TABLE DES MATIÈRES

FC - Uı	nités hydronique	es			
	ART-U Ventilo-convecteur de design profond jusqu'à seulement 10 cm et doté de moteur EC 1 - 4 kW	pag. 30		CFV Ventilo-convecteurs installation encastrée avec structure métallique 1 - 4 kW	pag. 76
	ART-U Canvas Ventilo-convecteur de design profond jusqu'à seulement 10 cm et doté de moteur EC 1 - 4 kW	pag. 36	•	FM Unités terminales type mural haute 2 - 4 kW	pag. 80
7	ESTRO Ventilo-convecteurs à ventilateur centrifuge 1 - 11 kW	pag. 40		EFFETTO Module design pour l'aspiration et la diffusion de l'air à effet Coandă	pag. 84
	ESTRO i	pag. 54		EFFETTO AirClissi Module lumineux à effet Coandă	pag. 86
	Ventilo-convecteurs à ventilateur centrifuge et moteur EC 1 - 9 kW	pag. 34		ACQVARIA Unités terminales type cassette 3 - 10 kW	pag. 88
	FLAT S Ventilo-convecteur avec habillage design, profondeur 17 cm 1 - 3 kW	pag. 60		ACQVARIA i Unités terminales type cassette avec moteur EC 3 - 10 kW	pag. 94
	FLAT S i Ventilo-convecteur avec habillage design, profondeur 17 cm et moteur EC 1 - 3 kW	pag. 64		DUCTIMAX Unités gainables à pression statique disponible moyenne 2 - 8 kW	pag. 100
	FLAT Ventilo-convecteurs design à ventilateur centrifuge 2 - 5 kW	pag. 68		DUCTIMAX i Unités gainables à pression statique disponible moyenne et moteur EC 2 - 8 kW	pag. 106
	FLAT i Ventilo-convecteur design à ventilateur centrifuge et moteur EC 2 - 5 kW	pag. 72		UTN Unités de thermoventilation à grande pression statique disponible 3 - 23 kW	pag. 112

CATALOGUE DES PRODUITS

UTN i

pag. 120

Unités de thermoventilation à grande pression statique disponible avec moteur EC 4 - 18 kW

FH - Aérothermes

AREO

Aérothermes avec moteur ON/OFF

pag. 128

DST Destratificateurs d'air

1700 - 9100 m³/h

pag. 142

8 - 101 kW

AREO i

Aérothermes pour climatisation avec moteur EC

14 - 118 kW

pag. 138

CO - Contrôleurs et logiciel pour unités hydroniques

EVO-2-TOUCH

pag. 150

MYCOMFORT Commande électronique

pag. 156

Interface utilisateur touch screen

TED

EVO

pag. 152

Commande électronique à microprocesseur avec interface utilisateur éloignée

pag. 158

Contrôleur électronique

à microprocesseur

avec moniteur LCD

simplifié

EVO DISP

Interface utilisateur avec moniteur LCD pag. 153

EVO LINK

pag. 159


Superviseur à écran tactile de 5" pour la gestion du système de climatisatio

GALLETTI APP

Application de contrôle d'unités terminales pour smartphone

pag. 154

21 GAPCFX241A www.galletti.com

Ampleur de la gamme. Plus de 1000 possibilités

1961: Galletti, avec sa plaque radiante en cuivre Jolly, fait son entrée dans le monde de la climatisation!

Plus de 50 ans se sont écoulés, les types d'installation et les applications ont évolué, les marchés et les besoins des consommateurs se sont étendus, mais Galletti est encore un des leaders du secteur. L'objectif de l'entreprise est aujourd'hui de proposer la plus vaste gamme de solutions pour les unités hydroniques de climatisation, à travers la mise en œuvre de technologies et à travers un design qui se sont adaptés aux évolutions des installations, afin de conjuguer fiabilité et innovation.

La gamme comprend à présent des ventilo-convecteurs à ventilateur centrifuge ou tangentiel, des unités hybrides spécialement conçues pour le secteur résidentiel, unités à ventilo-convecteur axial-centrifuge, unités gainables à pression statique disponible moyenne et grande, et plus traditionnellement, des versions à convection pour le chauffage.

Économie d'énergie avec moteurs EC controlé par inverter

Dans le secteur de la climatisation, une tendance s'est désormais affirmée: proposer des solutions qui allient performances et basses consommations.

