75	7,46	5,62	7,00	9,10	9,35	11,3	13,3
Sensible Kühlleistung DF	(1)(E)	kW	5,34	5,98	6,71	4,96	5,52	6,19	5,44	6,86	8,85	6,94	8,55	10,1
Klasse FCEER DF	(E)		C			C			C			B		
Wasserdurchsatz DF	(2)	I/h	1166	1295	1438	1057	1162	1285	1268	1582	1777	1631	1987	2336
Druckverlust DF	(2)(E)	kPa	10	13	15	16	19	23	20	31	36	12	16	22
Heizleistung DF	(3)(E)	kW	6,99	7,44	7,94	7,02	7,47	7,99	7,80	9,80	10,8	10,6	12,3	13,9
Klasse FCCOP DF	(E)		C			C			B			B		
Wasserdurchsatz DF	(3)	1/h	602	641	684	604	643	688	1338	1679	1854	916	1059	1194
Druckverlust DF	(3)(E)	kPa	20	22	25	22	24	27	22	29	34	6	8	10
Batterie DF- Anzahl Reihen			1			1			1			2		
Globale Schallleistung DF	(4)	dB(A)	62	67	72	62	67	72	61	67	71	60	67	74
Abgestrahlte Schalleeistung + Luftansaugung DF	(4)(E)	$d B(A)$	60	64	70	60	64	70	59	65	69	58	65	72
Schallleistung Luftauslass DF	(4)(E)	$d B(A)$	58	63	69	58	63	69	57	63	68	57	64	71

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN $1397: 2021$
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schalleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

TECHNISCHE NENNDATEN 4 ROHRE

UTNi				22D			30A			300	
Velindigkeit			min	med	max	Min	med	Max	Min	med	Max
Eingangsspannung	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Nennluftdurchsatz DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1468	1871	2332	2065	2590	3154	2083	2626	3187
Statische Nutzforderhöhe DF	(E)	Pa	30	50	78	32	50	74	31	50	74
Leistungsaufnahme DF	(E)	W	144	220	317	221	345	441	223	350	452
Gesamtkühlleistung DF	(1)(E)	kW	8,56	10,3	12,1	13,6	16,0	18,6	12,2	14,5	16,6
Sensible Kühlleistung DF	(1)(E)	kW	6,51	7,98	9,50	9,99	12,0	14,3	9,23	11,1	13,0
Klasse FCEER DF	(E)			C							
Wasserdurchsatz DF	(2)	1/h	1493	1808	2130	2358	2811	3254	2138	2550	2940
Druckverlust DF	(2)(E)	kPa	15	21	28	27	37	48	21	28	36
Heizleistung DF	(3)(E)	kW	10,9	12,6	14,4	14,8	17,0	19,2	14,9	17,2	19,3
Klasse FCCOP DF	(E)			B							
Wasserdurchsatz DF	(3)	1/h	935	1087	1242	1273	1466	1652	1281	1478	1662
Druckverlust DF	(3)(E)	kPa	6	8	10	13	16	20	13	17	21
Batterie DF - Anzahl Reihen				2			2			2	
Globale Schallleistung DF	(4)	$d B(A)$	60	67	74	69	73	78	69	73	78
Abgestrahlte Schallleistung + Luftansaugung DF	(4)(E)	$d B(A)$	58	65	72	67	71	76	67	71	76
Schallleistung Luftauslass DF	(4)(E)	dB(A)	57	64	71	66	70	75	66	70	75

(1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
(3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
(4) Schallleistung gemessen gemäß 1503741 und 1503742
(E) EUROVENT Zertifikate

Spannungsversorgung 230-1-50 (V-ph-Hz)

Bläse mit motoren ON/OFF

AREO 8-101 kW

PLUS

" Niedrigen Schallpegel
" Großer Betriebsbereich (bis zu $60^{\circ} \mathrm{C}$ angesaugte Luft)
» Axiallüfter mit aerodynamischem
Schaufelprofil (HyBlade ${ }^{\bullet}$-Technologie)
» Elektromotor Klasse F, zugelassen für den Dauerbetrieb
" RVM kontrolle der lüftergeschwindigkeit von einphasen-elektromotoren

Thermo-hygrometrischer Komfort in Industrie und Gewerbe

Im Einklang mit den jüngsten gesetzlichen Entwicklungen in Sachen Energieeffizienz aktualisiert Galletti sein Heizgebläseangebot für Heizanlagen in Industrie- und Gewerbeumgebungen jeglicher Größe.
Der neue AREO wurde entwickelt, um die Vorschriften der ERPRichtlinie unter Beibehaltung der herausragenden Eigenschaften des Originalprojekts, d.h. extreme Zuverlässigkeit und Robustheit, zu erfüllen.
Die Verkleidung des AREO besteht aus vorlackiertem Stahlblech und zeichnet sich durch ein besonderes Design mit abgerundeten Linien aus, was die Formschönheit des Produkts unterstreicht.
Die AREO-Palette besteht aus 16 Modellen, die sowohl für die Wandinstallation (horizontale Luftausblasung) als für die Deckeninstallation (vertikale Luftausblasung) geeignet sind. Die für die Klimatisierung geeignete Version ist mit einem innovativen Kondensatsammelsystem und einer zusätzlichen Isolierung im Schrank ausgestattet.
Die 6 Größen verfügen über 2,3 oder 4 Reihen, um den korrekten Betrieb mit vom Kessel oder einer Wärmepumpe erzeugtem Heißwasser (Modelle mit 4 Reihen) zu erlauben.

VERFÜGBARE VERSIONEN

[^14]AREO 8-101 kW

HAUPTBESTANDTEILE

Lüftungsmotoreinheit

Motor und Lüfter sind eine integrierte Einheit und sind auf die Maximierung der Luftleistung optimiert. Auch für die Ausführungen mit Einphasenstromversorgung wird die Konformität mit ERP garantiert.

Verkleidung

Aus vorlackiertem Stahlblech, komplett mit Eckelementen aus ABS und mit manuell ausrichtbaren Aluminium-Ausblasflügeln, die für eine optimale Verteilung im Raum am Luftauslass installiert sind.

Elektromotor

Tropenfester Motor, direkt an den externen Rotor gekoppelt, serienmäßig mit folgenden Eigenschaften

- ausgestattet mit internem Wärme schutz
- Wicklungen in Klasse F
- Schutzart IP54
- wartungsfreie Kugellager

Axialventilator

Mit statisch ausgewuchteten Schaufeln mit aerodynamischem Profil (HyBladeTechnologie), die zur Verbesserung der Luftleistungen und Verminderung der Schallemissionen in ein besonderes Mundstück eingesetzt sind.

Unfallverhütungsgitter

Gefertigt aus elektroverzinktem Stahldraht: Stützt den Motor und ist mit schwingungsdämpfenden Halterungen an der Verkleidung montiert.

Wärmetauscherbatterie

Gefertigt aus Kupferrohr und Aluminiumrippen mit hoher Wärmeleitfähigkeit, um den Austauschvorgang zu optimieren.

Kontrolle der lüftergeschwindigkeit von einphasen-elektromotoren

Der RVM-Regler stellt den auf die Last wirksamen Wert durch die Regulierung der Form der durch eine TRIAC angewendeten Welle ein. Das nur bei Modellen mit Einphasenstromversorgung verwendbare Zubehör ermöglicht das manuelle Anpassen der Lüftungsgeschwindigkeit durch Variieren der Leistung des Heizelements gemäß den verschiedenen Ansprüchen. Das System ist ferner mit speziellen Filtern zum Eliminieren eventueller Störungen der Versorgungsleitung oder durch das Gerät erzeugter Störungen und mit einem Trimmer zur manuellen Einstellung der Lüftungsmindestgeschwindigkeit ausgestattet. Dieses Zubehör wird in der Kühlausführung AREO C serienmäßig geliefert.

ZUBEHÖR	
Elektromechanische Steuertafeln	DFP Schablone für die Wandbefestigung
CT Stern-Dreieck-Schalter rur Installation in Schaltschränken	Schutzgitter für Sportanlagen (ballschutz)
CSTP Stern-Dreieck-Schalter zur Wandinstallation	R Schutzgitter fiur Sportanlagen
RVM Manueller Leistungsregler firr Heizgebläse mit einphasiger Stromversorgung	Diffusoren
TA2 Raumthermostat mit Jahreszeitenwahl, Wandmontage	DO Diffusor mit doppeltem Rang ausichtbarer Fligel
Leistungsschnittstelle und Steuerungen für Schieber	LA Luftmesserdifiusor
CSD Unterputzwandsteurung zum proportionalen Öffnen und Schließen des angetriebenen Schiebers SM	Frischluftoffnung
Verschiedenes Zubehör	PAE Frishluftoffnung
VA Zusitzliche Kondenswassersammelbecken	PAEM Manueller Mischschieber
Befestigungsschablonen	PAEMM Angetriebener Mischschieber, Versorgung 24V mit Rü̈ckholfeder
DFC Schablone fïr die Säulenbefestigung	Regenschutzgitter für Frischluftansaugung
DF0 Ausichtbare Schablone für die Wand-/Sälenbefestigung	GR Luftansauggitter mit Gegenrahmen