Galletti, conformément à son objectif d'innovation constante, propose des solutions dotées de moteurs brushless, gage des performances suivantes:

- » utilisation facile grâce à la modulation complète du débit d'air
- » économie de gestion de l'ordre de 50% comparée aux moteurs traditionnels
- » mise à régime rapide des espaces climatisés
- » adaptation constante de la puissance fournie en fonction de la charge effective
- » très bas niveaux sonores aux bas régimes de fonctionnement, par exemple la nuit

Le silence

La conception de tous les éléments et composants de ventilation des unités internes Galletti est le fruit du travail mené par le staff technique de l'entreprise qui dispose d'une structure de recherche et développement performante et d'un savoir-faire accumulé en plus de 50 ans d'activités dans le secteur.

Ainsi, les tout dernières études menées sur les matériaux et les profils aérodynamiques ont permis la mise au point de volutes et de ventilateurs spéciaux, conçus pour garantir des performances sonores du plus haut niveau à l'échelle européenne (certifiées Eurovent) alliées à une juste distribution de l'air qui assure le plus grand confort ambiant quelle que soit la phase de fonctionnement.

Technologie NTP JONIX

JONIX DUCT

≤ 500 m3/h

1000 ÷ 2000 m3/h

500 ÷ 1000 m3/h

2000 ÷ 4000 m3/h

JONIX INSIDE

PLUS

- » Haute efficacité: réduction de bactéries, virus, moisissures, COV jusqu'à 99 % de la charge microbienne initiale;
- » Faible consommation d'énergie: environ 10 watts;
- » Forte action désodorisante : élimine les odeurs de l'air en transit.
- » Processus naturel : ne fait pas usage de substances chimiques ni ne produit de substances chimiques résiduelles;
- » Technologie adaptable et dimensionnable en fonction des conditions de travail et d'utilisation.

Unités hydroniques à technologie NTP JONIX INSIDE et JONIX DUCT

La pollution de l'air des espaces confinés est depuis toujours un important problème de santé publique qui a de grandes répercussions sociales et économiques et, dans les circonstances critiques actuelles, la question de la purification de l'air des espaces confinés revêt une importance capitale.

Parmi les solutions offertes sur le marché, la technologie NTP (Non Thermal Plasma) est aujourd'hui considérée comme l'une des plus efficaces pour sa capacité d'oxydation et de décomposition des substances polluantes. Il s'agit d'une forme perfectionnée d'ionisation de l'air à haut pouvoir d'élimination des agents microbiologiques et chimiques. Le Non Thermal Plasma, est un phénomène physique induit à température ambiante.

"Plasma froid" s'agit d'un gaz ionisé, à savoir constitué de différentes particules chargées électriquement ; électrons, ions, atomes et molécules d'origine organique et chimique qui en se télescopant produisent des composants oxydants. A travers la collision d'électrons hautement énergétiques avec de l'oxygène, de la vapeur d'eau et de l'azote, il génère différents composants actifs (ions ou composants neutres et radicaux) qui sont transportés par le flux d'air vers les agents polluants.

Il s'agit par conséquent d'un système actif de purification de l'air qui va à la chasse aux agents polluants et qui les décompose sans générer des substances résiduelles. Le Non Thermal Plasma élimine bactéries, virus, moisissures, spores, odeurs et tous les composés organiques volatiles (COV): formaldéhyde, benzène, etc.

Depuis plusieurs années, Galletti intègre à ses unités hydroniques la technologie NTP développée par JONIX. Tous les dispositifs JONIX bénéficient de la technologie NTP (Non Thermal Plasma ou Plasma froid) qui induit une oxydation et conséquemment une décontamination grâce aux « générateurs JO-NIX » (ou « actionneurs »).

Département de médecine moléculaire - Université de Padoue

Le Département de médecine moléculaire a soumis la technologie Non Thermal Plasma présente dans les dispositifs Jonix à des tests de laboratoire pour en vérifier l'activité virucide.

Les résultats obtenus montrent que le dispositif utilisé (Jonix CUBE - technologie Non Thermal Plasma) présente une activité antivirale contre le SARS-CoV-2 (ou Covid-19), avec une réduction de la charge virale de 99,9999 %.