Heizgebläse AREO

TECHNISCHE DATEN NENNWERTE AREO P - HEIZUNG

AREOP			12	12	13	13	14	14
Spannungsversorgung		V-ph-Hz	230-1-50					
Anzahl Pole			4	6	4	6	4	6
Motorverbindung			Mono	Mono	Mono	Mono	Mono	Mono
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	1280	1000	1140	900	1040	800
Heizleistung	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	863	749	1097	946	1252	1047
Druckverlust	(1)	kPa	29	23	22	17	17	12
Schallleistungspegel	(2)	dB(A)	64	59	64	59	65	60
Leistungsaufnahme		W	69	49	69	50	70	51

AREOP			22	22	23	23	24	24
Spannungsversorgung		V-ph-Hz	230-1-50					
Anzahl Pole			4	6	4	6	4	6
Motorverbindung			Mono	Mono	Mono	Mono	Mono	Mono
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	3020	2100	2630	1850	2600	1800
Heizleistung	(1)	kW	19,9	16,2	25,6	20,6	28,9	22,9
Wasserdurchsatz	(1)	I/h	1754	1432	2256	1820	2555	2022
Druckverlust	(1)	kPa	23	16	29	20	19	13
Schallleistungspegel	(2)	dB(A)	76	64	76	65	77	65
Leistungsaufnahme		W	198	110	210	114	212	120

AREOP			32	32	32	33	33	33
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
Anzahl Pole			4	4	6	4	4	6
Motorverbindung			Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	4500	4300	3200	4150	4000	2900
Heizleistung	(1)	kW	35,6	34,7	29,2	39,5	38,6	31,8
Wasserdurchsatz	(1)	1/h	3143	3060	2579	3486	3411	2806
Druckverlust	(1)	kPa	20	19	14	18	17	12
Schallleistungspegel	(2)	dB(A)	76	76	69	76	76	69
Leistungsaufnahme		W	320	315	175	340	330	180

AREOP			34	34	34	42	42	42
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
Anzahl Pole			4	4	6	4	4	6
Motorverbindung			Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	4050	3900	2800	6900	7100	5600
Heizeistung	(1)	kW	45,1	44,0	35,6	53,4	54,3	47,4
Wasserdurchsatz	(1)	I/h	3980	3886	3145	4718	4793	4185
Druckverlust	(1)	kPa	29	28	19	37	38	30
Schallleistungspegel	(2)	dB(A)	77	77	70	75	73	67
Leistungsaufnahme		W	345	340	182	623	650	450

AREOP			43	43	43	44	44	44
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
Anzahl Pole			4	4	6	4	4	6
Motorverbindung			Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	6400	6550	5300	6200	6400	5150
Heizleistung	(1)	kW	59,6	60,4	53,2	66,8	68,1	59,5
Wasserdurchsatz	(1)	1/h	5259	5329	4695	5894	6009	5250
Druckverlust	(1)	kPa	36	37	30	23	24	19
Schallleistungspegel	(2)	dB(A)	74	74	68	75	75	69
Leistungsaufnahme		W	635	690	465	655	700	470

(1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schallleistung gemessen gemäß ISO 3741-100\% der Höchstgeschwindigkeit

TECHNISCHE DATEN NENNWERTE AREO P - HEIZUNG

AREOP			53	53	53	54	54	54
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
Anzahl Pole			6	4	6	6	4	6
Motorverbindung			Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	6200	7900	6450	5900	7600	6200
Heizleistung	(1)	kW	60,8	70,2	62,3	66,2	77,4	68,3
Wasserdurchsatz	(1)	I/h	5373	6202	5497	5852	6834	6033
Druckverlust	(1)	kPa	19	25	20	21	27	22
Schallleistungspegel	(2)	dB(A)	69	76	72	71	77	73
Leistungsaufnahme		W	374	732	775	380	755	780
AREOP			63	63	63	64	64	64
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
Anzahl Pole			6	6	8	6	6	8
Motorverbindung			Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	8100	8300	6500	7500	7650	6000
Heizleistung	(1)	kW	99,7	101	86,4	99,6	101	85,8
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	8802	8943	7626	8795	8913	7571
Druckverlust	(1)	kPa	29	30	23	29	29	22
Schallleistungspegel	(2)	dB(A)	65	72	67	71	72	67
Leistungsaufnahme		W	560	575	380	582	590	390

(1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schalleistung gemessen gemäß 1503741 - 100% der Höchstgeschwindigkeit

Heizgebläse AREO

TECHNISCHE DATEN NENNWERTE AREO C - HEIZUNG

AREOC			12	12	13	13	14	14	22	22
Spannungsversorgung		V-ph-Hz	230-1-50							
Anzahl Pole			4	6	4	6	4	6	4	6
maximaler Heizufftstrom		$\mathrm{m}^{3} / \mathrm{h}$	1280	1000	1140	900	1040	800	3020	2100
Heizleistung	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9	19,9	16,2
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	863	749	1097	946	1252	1047	1754	1432
Druckverlust	(1)	kPa	29	23	22	17	17	12	23	16
Schallleistungspegel	(2)	dB(A)	64	59	64	59	65	60	76	64
Leistungsaufnahme	(3)	W	67	49	69	50	70	51	198	110
AREOC			23	23	24	24	32	33	34	42
Spannungsversorgung		V-ph-Hz	230-1-50							
Anzahl Pole			4	6	4	6	4	4	4	4
maximaler Heizufftstrom		$\mathrm{m}^{3} / \mathrm{h}$	2630	1850	2600	1800	4500	4150	4050	6900
Heizleistung	(1)	kW	25,6	20,6	28,9	22,9	35,6	39,5	45,1	53,4
Wasserdurchsatz	(1)	I/h	2256	1820	2555	2022	3143	3486	3980	4718
Druckverlust	(1)	kPa	29	20	19	13	20	18	29	37
Schallleistungspegel	(2)	dB(A)	76	65	77	65	76	76	77	75
Leistungsaufnahme	(3)	W	210	114	212	120	320	340	345	623
AREOC			43	44	53	54	63	64		
Spannungsversorgung		V-ph-Hz	230-1-50							
Anzahl Pole			4	4	6	6	6	6		
maximaler Heizufftstrom		$\mathrm{m}^{3} / \mathrm{h}$	6400	6200	6200	5900	7695	7500		
Heizleistung	(1)	kW	59,6	66,8	60,8	66,3	79,3	99,6		
Wasserdurchsatz	(1)	l/h	5259	5894	5373	5852	8802	8795		
Druckverlust	(1)	kPa	36	23	19	21	29	29		
Schallleistungspegel	(2)	dB(A)	74	75	69	71	69	71		
Leistungsaufnahme	(3)	W	635	655	374	380	560	582		

[^15]
TECHNISCHE DATEN NENNWERTE AREO C - KÜHLUNG

AREOC			12	12	13	13	14	14	22	22
Spannungsversorgung		V-ph-Hz	230-1-50							
Anzahl Pole			4	6	4	6	4	6	4	6
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	898	898	808	808	718	718	1602	1602
Heizleistung	(1)	kW	7,87	7,87	10,0	10,0	11,2	11,2	13,4	13,4
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	695	695	884	884	988	988	1184	1184
Druckverlust	(1)	kPa	18	18	13	13	10	10	9	9
Gesamtkühlleistung	(2)	kW	2,30	2,30	2,82	2,82	3,15	3,15	3,61	3,61
Sensible Kühlleistung	(2)	kW	1,81	1,81	2,23	2,23	2,45	2,45	3,08	3,08
Wasserdurchsatz	(2)	I/h	395	395	482	482	541	541	620	620
Druckverlust	(2)	kPa	9	9	6	6	5	5	4	4
Schallleistungspegel	(3)	dB(A)	53	54	53	54	54	55	58	59
Leistungsaufnahme	(4)	W	33	34	33	34	33	34	95	81

AREOC			23	23	24	24	32	33	34	42
Spannungsversorgung		V-ph-Hz	230-1-50							
Anzahl Pole			4	6	4	6	4	4	4	4
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	1411	1411	1373	1373	2485	2292	2237	3738
Heizleistung	(1)	kW	17,3	17,3	19,1	19,1	22,9	25,4	29,1	35,1
Wasserdurchsatz	(1)	I/h	1527	1527	1686	1686	2024	2242	2569	3098
Druckverlust	(1)	kPa	15	15	5	5	5	5	8	7
Gesamtkühlleistung	(2)	kW	5,00	5,00	5,23	5,23	5,72	7,22	9,65	9,72
Sensible Kühlleistung	(2)	kW	3,91	3,91	4,20	4,20	5,23	6,12	7,50	7,85
Wasserdurchsatz	(2)	I/h	860	860	898	898	982	1239	1656	1668
Druckverlust	(2)	kPa	7	7	2	2	1	1	4	2
Schalleeistungspegel	(3)	dB(A)	63	60	59	60	63	63	64	62
Leistungsaufnahme	(4)	W	95	81	95	81	153	153	153	400

AREOC			43	44	53	54	63	64
Spannungsversorgung		V-ph-Hz	230-1-50					
Anzahl Pole			4	4	6	6	6	6
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	3467	3359	3001	2832	4232	4125
Heizleistung	(1)	kW	39,2	43,9	38,6	42,4	48,0	64,7
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	3460	3875	3406	3743	4240	5715
Druckverlust	(1)	kPa	7	3	11	11	8	8
Gesamtkühlleistung	(2)	kW	12,4	13,1	10,5	14,8	18,9	22,4
Sensible Kühlleistung	(2)	kW	8,69	10,3	8,50	11,4	14,3	16,8
Wasserdurchsatz	(2)	l/h	2123	2255	1800	2022	3237	3853
Druckverlust	(2)	kPa	3	1	5	6	4	4
Schallleistungspegel	(3)	dB(A)	61	62	53	55	56	58
Leistungsaufnahme	(4)	W	400	400	272	272	335	335