Pour garantir la précision maximale, le test a été effectué conformément à la norme UNI EN 14476:2019 « Essai quantitatif de suspension pour l'évaluation de l'activité virucide dans le domaine médical – Méthode d'essai et prescriptions (phase 2, étape 1) » et à la norme UNI EN 17272:2020 « Méthode de désinfection de l'air en milieu clos à travers des processus automatisés - Détermination de l'activité bactéricide, mycobactéricide, sporicide, levuricide, virucide et phagocytaire ». L'activité virucide a été testée en utilisant la souche SARS - CoV-2 (Covid-19). Toutes les expériences ont été menées dans un Laboratoire de Biosécurité de niveau 3 (BSL3).

Le dossier scientifique est disponible sur demande.

VENTILO-CONVECTEUR AVEC JONIX INSIDE

Le dispositif JONIX INSIDE, nouveauté installée sur les ventilo-convecteurs ESTRO, FLAT, FLAT S et ACQVARIA, empêche la formation de contaminants chimiques et biologiques (moisissures, bactéries et légionelle) sur les surfaces internes et dans l'air en transit. La purification intervient de manière ininterrompue et évite ainsi que les dépôts de poussière ne deviennent le substrat idéal propice au développement des moisissures et des bactéries. La position du dispositif JONIX INSIDE à l'intérieur du ventilo-convecteur a été décidée à l'issue de tests et d'expérimentations menés par les laboratoires ARCHA; en optant pour des cycles de fonctionnement du dispositif visant à obtenir le plus haut degré de purification de l'unité, en particulier de l'échangeur de chaleur, du bac de collecte des condensats, du ventilateur centrifuge et des surfaces internes.

Réglage unités avec JONIX INSIDE

Les contrôleurs EVO, EVO-2-TOUCH et MYCOMFORT gèrent le fonctionnement combiné du ventilo-convecteur et des dispositifs pour maximiser l'effet de purification du ventilo-convecteur au niveau des composants principaux tels que batterie, bac de collecte des condensats et filtre à air.

UNITÉS GAINABLES AVEC JONIX DUCT

Les unités gainables Galletti des séries DUCTIMAX et UTN utilisent la technologie NTP JO-NIX pour effectuer la purification de l'air en transit, la décontamination microbienne des surfaces internes des unités, des filtres, des batteries et la prévention du développement de la légionelle dans le bac de collecte des condensats. Les dispositifs sont dimensionnés en fonction du type d'utilisation prévue, du débit d'air et de la catégorie d'agents polluants à traiter.

Réglage JONIX INSIDE

Les modules sont installés à l'intérieur de plénums prévus à cet effet montés sur le refoulement ou sur l'aspiration de l'air et ils sont gérés par le contrôleur EVO pour en maximiser les effets sur l'unité, sur les canalisations et sur l'air en transit. L'électronique présente communique l'état de fonctionnement à la carte de puissance EVO BOARD et signale les éventuelles anomalies de fonctionnement et la nécessité de procéder aux interventions d'entretien programmé.

Ventilo-convecteur ART-U

Ventilo-convecteur de design avec épaisseur de 10 cm et doté de moteur EC

ART-U 1 - 4 kW

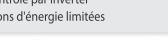
Installation Ventilateur à 2 tubes

Installation verticale

Innovation guidée par le design

ART-U est né de la très grande expérience de Galletti dans le développement et la conception de ventilo-convecteurs, il est le fruit des constantes activités de recherche et d'innovation et incarne le parfait mariage des performances et du design. ART-U est un produit unique en mesure de répondre aux exigences grandissantes en termes d'efficacité énergétique et qui par ailleurs va au devant des tendances les plus récentes de l'ameublement et du design d'intérieur.

Avec une profondeur qui, à hauteur de certains points, n'est que de 10 cm et grâce à des lignes uniques, il a été conçu pour être un produit résolument transversal, parfaitement adapté aussi bien aux cadres à l'enseigne de la sobriété qu'à ceux plus chauds et raffinés. Pour autant, les très hauts standards esthétiques n'ont pas été atteints au détriment des qualités techniques propres depuis toujours aux produits Galletti : la recherche en termes d'innovation s'est en effet également concentrée sur les composants et sur l'utilisation de nouveaux matériaux. Avec ART-U, l'état de l'art en termes de performances techniques a été entièrement refondé, grâce à des simulations de mécanique des fluides numérique pour l'optimisation de l'échange thermique à l'intérieur de l'unité, conjointement à l'utilisation de moteurs électriques à aimants permanents.