[^16]TECHNISCHE DATEN NENNWERTE AREO H - HEIZUNG

AREOH			13	13	23	23	33	33	33	43
Spannungsversorgung		V-ph-Hz	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	400-3-500	400-3-500	230-1-50
Anzahl Pole			4	6	4	6	4	4	6	4
Motorverbindung			Mono	Mono	Mono	Mono	Mono	Delta	Star	Mono
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	1083	855	2499	1758	3943	3800	2755	6080
Heizleistung	(1)	kW	10,2	8,89	21,3	17,3	33,2	32,5	26,9	50,4
Wasserdurchsatz	(1)	l/h	905	785	1882	1529	2935	2871	2376	4454
Druckverlust	(1)	kPa	13	10	19	13	12	11	8	25
Schallleistungspegel	(2)	dB(A)	64	59	76	65	74	76	69	75
Leistungsaufnahme		W	69	50	210	114	340	330	180	635

(1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schallleistung gemessen gemäß 1503741 - 100% der Höchstgeschwindigkeit

AREOH			43	43	53	53	53	63	63	63
Spannungsversorgung		V-ph-Hz	400-3-500	400-3-500	230-1-50	400-3-500	400-3-500	230-1-50	400-3-500	400-3-500
Anzahl Pole			4	6	6	4	6	6	6	8
Motorverbindung			Delta	Star	Mono	Delta	Star	Mono	Delta	Star
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	6223	5035	5890	7505	6128	8100	7885	6175
Heizleistung	(1)	kW	51,1	45,2	56,2	64,8	57,5	99,7	80,5	69,2
Wasserdurchsatz	(1)	I/h	4512	3991	4960	5720	5079	8802	7106	6112
Druckverlust	(1)	kPa	25	20	16	20	16	29	19	15
Schallleistungspegel	(2)	dB(A)	77	70	69	76	72	70	71	66
Leistungsaufnahme		W	690	465	375	732	775	560	575	380

[^17]
MASSZEICHNUNG

AREOH		B	E	G	1	2	\bigcirc
	mm	mm	mm	mm	${ }^{\prime \prime}$	"	kg
13	460	330	300	380	11/4	11/4	20
23	560	430	400	480	11/4	11/4	26
33	660	530	500	580	11/4	11/4	35
43	760	630	600	680	11/4	11/4	41
53	860	730	700	780	11/4	11/4	52
63	960	830	800	880	11/4	11/4	61

MASSZEICHNUNG

AREO P-AREOL

38

LEGENDE

$\mathbf{1}$	Anschluss Wassereinlass, Außengewinde gas
$\mathbf{2}$	Anschluss Wassereinlauf, Außengewinde gas

AREO P					G	1	2	$\stackrel{\square}{\circ}$
	mm	mm	mm	mm	mm	"	"	kg
12	460	330	328	300	380	3/4	3/4	20-20-21
13-14	460	330	329	300	380	3/4	3/4	20-20-21
22-23-24	560	430	428	400	480	3/4	3/4	26-26-27
32-33-34	660	530	528	500	580	1	1	34-35-37
42-43-44	760	630	628	600	680	1	1	40-41-44
53-54	860	730	728	700	780	11/4	11/4	52-55
63-64	960	830	828	800	880	11/4	11/4	61-64
AREOL								
	mm	mm	mm	mm	mm	"	"	kg
32-33	660	530	528	500	580	1	1	34-35
42-43	760	630	628	600	680	1	1	40-41
53	860	730	728	700	780	11/4	11/4	52
63	960	830	828	800	880	11/4	11/4	61

MASSZEICHNUNG

AREOC	A	B	D	E	G	1	2	-
	mm	mm	mm	mm	mm	${ }^{\prime}$	"	kg
12-13-14	460	330	328	300	380	3/4	3/4	20-20-21
22-23-24	560	430	428	400	480	3/4	3/4	26-26-27
32-33-34	660	530	528	500	580	1	1	34-35-37
42-43-44	760	630	628	600	680	1	1	40-41-44
53-54	860	730	728	700	780	11/4	11/4	52-55
63-64	960	830	828	800	880	11/4	11/4	61-64

Heizgebläse für die Klimatisierung mit EC-Motor

AREOi11-118 kW

Anverter
Technology

Zum Top der Kategorie zählende

 Zuverlässigkeit und EnergieeffizienzDer neue AREO ivereint die Zuverlässigkeit und Robustheit der ON/ OFF-Ausführung mit der innovativen Technologie Inverter. Die Serie AREO i ist mit einem in den Motor integrierten Brushless-Inverter (EC) ausgestattet, was eine präzise Regelung der Drehgeschwindigkeit und maximale Anpassung an die Augenblickswärmelast gewährleistet.
Die innovative Inverter Technologie erlaubt eine außerordentliche Luftleistung und eine Senkung des saisonalen Energieverbrauchs um bis zu 50\% gegenüber der herkömmlichen Ausführung mit AC-Motor.
Die abgerundeten Linien der Verkleidung verleihen dem Produkt ein besonders erlesenes Design.
Die AREO i-Palette besteht aus 22 Modellen zur Wandinstallation. AREO i ist dank dem innovativen Kondenswassersammelsystem und der zusätzlichen Wärmedämmung in der Verkleidung sowohl für den Heiz-als den Kühlbetrieb geeignet.
Die Palette bietet 6 verschiedene Baugrößen, die auch mit Batterien mit 4 Reihen angeboten werden, um den korrekten Betrieb mit von einer Wärmepumpe erzeugtem Heißwasser zu erlauben.

PLUS

" Niedrigen Schallpegel
" Großer Betriebsbereich (bis zu $65^{\circ} \mathrm{C}$ angesaugte Luft)
» Axiallüfter mit aerodynamischem Schaufelprofil (HyBlade®-Technologie)
» Elektromotor Klasse F, zugelassen für den Dauerbetrieb
" Lüfter und Motor sind integriert, was die Zuverlässigkeit signifikant erhöht

ZUBEHOR	
Elektronische Mikroprozessorsteuertafeln mit display	DFP Schablone für die Wandbefestigung
DIST Distanzhalter Steuerung MYCOMFORT zur Wandmontage	Schutzgitter für Sportanlagen (ballschutz)
MCLE Mikroprozessorsteuerung mit MYCOMFORT LARGE-Display	R Schutzgitter für Sportanlagen
MCSWE Wasserfühler für Steuerungen MYCOMFORT, EVO	Diffusoren
Leistungsschnittstelle und Steuerungen für Schieber	D0 Diffusor mit doppeltem Rang ausrichtbarer Flügel
CSD Unterputzwandsteuerung zum proportionalen Öffnen und Schließen des angetriebenen Schiebers SM	Frischluftöfnung
Verschiedenes Zubehör	PAE Frischluftoffnung
VA Zusätzliche Kondenswassersammelbecken	PAEM Manueller Mischschieber
Befestigungsschablonen	PAEMM Angetriebener Mischschieber, Versorgung 24V mit Rückholfeder
DFC Schablone für die Säulenbefestigung	Regenschutzgitter für Frischluftansaugung
DFO Ausrichtbare Schablone für die Wand-/Säulenbefestigung	GR Luftansauggitter mit Gegenrahmen

HAUPTBESTANDTEILE

Lüftungsmotoreinheit

Elektrolüter und Motor bilden eine integrierte Einheit und sind auf die Maximierung der Luftleistung optimiert. Auch für die Ausführungen mit Einphasenstromversorgung wird die Konformität mit ERP garantiert.

Elektromotor

Tropenfester Motor, direkt an den externen Rotor gekoppelt, serienmäßig mit folgenden Eigenschatten:

- ausgestattet mit internem Wärmeschutz
- Wicklungen in Klasse F
- Schutzart IP54
- wartungsfreie Kugellager

Axialventilator

Mit statisch ausgewuchteten Schaufeln mit aerodynamischem Profil (HyBladeTechnologie), die zur Verbesserung der Luftleistungen und Verminderung der Schallemissionen in ein besonderes Mundstück eingesetzt sind.

Verkleidung

Aus vorlackiertem Stahlblech, komplett mit Eckelementen aus ABS, komplett mit manuell ausrichtbaren Aluminium-Ausblasflügeln (mit Feder, die für eine optimale Verteilung der Luft im zu heizenden Raum am Luftauslass installiert sind.

Mikroprozessorsteuerung (Zubehör)

Die fortgeschrittene Mikroprozessorsteuerung regelt die Luftgeschwindigkeit des Brushless-Motors zwischen 0 und 100%, sodass das Endgerät unter allen Teillastbedingungen mit reduzierter Geschwindigkeit sowie mit signifikant niedrigerem Schallpegel und Stromverbrauch arbeitet.

MASSZEICHNUNG

Heizgebläse AREO i

TECHNISCHE NENNDATEN - BETRIEB IN HEIZEN

AREO i			12MEC	13MEC	14MEC	22MEC	23MEC	24MEC	32MEC	33MEC	34MEC
Spannungsversorgung		V-ph-Hz	230-1-50								
maximaler Heizluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	1427	1240	1152	2700	2350	2300	3100	2850	2770
Heizeistung	(1)	kW	6,99	8,83	10,3	12,5	16,1	18,1	19,1	21,2	24,1
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	612	773	901	1094	1411	1585	1674	1852	2107
Druckverlust	(1)	kPa	17	13	10	11	14	9	7	6	10
Schallleistungspegel	(2)	dB(A)	65	66	67	71	69	69	64	64	64
Leistungsaufnahme	(3)	W	67	66	68	139	132	146	105	108	108

(1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schallleistung gemessen gemäß ISO 3741 - 100% der Höchstgeschwindigkeit
(3) Gemessen bei der maximal Geschwindigkeit

AREO i			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC	52MEC	52TEC	53MEC	53TEC
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
maximaler Heizufftstrom		$\mathrm{m}^{3} / \mathrm{h}$	5800	7248	5400	7800	5350	6663	8800	9500	8450	9150
Heizleistung	(1)	kW	32,4	36,8	36,4	41,5	41,2	47,2	38,9	40,6	49,3	51,6
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	2839	3220	3184	3633	3611	4129	3405	3550	4315	4515
Druckverlust	(1)	$\mathrm{kPa}^{\text {a }}$	16	20	16	20	11	13	12	13	14	15
Schallleistungspegel	(2)	dB(A)	71	78	72	78	72	79	80	80	82	80
Leistungsaufnahme	(3)	W	318	563	334	566	344	576	715	859	766	876

(1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schallleistung gemessen gemäß 1SO 3741-100\% der Höchstgeschwindigkeit
(3) Gemessen bei der maximal Geschwindigkeit

AREO i			54MEC	54TEC	62MEC	62TEC	63MEC	63TEC	64MEC	64TEC
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
maximaler Heizufftstrom		$\mathrm{m}^{3} / \mathrm{h}$	8100	8850	7200	11200	6700	10500	6200	9750
Heizleistung	(1)	kW	54,6	57,6	51,5	66,8	59,8	79,4	59,9	80,3
Wasserdurchsatz	(1)	I/h	4781	5040	4506	5852	5234	6951	5241	7035
Druckverlust	(1)	kPa	15	17	9	14	13	21	12	21
Schalleistungspegel	(2)	dB(A)	82	81	69	78	70	79	71	79
Leistungsaufnahme	(3)	W	776	875	248	845	259	864	266	875

(1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
(2) Schallleistung gemessen gemäß ISO 3741-100\% der Höchstgeschwindigkeit
(3) Gemessen bei der maximal Geschwindigkeit

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63 TDC	63TDF
Spannungsversorgung		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
maximaler Heizluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	3400	3255	5575	7606	9006	7449	10734	8282
Heizleistung	(1)	kW	19,0	22,3	31,0	36,4	59,9	56,2	68,6	62,2
Wasserdurchsatz	(1)	I/h	1664	1954	2719	3183	5249	4921	6005	5448
Druckverlust	(1)	kPa	5	9	12	16	13	11	16	13
Schallleistungspegel	(2)	dB(A)	80	79	76	80	78	75	87	83
Leistungsaufnahme	(3)	W	189	193	388	918	693	414	1001	655

[^18]AREO i 11-118 kW

TECHNISCHE DATEN NENNWERTE - KÜHLUNG

AREO ${ }^{\text {i }}$			12MEC	13MEC	14MEC	22MEC		23MEC		24MEC	32MEC	33MEC	34MEC
Spannungsversorgung		V-ph-Hz	230-1-50										
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	865	936	899	1538	1616			1570	2409	2362	2412
Heizleistung	(1)	kW	5,26	7,43	8,73	9,10	12,8			14,2	16,5	18,8	22,0
Wasserdurchsatz	(1)	I/h	460	651	764	797	1122			1243	1443	1649	1926
Druckverlust	(1)	kPa	10	9	7	6	9			6	5	7	9
Gesamtkühlleistung	(2)	kW	2,90	4,11	4,83	4,75	7,15			7,71	8,00	9,75	12,7
Sensible Kühlleistung	(2)	kW	1,79	2,53	2,97	3,06	4,40			4,79	5,36	6,25	7,65
Wasserdurchsatz	(2)	l/h	505	714	834	819	1237			1333	1381	1684	1381
Druckverlust	(2)	kPa	16	14	11	8	14			8	6	7	6
Schalleistungspegel	(3)	dB(A)	47	54	55	57	59			64	58	59	60
Leistungsaufnahme	(4)	W	36	44	45	25	46			63	47	57	68
AREO ${ }^{\text {I }}$			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC		52MEC	52TEC	53MEC	53TEC
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50		230-1-50	400-3-50	230-1-50	400-3-50
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	3346	3399	3492	3278	3421	3282		4644	4536	4492	4365
Heizleistung	(1)	kW	23,5	23,7	27,9	26,8	31,0		30,2	27,2	26,8	33,9	33,3
Wasserdurchsatz	(1)	I/h	2058	2077	2440	2346	2716		2644	2382	2351	2965	2912
Druckverlust	(1)	kPa	9	9	10	9	6		6	7	6	7	7
Gesamtkühlleistung	(2)	kW	12,7	12,9	15,9	15,3	17,2		16,8	14,4	14,2	19,0	18,6
Sensible Kühlleistung	(2)	kW	7,99	8,09	9,65	9,31	10,6		10,3	9,20	9,00	11,6	11,4
Wasserdurchsatz	(2)	l/h	2200	2221	2748	2637	2980		2892	2487	2452	3268	3206
Druckverlust	(2)	kPa	13	14	16	15	10		9	9	9	11	11
Schalleeistungspegel	(3)	dB(A)	61	64	63	64	63		63	64	63	64	64
Leistungsaufnahme	(4)	W	91	69	118	73	120		76	97	92	105	96

AREOi			54MEC	54TEC	62MEC	62TEC	63MEC	$63 T E C$	64MEC	64TEC
Spannungsversorgung		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	4706	4653	6011	5888	6005	5605	5861	5779
Heizleistung	(1)	kW	39,1	38,8	46,1	45,5	55,6	53,1	57,6	57,1
Wasserdurchsatz	(1)	I/h	3427	3401	4036	3982	4870	4651	5047	4999
Druckverlust	(1)	kPa	9	8	8	7	11	10	12	11
Gesamtkühlleistung	(2)	kW	22,8	22,6	23,5	23,2	31,7	30,2	34,1	33,8
Sensible Kühlleistung	(2)	kW	13,7	13,6	15,3	15,1	19,3	18,4	20,3	20,2
Wasserdurchsatz	(2)	$1 / \mathrm{h}$	3936	3910	4064	4005	5465	5216	5900	5841
Druckverlust	(2)	kPa	14	14	10	10	17	16	20	19
Schallleistungspegel	(3)	dB(A)	66	66	64	62	67	62	70	65
Leistungsaufnahme	(4)	W	141	134	157	150	195	152	232	205

(1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-$ zulässige Höchstgeschwindigkeit bei Kühlen
(2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $28^{\circ} \mathrm{C}$ Trockenkugel $/ 19^{\circ} \mathrm{C}$ Feuchtkugel (53% relative Feuchtigkeit) - zulässige Höchstgeschwindigkeit bei Kühlen
(3) Schallleistung gemessen gemäß 1S0 3741 -zulässige Höchstgeschwindigkeit bei Kühlen
(4) Gemessen bei der maximal zulässigen Geschwindigkeit in der Kälte

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63TDC	63TDF
Spannungsversorgung		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
maximaler Kühlluftstrom		$\mathrm{m}^{3} / \mathrm{h}$	2601	2414	3848	4164	5746	4107	6173	4471
Heizleistung	(1)	kW	16,3	18,9	25,0	25,8	45,6	38,5	49,1	42,0
Wasserdurchsatz	(1)	$1 / \mathrm{h}$	1426	1653	2192	2261	3992	3367	4295	3675
Druckverlust	(1)	kPa	4	7	8	9	8	6	9	7
Gesamtkühlleistung	(2)	kW	5,83	9,65	12,2	13,4	21,1	19,4	25,9	23,9
Sensible Kühlleistung	(2)	kW	4,63	6,66	8,32	9,14	13,7	12,7	17,1	15,7
Wasserdurchsatz	(2)	$1 / \mathrm{h}$	1016	1672	2120	2332	3661	3367	4509	4124
Druckverlust	(2)	kPa	3	9	8	9	9	6	9	11
Schallleistungspegel	(3)	dB(A)	73	72	68	70	71	68	78	72
Leistungsaufnahme	(4)	W	86	92	139	177	219	103	363	131

[^19]
Luftdestratifikatoren

DST 1700-9100 m ${ }^{3} / \mathrm{h}$

Die Lösung zum Eliminieren der Stratifzierung der Warmluft in Industrieumgebungen

In den durch große Höhen und mit Heißluftsystemen beheizten Industrieumgebungen führt die Notwendigkeit, am Boden eine Komforttemperatur für das Personal zu gewährleisten, zu dem Nachteil, dass sich in den höheren Bereichen des Raumes Luft mit hoher Temperatur ansammelt. Die Wärme wird auf diese Weise in Dachnähe konzentriert und bleibt ungenutzt, was den Wärmeverlust der Umgebung erhöht.
Die Destratifikatoren der Serie DST eliminieren diesen Nachteil, denn sie erzeugen einem nach unten gerichteten vertikalen Luftstrom, um den Temperaturunterschied zwischen Boden und Decke bis auf maximal $3^{\circ} \mathrm{C}$ zu reduzieren. Im Sommer können die Destratifikatoren DST zum Erhalten einer wirksamen Belüftung genutzt werden. Sie sind mit einer aus Axiallüftern und Asynchron-Elektromotoren (je nach Größe Einphasenstrom- oder Drehstromausführung) bestehenden Lüftungsmotoreinheit mit externem Rotor ausgestattet, die die Übereinstimmung mit den jüngsten Normen zur Energieverbrauchsbegrenzung gewährleistet.
Der serienmäßig am Gerät installierte Zustimmungsthermostat und der manuell rückstellbare Motorschutzschalter sorgen gemeinsam mit den bequemen Haltebügeln und den ausrichtbaren Ausblasflügeln für eine besonders bequeme Installation ohne Bedarf weiteren Zubehörs.