Il s'agit du seul produit innovant qui allie design, profondeur réduite et efficacité énergétique.

Son évolution ne fait que commencer et pourtant il a déjà rem-

porté l'estime du jury des plus prestigieux prix internationaux

PLUS

- » Meuble au design innovant de profondeur minime (10 cm seulement).
- » Moteur EC controlé par inverter
- » Consommations d'énergie limitées

Brossé métallique

archiproducts DESIGN AWARDS

WINNER 2019

Finition

Concours de design

de design du produit industriel.

Mat métallique

VERSIONS DISPONIBLES

Les versions de ART-U dotées de panneau frontal à finition métallique se définissent conformément à la planche CMF (pour Couleurs, Matériaux et Finitions).

CMF est un véritable instrument de conception du design industriel dont le fonctionnement repose sur l'identité chromatique, tactile et décorative des produits et des espaces.

ART-U		Metallic Skin									
	Grey	White	Red	Black							
		-									
ouleur	Silver	Blanc RAL9010	Rouge RAL3020	Noir RAL9005							
atériel		Allur	minium								

COMPOSANTS PRINCIPAUX

Habillage design

L'élégant panneau frontal est constitué de deux plaques d'aluminium avec âme en polyéthylène et avec une éventuelle peinture superficielle à base de polyester. Il s'agit d'un matériau à la fois léger et très résistant, à l'origine mis au point pour les revêtements de façade dans le secteur du bâtiment. Les flancs sont en ABS stabilisé aux rayons UV pour garantir durablement l'inaltérabilité de la couleur.

L'âme en polyéthylène fait office de remplissage flexible et d'isolant thermique tandis que l'aluminium confère robustesse structurelle et esthétique.

Convoyeurs

En PVC. Ils sont conçus pour optimiser le flux aéraulique à l'intérieur de l'unité hydronique et pour permettre ainsi une distribution optimale du flux d'air dans la batterie et un bruit minime quel que soit le régime de fonctionnement.

Grille supérieure

Constituée d'ailettes orientables en aluminium anodisé, compatible pour l'installation de commandes embarquées. Les peignes en ABS, de soutien des grilles, préviennent la flexion de celles-ci et garantissent la sécurité de l'utilisateur en toute circonstance.

Grille frontale

Acier. Conçue pour stabiliser le fonctionnement du ventilateur tangentiel.

Moteur électrique

Moteur EC à aimants permanents avec commande à fréquence variable intégrée au groupe de ventilation. Le degré de protection IP44 est garanti, aussi le risque d'infiltration de poussière à l'intérieur est conjuré et la résistance aux projections d'eau est garantie.

Ventilateurs tangentiel

Ventilateur tangentiel à équilibrage statique et dynamique pour réduire le bruit en phase de fonctionnement.


Le matériau plastique utilisé pour les pales garantit, comparé aux ventilateurs métalliques, une réduction des vibrations et l'absence de flexion le long de l'axe de rotation.

Entre les pales, des disques intermédiaires de renfort sont intercalés, pour en augmenter la robustesse.

Batteries d'échange thermique

de type turbo à haut rendement en tuyau de cuivre et ailettes en aluminium, il est doté de collecteurs en laiton et de valve de purge.

Sur les ailettes, le traitement hydrophile est de série, pour en augmenter l'efficacité en rafraîchissement conjointement à une plus haute résistance aux environnements corrosifs.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

Ventilo-convecteur ART-U

VERSIONS DISPONIBLES

ART-U Grey

L'utilisation d'un panneau frontal en aluminium naturel brossé, associé aux flancs noirs permet d'exalter la grande élégance et la profondeur minime de ce ventilo-convecteur. Le produit, aux lignes simples, sobres et essentielles, s'adapte parfaitement aux intérieurs dont l'aménagement s'inspire des nouvelles tendances et où chaque élément doit s'inscrire à l'enseigne d'un design de haute qualité.

ART-U White

La neutralité du blanc garantit l'intégration maximale à l'espace dans une optique d'adaptation, pour permettre de dissimuler presque entièrement le ventilo-convecteur dans la cloison.