PLUS

" Leichte Installation
" Serienmäßig mit Fernmotorschutz und Zustimmungsthermostat
" Ausrichtbare Ausblasflügel
" Axiallüfter HyBlade ${ }^{\bullet}$

HAUPTBESTANDTEILE

Lüftungsmotoreinheit

Der Axiallüfter mit Flügelprofi-Schaufeln des Typs HyBladee aus Aluminium mit Kunststoff- überzug bietet die Eigenschaften beider Materialien: Robustheit und Laufruhe vereinen sich mit einem leistungsstarken Asynchron-Elektromotor mit externem Rotor.

Zustimmungsthermostat

Ist an dem Gerät installiert und erlaubt die Einstellung der Auslösungstemperatur des Destratifikators.

Struktur

Metallbauteile aus vorlackiertem Stahlblech mit Eckelementen aus ABS und ausrichtbaren Flügeln aus Aluminium.

TECHNISCHE NENNDATEN

DST			14	26	36	46	56	66
LaufradVELindigkeit		rpm	1400	900	900	900	900	750
Nennluftdurchsatz		$\mathrm{m}^{3} / \mathrm{h}$	1710	3083	4199	7220	8142	9139
Min. Installationshöhe		m	3,00	3,50	4,50	5,00	7,00	6,50
Max. Installationshöhe		m	5,00	5,50	7,00	7,50	9,00	10,0
Spannungsversorgung		V-ph-Hz	230-1-50	230-1-50	400-3-50	400-3-50	400-3-50	400-3-50
Leistungsaufnahme		W	62	110	160	390	418	320
Stromaufnahme		A	0,30	0,50	0,30	0,70	0,70	0,60
Schalleistungspegel	(1)	dB(A)	65	68	72	76	78	70

(1) Schallleistung gemessen gemäß 1503741

MASSZEICHNUNG

DST

Regelung Galletti

Das Steuern der Klimatisierung wird immer einfacher und unmittelbarer: Der effektive Raumkomfort ist mit den Galletti-Steuertafeln wirksam, leicht und intuitiv zugänglich. Es werden einfache elektromechanische Steuerungen zur Verwaltung der Belüftungsgeschwindigkeit sowie Mikroprozessorsteuerungen für die komplette thermohygrometrische Kontrolle angeboten.
Die Verwaltung von 2- und 3-Wege-Ventilen, sowohl ON/OFF als modulierend, erfolgt auf der Basis der gemessenen Temperatur- und Feuchtigkeitswerte.

In jeden Anlagentyp integrierbare Steuerungen

Die breite Palette an Steuerungen Galletti bietet vielfältige Installationsmöglichkeiten.
Ganze 7 Steuerungen wurden für die Installation am Gerät entwickelt und gewährleisten einfache und elegante Lösungen. Spezielle Installationskits erlauben die Montage in den hydronischen Endgeräten ESTRO, FLAT. Auf diese Weise hat der Anwender die Temperaturkontrolle jederzeit zur Hand und verfügt über eine in jeden Umgebungstyp integrierbare Lösung.
Noch größer ist das Angebot an Steuerungen für die Wandmontage: 9 Steuerungen bieten die Möglichkeit, mehrere Endgeräte im gleichen Raum von einem einzigen Punkt aus zu verwalten.
Zusätzlich ist für hohe Wandendgeräte und für Kassettengebläsekonvektoren auch eine spezielle Infrarot-Fernbedienung verfügbar.

Steuergeräte für alle Ansprüche

Das Galletti-Sortiment passt sich allen Ansprüchen hinsichtlich Wirtschaftlichkeit und Zweckdienlichkeit an. Mit seinen 9 elektromechanischen und 5 Mikroprozessorsteuerungen nimmt Galletti hinsichtlich der Vielseitigkeit des Angebots eine Spitzenposition auf dem Markt ein. Die im Katalog angebotenen Steuerungen sind in der Lage, mit Endgeräten mit mehreren Geschwindigkeitsstufen oder mit modulierter Luftausblasung zu interagieren und unterschiedliche Temperatursteuerungsdynamiken und eine eventuelle serielle Kommunikation zu verwalten.

Serielle Kommunikation: Eine Möglichkeit für alle Anforderungen

Das Galletti-Angebot an Mikroprozessorsteuerungen mit serieller Schnittstelle RS485 erlaubt eine geeignete Verwaltung jeder Endeinheit, indem der Port buchstäblich für alle Anlageneinstellanforderungen geöfnet wird. Der Informationsaustausch über das Busnetz mittels Modbus-Kommunikationsprogramm (Standard der Kategorie) wird durch die Wellenkommunikation (OC) vervollständigt und mit dieser kombiniert, was vereinfachte und personalisierte Interaktionsmöglichkeiten zwischen Nutzer und Anlage schafft.

Netz mit Wellenkommunikation (OC)

» Einfache Installationslösung
" Einzigartige Schnittstelle zur Steuerung mehrerer Terminals
» Reduzierung der elektrischen Verkabelung
" Slave-Laufwerke replizieren genau die Master-Einheit
" Lösung geeignet für Terminals, die gleichen thermischen Belastungen ausgesetzt sind
" Mit EVO Steuerung verfügbar

Modbus-Netz

" Lösung geeignet für Terminals, die unterschiedlichen thermischen Belastungen ausgesetzt sind
" Jedes Terminal ist mit eigenen Justiersensoren ausgestattet
" Die Master-Einheit legt die wichtigsten Parameter fest
" Mehrere Freiheitsgrade können für Slave-Einheiten eingestellt werden
" Mit MYCOMFORT oder EVO Steuerung verfügbar

Gemischtes Netz

" Ideale Lösung für Hotels oder Umgebungen mit vielen klimatisierten Bereichen
" In Modbus kontrollierte Schlüsselbereiche mit Kopie der Instruktionen mittels Wellenkommunikation
» Der Master kann aus einem einfachen Befehl oder einem Überwachungssystem bestehen
" Überwachung mit abnehmender Autonomie
" Nutzung der Vorteile des Modbus-Netzes und des Wellenkommunikationsnetzes
" Mit EVO Steuerung verfügbar

Steuerungen und Software für hydronische Endgeräte

Übersicht Steuerungen für hydronische Endgeräte

Die folgende Tabelle kann verwendet werden, um schnell die den geforderten Funktionen am besten entsprechende Steuertafel zu finden.

음	Gerät	\checkmark	-	\checkmark	\checkmark	-
	Wand	-	\checkmark	-	-	\checkmark
$\frac{\text { 亭 }}{\frac{5}{5}}$	2 Rohre	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4 Rohre	-	-	-	-	-
	Luftthermostat	-	-	\checkmark	\checkmark	\checkmark
	3 Geschwindigkeiten	\checkmark	\checkmark	\checkmark	\checkmark	-
	4 Geschwindigkeiten	-	-	-	-	-
	Automatische Geschwindigkeiten	-	-	-	-	-
	Veränderbare Geschwindigkeit	-	-	-	-	-
	Entfeuchtet/RU-Messung	-	-	-	-	-
	Wasserfühler	-	-	-	-	-
	Fernluftfühler	-	-	-	-	-
	Fern-RF-Fühler	-	-	-	-	-
	Zustimmungsthermostat	\checkmark	\checkmark	$\checkmark *$	$\checkmark *$	-
	Verwaltung ON/OFF-Ventil	-	-	\checkmark^{*}	\checkmark^{*}	\checkmark
	Verwaltung Modulierventil	-	-	-	-	-
	Verwaltung Heizwiderstände	-	-	-	-	-
	Digitalausgänge	-	-	-	-	-
	Sommer/Winter Raum	-	-	-	\checkmark	\checkmark
	Sommer/Winter Wasser	-	-	-	-	-
	Sommer/Winter Luft (4 Schläuche)	-	-	-	-	-
	Economy	-	-	-	-	-
	Digitaleingänge	-	-	-	-	-
	Modbus-Kommunikation	-	-	-	-	-

\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark	-	\checkmark
-	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
-	-	-
-	-	\checkmark
-	-	\checkmark
-	-	-
\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
-	-	-
-	-	-
\checkmark	\checkmark	\checkmark
-	-	-
-	-	-
-	-	-
\checkmark	\checkmark	\checkmark
-	-	-
-	\checkmark	\checkmark
-	-	-
-	-	-
-	-	-

[^20]
Overview page of controls for hydronic indoor units

Die folgende Tabelle kann verwendet werden, um schnell die den geforderten Funktionen am besten entsprechende Steuertafel zu finden.

MIKROPROZESSORSTEUERUNGEN MIT DISPLAY

\checkmark	\checkmark	\checkmark	$\checkmark^{* *}$	$\checkmark * *$	\checkmark	Gerät	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Wand	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2 Rohre	亭
\checkmark	\checkmark	\checkmark^{*}	\checkmark	\checkmark	V^{*}	4 Rohre	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Lufthermostat	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 Geschwindigkeiten	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	*	4 Geschwindigkeiten	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Automatische Geschwindigkeiten	
-	-	\checkmark^{*}	\checkmark	\checkmark	-	Veränderbare Geschwindigkeit	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Entfeuchtet/RU-Messung	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Wasserfühler	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Fernluftfühler	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Fern-RF-Fühler	
-	-	-	-	-	-	Zustimmungsthermostat	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Verwaltung ON/OFF-Ventil	
-	-	\checkmark^{*}	\checkmark	\checkmark	-	Verwaltung Modulierventil	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	**	Verwaltung Heizwiderstände	
-	-	\checkmark	\checkmark	\checkmark	-	Digitalausgänge	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sommer/Winter Raum	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sommer/Winter Wasser	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sommer/Winter Luft (4 Schläuche)	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	Economy	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Digitaleingänge	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Modbus-Kommunikation	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	JONIX Management	

Steuerungen und Software für hydronische Endgeräte EVO

Touchscreen-Bedienoberfläche

 EVO-2-TOUCH

PLUS

" Kapazitives Touchscreen-Display 2.8"
» Integrierter Wassertemperaturfühler und Feuchtigkeitsfühler
» Vom Leistungsteil abgeleitete Niederspannungsversorgung
» Wandinstallation oder Installation am Gerät ART-U
» Vorgerüstet für die wichtigsten Stromanschlusskästen
» Bedienerfreundlich
" Rahmen aus Aluminium und Polyethylen in verschiedenen Farben

MERKMALE

Intelligente Schnittstelle
Die verschiedenen Bildschirmseiten sind so gestaltet, dass die Mensch-Maschine-Kommunikation intuitiv möglich ist. Jede Seite enthält nur wenige wesentliche Informationen, die es ermöglichen, die wichtigsten Betriebsparameter des Geräts nachzuschlagen und die Steuerung den Systemanforderungen entsprechend zu konfigurieren.

Smart touch

Die Touchscreen-Technologie ist ein weiteres Element zur Vereinfachung der Benutzererfahrung. Dank der 'Tap'- und 'Swipe'-Funktion ist die Benutzererfahrung derjenigen bei einem Smartphone ähnlich.

EINSTELLUNG

Installationsweisen

Die Touchscreen-Bedienoberfläche kann in Kombination mit der Leistungsplatine ART-U an der Serie EVO BOARD installiert werden, wodurch alle fortgeschrittenen Funktionen von EVO mit einem stark designorientierten Produkt integriert werden können. Die verschiedenen Farbkombinationen des Rahmens erlauben in Kombination mit den verschiedenen Versionen des Verkleidungspaneels der Serie ART-U, ein hohes Maß an individueller Gestaltung. Wenn in Kombination mit anderen Gebläsekonvektorserien vorgesehen, ermöglicht die Vorrüstung für die wichtigsten Elektrokastenstandards eine einfache Installation an der Wand. In diesem Fall ermöglichen die an beiden Enden des Kastens vorhandenen Schlitze die korrekte Erfassung der Umgebungstemperatur durch den in die Steuerelektronik integrierten Sensor.

FARBPALETTE

Personalisierbarer Rahmen

Der Außenrahmen der Schnittstelle ist in vier verschiedenen Farben erhältlich und wird aus zwei Aluminiumblechen mit Polyethylenkern hergestell. Die verfügbaren Farben sind weiß, schwarz, grau und rot und ermöglichen die ideale Kombination mit den Ausführungen der Serie ART-U. Bei der Wandmontage stellen die verschiedenen Lösungen eine gute Auswahlmöglichkeit dar, um die beste Kombination mit dem Stil der zu klimatisierenden Umgebung zu erlauben.

FUNKTION

"Economy"

Typisch für Hotelzimmer und andere unregelmäßig belegte Räume ist eine schwächere Klimatisierung, wenn keine Personen anwesend sind. Diese Lösung wird häufig mit Anwesenheitssensoren oder Magnetlesegeräten erhalten, was eine signifikante Energieersparnis gewährleistet, aber die Möglichkeit erfordert, den Fan coil einfach und wirksam auf die Betriebsart "Economy" zwangszuschalten. All dies ist mit EVO möglich, denn EVO verfügt über 3 vorkonfigurierte digitale Eingänge für ON/OFF, "Economy" und Sommer/ Winter-Fernumschaltung.

Sperrfunktion

An allen Schnittstellen, die mit der Leistungskarte EVO BOARD kombiniert werden können, ist es möglich, die Sperre der Steuerfunktion zu erzwingen, um unerwünschte Änderungen der Betriebs- und Konfigurationsparameter des Gebläsekonvektors zu vermeiden. Diese Funktion wird je nach gewählter Schnittstelle mit einer Tastenkombination oder durch Eingabe eines Passworts aktiviert.

Konfigurierbarer Digitalausgang

EVO ist mit einem vollständig konfigurierbaren Digitalausgang ausgestattet, der es der Steuerung ermöglicht, wichtige Informationen an externe Geräte zu liefern, wie z.B. die Kühl- und/ oder Heizanforderung, die Betriebsart und das eventuelle Vorhandensein eines Alarms.

Aktivierung externer Entfeuchter/Befeuchter

Die Steuerung implementiert die Kontrolle der relativen Feuchtigkeit mit einstellbarem Sollwert. Durch den Anschluss eines speziellen Fühlers an die Steuerung können nicht nur die Regeldynamiken der Fan coil verändert, sondern auch der Aufruf externer Geräte wie Befeuchter und Entfeuchter verwaltet werden.

Elektronische Mikroprozessorsteuerung

EVO

Leicht und intuitiv anzuwendender Multifunktionsregler

EVO enthält die beste Regeltechnik von Galletti für hydronische Endgeräte.
Die vollständig im technischen Büro von Galletti entwickelte EVOSoftware besteht aus zwei verschiedenen Teilen in zwei Mikroprozessoren. Das erste Teil residiert auf der Leistungsplatine und verwaltet die Überwachung der Regelparameter und -logiken. Das zweite Teil der Software ist in den Mikroprozessor der Anwenderschnittstelle geladen und gewährleistet eine effektive Kommunikation, mittels der Installateur und Anwender bei der Konfiguration und dem Gebrauch der Steuerung geführt werden.
Wenn es erforderlich ist, die Leistungsplatine an der Maschine zu installieren, eine Option, die beim Großteil der hydronischen Endgeräte von Galletti verfügbar ist, reicht es bei der Verkabelung aus, die Anwenderschnittstelle mit einem abgeschirmten zweipoligen Kabel anzuschließen. Dadurch werden die Installationszeiten und -kosten halbiert.
Die Steuerung EVO wurde für die Verwaltung der Anlagenendgeräte des Galletti-Sortiments mit Einphasenstrom-Asynchronmotoren mit mehreren Geschwindigkeitsstufen oder mit EC-Motoren mit modulierter Geschwindigkeit entwickelt. Die fortgeschrittene Technologie dieser Steuerung erlaubt das Zusammenstellen von Steuernetzen, die für alle Anforderungen geeignet sind, um eine automatische und intelligente Verwaltung der Anlagenendgeräte zu gewährleisten.

PLUS

" Bedeutende Ersparnis während der Installationsphase
" Benutzerfreundliche Schnittstelle
" Serielle Kommunikation RS485 und OC
" Fortgeschrittene Entfeuchtungsfunktion
" Gleichzeitige Verwaltung von 3 modulierenden Vorrichtungen
" Fortgeschrittene Verwaltung der Zeitabschnitte
" LCD-Display oder Touch Screen

Ein Multi-Interface-Steuerung

EVO zeichnet sich durch die Möglichkeit aus, das Leistungsmodul mit verschiedenen Arten von Schnittstellen zu kombinieren, und so von Fall zu Fall die beste Lösung für unterschiedliche Installationsanforderungen anzuwenden.
Falls keine Schnittstelle benötigt wird, ist es möglich, die Einheit mit Hilfe der App Galletti direkt mit Ihrem Smartphone zu pairen (nach Vorkonfiguration der Leistungsplatine).

Lösungen Split

Die Trennung zwischen den Leistungselementen und der graphischen Schnittstelle ist eine sehr praktische Lösung unter dem Aspekt der Installation und hat den Vorteil, dass die mit dem Bediener in Kontakt geratende Schnittstelle mit Niederspannung versorgt wird und dass mit nur einem Kabel sowohl die Stromversorgung als auch der Informationsaustausch zwischen den beiden Geräten erhalten wird. Auf diese Weise werden die Länge und die Kosten der zu verlegenden Kabel erheblich reduziert und stellen für den Endanwender keine zusätzlichen Kosten dar.