VERSIONS DISPONIBLES

ART-U Red

Grâce aux lignes raffinées et élégantes du produit, même une couleur aussi percutante que le rouge exalte en réalité plus encore la personnalité unique d'ART-U et le transforme en une véritable icône d'ameublement.

ART-U Black

La solution chromatique noire, inédite, permet au ventilo-convecteur de s'intégrer à l'espace en lui apportant par ailleurs la touche d'une incomparable élégance.

ACCESSOIRES

EVO-2-TOUCH

La nouvelle commande EVO-2-TOUCH peut être installée sur l'appareil et garantit le confort thermo-hygrométrique maximal et son écran tactile est quant à lui gage d'ergonomie. Grâce aux fonctions « tap » et « swipe », l'utilisation de la commande est semblable à celle d'un smartphone.

Les différentes pages sont conçues de telle sorte que la communication homme - machine soit intuitive. Chaque page contient quelques informations essentielles qui permettent de consulter les principaux paramètres de fonctionnement de l'unité et qui permettent également de procéder à la configuration initiale de la commande en fonction des besoins de l'installation.

Le cadre externe de l'interface est disponible dans quatre chromages différents et est réalisé dans un matériau à double feuille d'aluminium et âme en polyéthylène.

DISC-COVER

Le style minimal du pied de couverture DISC-COVER dialogue avec les lignes élégantes et essentielles de ART-U. Disponible dans trois couleurs: blanc RAL9010, noir RAL9005, rouge RAL3020. Il s'adapte parfaitement au style de l'espace à climatiser, qu'il soit rigoureux et formel ou ironique. La forme est spécialement pensée de telle sorte que l'installation ainsi que les opérations de nettoyage et d'entretien soient à la fois simples et rapides. Le système de fixation à aimant permet d'en régler la position en fonction de la hauteur de montage et de la position des tuyaux.

ACCESS	SOIRES
Panneaux de co	mmande électroniques à microprocesseur avec moniteur
DIST	Entretoise contrôleur MY COMFORT pour installation murale
E2TK	Interface utilisateur à écran tactile 2,8″ EVO-2-TOUCH pour commande EVO, candre en allumi- nium noir RAL9005
E2TY	Interface utilisateur à écran tactile 2,8″ EVO-2-TOUH pour commande EVO, candre en aluminium naturel brossé
E2TW	Interface utilisateur à écran tactile 2,8" EVO-2-TOUCH pour commande EVO, candre en allumi- nium blanc RAL9010
E2TR	Interface utilisateur à écran tactile 2,8″ EVO-2-TOUH pour commande EVO, candre en aluminium rouge RAL3020
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
KBEVS	Kit d'installation du contrôleur EVODISP sur l'unité ART-U
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
TOUCHKB-W	Kit d'installation du contrôleur EVO-2-TOUCH sur l'unité ART-U pour la version White
TOUCHKB-Y	Kit d'installation du contrôleur EVO-2-TOUCH sur l'unité ART-U pour les versions Grey, Red et Black

Panneaux de	commande électroniques à microprocesseur
TED SWA	Sonde de température air ou eau pour commandes TED
TED10	Commande électronique pour le contrôle du ventilateur inverter BLDC et d'une ou deux vannes ON/OFF 230 V
TEDKB-W	Kit d'installation du contrôleur TED sur l'unité ART-U pour version White
TEDKB-Y	Kit d'installation du contrôleur TED sur l'unité ART-U pour les versions Grey, Red et Black
Bacs auxiliaiı	res de collecte des condensats, coques d'isolation, pompe purge des condensats
GIVK-2	Coque isolante pour vanne type KV - 2 voies
GIVK-3	Coque isolante pour vanne type VKS - 3 voies
Pieds de sout	ien et caches extérieurs
DISC-K	Pieds de caches puor ART-U ventilconvecteur - noir RAL 9005
DISC-R	Pieds de caches pour ventilconvecteur ART-U - rouge RAL 3020
DISC-W	Pieds de caches puor ventilconvecteur ART-U - blanc RAL 9010
Vannes	
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale

DONNÉES TECHNIQUES NOMINALES

ART-U				1	0			2	:0			:	30	
Vitesse			1	2	3	4	1	2	3	4	1	2	3	4
Tension à l'entrée	(E)	V	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Puissance frigorifique totale	(1)(E)	kW	0,31	0,71	0,84	1,08	0,58	1,15	1,41	1,76	0,66	1,63	1,97	2,44
Puissance frigorifique sensible	(1)(E)	kW	0,21	0,56	0,69	0,91	0,41	0,89	1,08	1,36	0,46	1,18	1,44	1,78
Classe FCEER	(E)				C				C				В	
Débit d'eau	(1)	l/h	53	122	145	185	100	198	242	303	113	280	339	418
Perte de charge	(1)(E)	kPa	1	4	5	8	2	6	9	13	2	12	17	24
Puissance calorifique	(2)(E)	kW	0,29	0,82	1,05	1,40	0,59	1,09	1,31	1,62	0,67	1,78	2,15	2,65
Classe FCCOP	(E)								C					
Débit d'eau	(2)	l/h	51	143	183	243	103	231	278	345	117	310	374	461
Perte de charge	(2)(E)	kPa	1	4	6	11	2	7	10	14	2	12	17	24
Débit d'air nominal		m³/h	40	148	207	312	82	224	287	389	91	302	392	529
Puissance absorbée	(E)	W	4	7	9	14	4	10	12	17	5	11	15	24
Puissance acoustique globale	(3)(E)	dB(A)	28	41	46	54	28	41	47	54	28	42	47	54

ART-U				4	0			5	50	
Vitesse			1	2	3	4	1	2	3	4
Tension à l'entrée	(E)	٧	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Puissance frigorifique totale	(1)(E)	kW	0,76	1,84	2,37	3,12	0,92	2,32	2,89	3,69
Puissance frigorifique sensible	(1)(E)	kW	0,53	1,38	1,77	2,33	0,65	1,72	2,15	2,77
Classe FCEER	(E)						В			
Débit d'eau	(1)	I/h	131	315	406	535	157	398	496	634
Perte de charge	(1)(E)	kPa	2	12	18	29	3	13	19	29
Puissance calorifique	(2)(E)	kW	0,74	1,99	2,49	3,21	0,95	2,56	3,16	4,02
Classe FCCOP	(E)				C		В			
Débit d'eau	(2)	l/h	128	347	433	559	165	446	550	698
Perte de charge	(2)(E)	kPa	2	11	17	26	2	13	19	28
Débit d'air nominal		m³/h	104	363	496	724	129	439	587	831
Puissance absorbée	(E)	W	5	12	17	27	5	12	18	30
Puissance acoustique globale	(3)(E)	dB(A)	31	42	47	54	32	42	47	54

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 45°C / 40°C, température air 20°C
(3) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

Ventilo-convecteur de design avec épaisseur de 10 cm et doté de moteur EC

ART-U Canvas 1 - 4 kW

verticale

eur EC Ventilateur Ir

Installation à 2 tubes

PLUS

- » Meuble au design innovant de profondeur minime (10 cm seulement).
- » Moteur EC controlé par inverter
- » Consommations d'énergie limitées
- » Personnalisation totale du panneau frontal

Now it's up to you

Grâce à ART-U Canvas, les frontières de la climatisation d'intérieur sont repoussées. Un produit qui était déjà unique dans son secteur est aujourd'hui valorisé plus encore : ART-U se configure comme une plateforme flexible grâce à la personnalisation complète du panneau frontal. Le panneau du ventilo-convecteur devient une véritable toile de peintre prêtre à recevoir l'inspiration de l'architecte d'intérieur. Sur ART-U Canvas, il est possible de reproduire toute teinte unie, toute image et toute photographie à haute résolution. Aucune quantité minimale n'est requise pour la personnalisation du ventilo-convecteur, pour assurer une liberté maximale à l'architecte d'intérieur, quelle que soit la taille du projet.

Avec ART-U Canvas... aucune limite à la créativité. C'est à vous à présent de choisir la version qui s'intégrera à la perfection au style de l'espace à climatiser.

VERSIONS DISPONIBLES

Canvas est disponible en deux versions: Total Graphic Skin e Graphic Skin.

Total Graphic Skin prévoit la personnalisation de toute la surface du panneau frontal à travers la reproduction de graphismes ou de photographies.

La version Graphic Skin permet la reproduction d'images en laissant le panneau en aluminium naturel brossé ou blanc RAL9010 partiellement visible.

Ces deux versions de ART-U Canvas se définissent conformément à la planche CMF (pour Couleurs, Matériaux et Finitions). CMF est un véritable instrument de conception du design industriel dont le fonctionnement repose sur l'identité chromatique, tactile et décorative des produits et des espaces.