ZUBEHÖR

Anwenderschnittstelle mit LCD-Display

EVO DISP

PLUS

LCD-Display mit integriertem Temperaturfühler
Vom Leistungsteil abgeleitete Niederspannungsversorgung
Wandinstallation oder Installation am Gerät ART-U
Vorgerüstet für Kasten 503
Personalisierbarer Stand-by-Modus
Tastensperrfunktion

LCD-Display

Das Bedienfeld wird direkt an die am Gebläsekonvektor installierte Leistungsplatine angeschlossen, von der die Niederspannungsversorgung direkt abzweigt. Die Schnittstelle ist für die Installation an Standard-Elektrokästen vorgesehen und ist für die Aufnahme einer Sonde für die Messung der relativen Lufffeuchtigkeit vorbereitet. Die RTC-Uhr, mit der sie ausgestattet ist, ermöglicht die Steuerung des Gebläsekonvektors durch die Einstellung von Zeitabschnitten.

Automatische Verwaltung der

Zeitabschnitte

Die Anwenderschnittstelle erlaubt das Einstellen des ON/OFF-Status der Steuerung und des gewünschten Sollwerts Stunde für Stunde für verschiedene Wochentage. Wenn die o.g. Betriebsparameter auf "Master"-Einheiten eingestellt werden, können sie an allen angeschlossenen "Slaves" wiederholt werden.

Serielle Kommunikation

Die Steuerung verfügt über serielle Ports für RS485-Kommunikation und Wellenkommunikation, was die Entwicklung von Steuernetzen erlaubt, die für alle Ansprüche geeignet sind.

Steuerung der

Moduliervorrichtungen
EVO ist in der Lage, gleichzeitig bis zu 2 Modulierventile und einen BLDCLüfter unter Anpassung des Luft- und Wasserdurchsatzes an die Wärmelast zu verwalten.

Feuchtigkeitskontrolle

EVO bietet die Möglichkeit, in Abhängigkeit von der relativen Umgebungsfeuchtigkeit und einem einstellbaren Sollwert automatisch ein Entfeuchtungsverfahren einzuleiten. Die Funktion erfordert einen als Zubehör angebotenen Feuchtigkeitsfühler.

Smartphone-App zur Steuerung von Endgeräten

GALLETTI APP

Wi-Fi
Bluetooth
Touchscreen-Vorrichtung

PLUS

» Wi-Fi- oder Bluetooth Kommunikation
» Immer in der Cloud nachschlagbare Informationen
» Fernzugriff
" Mit iOS und Android kompatible App
» Kann mit allen Endgeräten verwendet werden, die von EVO verwaltet werden

EIGENSCHAFTEN UND MERKMALE

Navel

Ist das Gerät, das verwendet wird, um die Wi-Fi- oder BluetoothKommunikation zwischen EVO BOARD und dem Smartphone, auf dem die App installiert ist, zu aktivieren Galletti. Wird an der Seitenwand des Gebläsekonvektor angebracht und bezieht die Stromversorgung direkt von EVO.

Globale Fernsteuerung

Alle fortgeschrittenen Funktionen der Steuerung EVO sind in der App vorhanden, die daher in der Lage ist, Entfeuchtungszyklen zu aktivieren und zu deaktivieren, die Mindesttemperaturfunktion zu aktivieren und die Zeitabschnitte, die das Ein- und Ausschalten der Geräte definieren, zu aktivieren oder zu deaktivieren.

Kommunikation

Es sind zwei Kommunikationsalternativen verfügbar: Wi-Fi oder Bluetooth. Im ersten Fall werden die Informationen an die Cloud gesendet und jedes Gerät, das die App nutzt, kann die Einstellungen überall dort abfragen oder ändern, wo eine Internetverbindung verfügbar ist. Der zweite Modus ist dagegen das Stand-Alone, das in der Lage ist, das Smartphone in eine Fernbedienung zu verwandeln, mit der der Gebläsekonvektor gesteuert werden kann.

Diagnostische Informationen

Die App stellt Informationen bezüglich des Zustands des Gebläsekonvektors und einiger an denselben angeschlossener Zubehörteile zur Verfügung. Unter anderem ist es möglich, den Öffnungs-/Schließzustand des Ventils, die Speisewassertemperatur und das eventuelle Vorhandensein eines Alarms in der Anzeige des Lufttemperaturfühlers zu evaluieren.

Kompatibilität

Dank der Möglichkeit, das Zubehör Navel mit der Leistungsplatine EVOBOARD zu kombinieren, eignet sich die App für die Steuerung aller im Katalog enthaltener Endgeräte, die nicht bereits über die Möglichkeit der Steuerung mittels einer Infrarot-Fernbedienung verfügen. In der App ist es möglich, eine personalisierte Liste von Endgeräten zu erstellen, was eine unmittelbare Abfrage ermöglicht.

ZUBEHÖR

EVO-2-TOUCH
Touchscreen-Bedienoberfläche 2,8" für EVO-Steuerung

EVO-LUTION

EVO BOARD

EVO-2-TOUCH

Elektronische Mikroprozessorsteuerung mit LCD-Display

MYCOMFORT

Drei verschiedene Lösungen für ein personalisiertes Komfortniveau

Das Kontrollieren der Klimatisierung wird einfach und unmittelbar: Der effektive Raumkomfort wird über die Steuertafeln MYCOMFORT, den Verbindungsknoten der integrierten Galletti-Systeme, kontrolliert.
Die Mikroprozessorsteuertafel erlaubt die Regelung des Betriebs der hydronischen Endgeräte der Anlage, um einen perfekten Raumkomfort und die komplette Kontrolle der Klimatisierungsanlage zu erhalten.
Die Steuerung ist mit einem großen Flüssigkristall-Display mit integrierter Tastatur zur Einstellung und zum Ablesen der Raumparameter und der Betriebsparameter des angeschlossenen hydronischen Endgeräts ausgestattet.
Das große Zubehörsortiment erlaubt sowohl die Wandinstallation als die Installation am Endgerät.

PLUS

" Drei Ausführungen in Abhängigkeit von den Ansprüchen des Kunden
» Großes Display
» Benutzerfreundliche Schnittstelle
» Wandinstallation oder Installation am Gerät
" Leichte Verbindung und leichtes Startup

VERFÜGBARE VERSIONEN

BASE

Verwaltung des Anlagenendgeräts und der Regelventile in Abhängigkeit von der Temperatur.

MEDIUM

Verwaltung des Anlagenendgeräts (4 Lüftergeschwindigkeiten) und der Regelventile in Abhängigkeit von der Temperatur und Feuchtigkeit, Verbindung mit GARDA-Systemen, Realisierung von SmallNetzen im Slave-Modus

LARGE

Verwaltung des Anlagenendgeräts (4 Lüftergeschwindigkeiten) und der Regelventile in Abhängigkeit von der Temperatur und Feuchtigkeit, Wochentimer, Verbindung mit GARDA-Systemen, Realisierung von Small-Netzen im Master-Modus, Display Rückbeleuchtung, Verwaltung der Moduliervorrichtungen (Ventile, EC-MOTOREN).

HAUPTBESTANDTEILE UND FUNKTIONEN

Schale

Die Außenschale besteht aus UV-stabilisiertem ABS, um die Originalfarbe im Laufe der Zeit zu erhalten. Dank dem angenehmen Design auch für die Installation in eleganter Umgebung geeignet.

Klemmenbrett

MYCOMFORT ist mit einem Schnellan-schluss-Klemmenbrett ausgestattet, das eine problemlose Verkabelung erlaubt. Vereinfachte Programmierung der Funktionen und der Adresse direkt über Tastatur und Display

Verwaltung des Zubehörs und der externen Vorrichtungen

Die Steuerung erlaubt die Verwaltung von 2- und 3-Wege-Ventilen, sowohl ON/OFF als modulierend; ferner besteht die Möglichkeit, externe Vorrichtungen wie Kältemaschine, Kessel, Bereichsventile zu verwalten. Mittels potentialfreier Kontakte erfolgt das ON/OFF in Abhängigkeit von den Raumparametern.

Display

Dem Anwender stehen 3" zur Verfügung, um alle für eine wirksame Regelung erforderlichen Daten anzuzeigen. Für einen anwenderfreundlichen Gebrauch sind alle Funktionen durch intuitive Piktogramme dargestellt.

Präzision und Ersparnis

Automatische Steuerung des Kühl- und Heizbetriebs der Einheit in Abhängigkeit von der Lufttemperatur und der Wassertemperatur.

Effektiver Komfort

MYCOMFORT ist in der Lage, das thermohygrometrische Wohlbefinden dank einem Fühler zu gewährleisten, der die Umgebungsfeuchtigkeit misst und Entfeuchtungszyklen erlaubt (durch Einwirken auf Ventile, Belüftung, Wassersollwert).

FUNKTIONEN MYCOMFORT

Überwachung

Die Steuerung ist mit Überwachungssystem integrierbar. Dazu wird der Verbindungsbus RS485 verwendet, auf dem alle Funktionen angezeigt werden können und über den der Zugriff auf das Programmierungsmenü von MYCOMFORT möglich ist.

Steuerungen und Software für hydronische Endgeräte TED

Vereinfachte elektronische Steuerung

TED

Eine Reihe von drei bequemen und wirksamen Steuerungen

Die drei verschiedenen Ausführungen der neuen elektronischen Steuerung TED sind Galletti Antwort auf den Bedarf nach einer einfachen Steuerung, die jedoch zugleich den verschiedenen Anlagenanforderungen angepasst werden kann.
Die Zuweisung der Betriebsarten erfolgt intuitiv und ist leicht auszuführen, während das mitgelieferte Zubehör die Installation der Steuerung an der Maschine wie auch an der Wand ermöglicht, Die Steuerung ist ferner in allen Ausführungen mit Fernluffühlem oder -wasserfühlern dedizierten Kontakten ausgestattet, In dem letzteren Fall ist es daher möglich, die Lüftungszustimmung nur zu erteilen, wenn die Wassertemperatur für den normalen Betrieb geeignet ist.

VERFÜGBARE VERSIONEN

TED2T

- Verwaltung der Endeinheiten mit Asynchronmotor in Anlagen mit zwei Rohren
- Verwaltung des Regelventils
- Verwaltung der Wasserzustimmung in Abhängigkeit von der Temperatur

TED4T

- Verwaltung der Endeinheiten mit Asynchronmotor in Anlagen mit vier Rohren
- Verwaltung von zwei Regelventilen
- Manuelle Umschaltung oder automatische saisonale Umschaltung (in Abhängigkeit von der Luft)
- Verwaltung der Wasserzustimmung in Abhängigkeit von der Temperatur

TED10

- Verwaltung der Endeinheiten mit EC-Motor dank dem internen Erzeuger des Signals 0-10 V
- Für Anlagen mit 2 bis 4 Rohren geeigneter
- Manueller oder automatischer Geschwindigkeitsmodus
- Verwaltung der Wasserzustimmung in Abhängigkeit von der Temperatur

ZUBEHÖR

KB A	Kit für die Installation der TED-Steuerungen an ESTRO FA
KB F	Kit für die Installation der TED-Steuerungen an FLAT/FLATS

KBLSX

Kit für die Installation der TED-Steuerungen RECHTS an ESTRO FL/ FU / FB

Steuerungen und Software für hydronische Endgeräte EVO LINK

Überwachung mit 5"-Touchscreen für die Verwaltung des Klimatisierungssystems

EVO LINK

EVO LINK, Überwachung leicht gemacht

Um ein Überwachungspaket anzubieten, das sowohl intuitiv als auch leistungsstark ist, wurde EVO LINK entwickelt.
Die Galletti-Überwachung in einem praktischen All-in-One-Format. EVO LINK ist ein elegantes und unauffälliges 5 -Zoll-Tablet zur Wandmontage, das alles enthält, was zur Überwachung einer kleinen Anlage erforderlich ist. Dank EVO LINK können bis zu 30 Gebläsekonvektoren mit EVO-Steuerungen und eine Wärmepumpe über eine erneuerte und intuitive Grafik gesteuert werden.
Mit EVO LINK ist die Überwachung so einfach wie nie zuvor. Das Einstellen von Zeitfenstern, das programmierte Ein- oder Ausschalten oder das Ändern des Sollwerts Ihrer Geräte wird zu einer schnellen und angenehmen Angelegenheit.

ZUBEHÖR

Elektronische Mikroprozessorsteuertafeln mit display

[^0]: 1 Ausführung:
 A- Wundgerät mit Gehäuse
 B-Wundgerät mit niedrigem Gehäuse
 C (-Einnbaugerät (Zwischendecke/-Wund)
 F F-Einnbaugerät (Zwischendecke/-Wund)
 G BC-EEinbaugerät mit niedrigem Gehäuse
 L- Wundgerät mit Gehäuse
 CLASSIC - Wundgerät mit Gehäuse
 P-Deckengerät mit Gehäuse
 U-Wund und Deckengerät mit Gehäuse
 0 Motoren mit 3 Geschwindigkeiten
 G Ventilator mit GreenTech BLDC-Motor
 BLDC-Motor
 P 6-stufiger Motor
 L Wasseranschlüsse auf der linken Seite
 M Wasseranschlüsse auf der linken Seite - 4 Reihen
 R Wasseranschlüsse auf der rechten Seite
 S Wasseranschlüsse auf der rechten Seite - 4 Reihen
 0 Nicht vorhanden
 E RE-Heizelement
 Wasseranschlusse auf der linken Seite
 R Wasseranschlüsse auf der rechten Seite
 0 Nicht vorhanden

 ## VKS - 3 -Wege-Ventil- 230V-ON/OFF - komplettes Hydraulikanbindungskit

 KV - 2 -Wege-Ventil- 230 V - ON/OFF
 VKMS - 3 -Wege-Ventil- 24V - MODULIEREND- komplettes Hydraulikanbindungskit
 KVM - 2 -Wege-Ventil -24V - MODULIEREND
 VKS24-3-Wege-Ventil - 24V - ON/OFF - komplettes Hydraulikanbindungskit
 KV24-2-Wege-Ventil - 24V - ON/OFF
 AKSND-3-Wege-Ventil -230V - ON/OFF-Hydraulikanbindungskit
 VKMSND - 3 -Wege-Ventil-24V - MODULIEREND-Hydraulikanbindungskit
 VKS24ND - 3 -Wege-Ventil- 24 V - ON/DFF - Hydraulikanbindungskit
 VPIK-2-Wege-Ventil - pressure independent-230V - ON/OFF
 VPIKM - 2-Wege-Ventil - pressure independent - 24 V - MODULIERVENTIL

[^1]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Luftemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^2]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:202
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENTZertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^3]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^4]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^5]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Luftemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schalleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^6]: (1) Wassertemperatur $7^{\circ} / 12^{\circ}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, 1° C Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:202
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENTZertifikate

 Spannungsversorgung 230-1-50 oder 220/-1-60 (V-ph-Hz)

[^7]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchthugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (3) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^8]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (3) Schalleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^9]: (1) Wassertemperatur $7^{\circ} / / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:202
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und ISO 3742
 (E) EUROVENTZertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^10]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) ausgedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENTZertifkate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^11]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) aussedrückt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^12]: (1) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) aussedrü̈ckt gemäß EN1397:2021
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $27^{\circ} \mathrm{C}$ Trockenkugel, $19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit)
 (3) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Luftemperatur $20^{\circ} \mathrm{C}$
 (4) Schallleistung gemessen gemäß 1503741 und 1503742
 (E) EUROVENT Zertifikate

 Spannungsversorgung 230-1-50 (V-ph-Hz)

[^13]: Modelle 6 und 6A nur mit on/off Ausführung erhältlich

[^14]: AREO P
 AREO H
 AREOL

 ## AREOC

 Heißwasser-Heizgebläse mit seitlichen Heißwasser-Heizgebläse mit vertikalen Heißwasser-Heizgebläse mit Luftmes-
 Wasseranschlüssen. Wasseranschlüssen zum Ersetzen von ser-Diffusor, Deckeninstallation. Endgeräten in bereits vorhandenen Anlagen.

 Heizgebläse für die klimatisierung mit einphasen Spannungsversorgung, mit asynchronmotor und seitlichen wasseranschlüssen, vertikale installation.

[^15]: (1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
 (2) Schallleistung gemessen gemäß 150 3741 - 100% der Höchstgeschwindigkeit
 (3) Gemessen bei der maximal Geschwindigkeit

[^16]: (1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}$ - zulässige Höchstgeschwindigkeit bei Kühlen
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatu $27^{\circ} \mathrm{C}$ Trockenkugel $/ 19^{\circ} \mathrm{C}$ Feuchtkugel (47% relative Feuchtigkeit) - zulässige Höchstgeschwindigkeit bei Kühlen
 (3) Schallleistung gemessen gemäß 1503741 -zulässige Höchstgeschwindigkeit bei Kühlen
 (4) Gemessen bei der maximal zulässigen Geschwindigkeit in der Kälte

 Die aufgeführten Daten beziehen in der Tabelle sich auf die im Kühlbetrieb zulässige Höchstgeschwindigkeit, um das Mitschleppen von in dem Register erzeugten Kondenswassertropfen zu vermeiden.

[^17]: (1) Wassertemperatur $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
 (2) Schallleistung gemessen gemäß ISO 3741-100\% der Höchstgeeshwindigkeit

[^18]: (1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ}$, Lufttemperatur $15^{\circ} \mathrm{C}-100 \%$ der Höchstgeschwindigkeit
 (2) Schallleistung gemessen gemäß $1503741-100 \%$ der Höchstgeschwindigkeit
 (3) Gemessen bei der maximal Geschwindigkeit

[^19]: (1) Wassertemperatur $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, Lufttemperatur $15^{\circ} \mathrm{C}-$ zulässige Höchstgeschwindigkeit bei Kühlen
 (2) Wassertemperatur $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, Lufttemperatur $28^{\circ} \mathrm{C}$ Trockenkugel / $19^{\circ} \mathrm{C}$ Feuchtkugel (53% relative Feuchtigkeit) - zulässige Höchstgeschwindigkeit bei Kühlen
 (3) Schallleistung gemessen gemäß 1503741 - zulässige Höchstgeschwindigkeit bei Kühlen
 (4) Gemessen bei der maximal zulässigen Geschwindigkeit in der Kälte

[^20]: * nicht miteinander kompatible Optionen