VERSIONS DISPONIBLES

Total Graphic Skin

Couleur		Personnalisé	
Matériel		Alluminium	
Finition	Mat	Graphisme mat et fond métallique brossé	Graphisme mat et fond métallique blanc RAL9010 mat

ART-U CANVAS

ART-U devient une plateforme personnalisable sur la base de l'inspiration de l'architecte d'intérieur. La couleur du panneau frontal peut être choisie parmi plus de 3000 variantes chromatiques des échelles RAL et PANTONE.

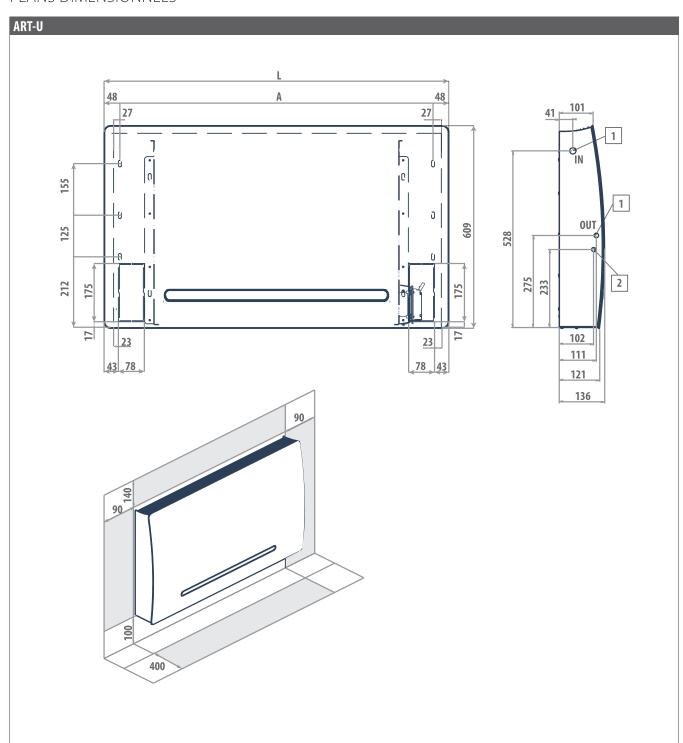
Toute texture géométrique ou effet matiériste peut donner vie à un design unique qui exprime votre personnalité dans toutes ses facettes.

Avec ART-U Canvas, la créativité est sans limites. La possibilité de personnaliser le panneau avec des images et des photographies fait de ce ventilo-convecteur un véritable élément d'ameublement.

Fan coil ART-U Canvas

L'innovation accompagne l'imagination avec ART-U Canvas. Ce ventilo-convecteur intelligent aux performances surprenantes est né pour réécrire les règles du design et inspirer des personnalisations qui vont bien au-delà de la seule surface du ventilo-convecteur.

CONFIGURATEUR ONLINE ART-U CREATOR



Grâce au logiciel en ligne ART-U Creator, il est possible de donner une forme à votre idée de design appliquée à la climatisation. Grâce à cet outil, il est possible de configurer rapidement votre ART-U Canvas, en choisissant le graphisme du panneau frontal et la couleur des autres composants du produit. A chaque solution son produit : configurer le style de son propre cadre de vie n'a jamais été aussi simple.

 $Contactez\ art-u@galletti. it\ pour\ demander\ l'accès\ au\ premier\ configurateur\ esth\'etique\ d\'edi\'e\ aux\ ventilo-convecteurs.$

PLANS DIMENSIONNELS

- 1	ć	c	c	М	n	c
	.E	u	E	IV	v	Е

NOTE: P	OUR LES DONNÉES TECHNIQUES. REPORTEZ-VOUS AU TARI FAU DES
2	Diamétre ècoulement des condensats, installation verticale ø 17 mm
1	Raccords hydrauliques échangeur standard ø 1/2" femme

NOTE: POUR LES DONNÉES TECHNIQUES, REPORTEZ-VOUS AU TABLEAU DES	
PAGES 35 DE ART-U.	

ART-U	А	L	Â
ANI-U	mm	mm	kg
10	616	711	12
20	772	867	14
30	941	1036	17
40	1173	1268	19
50	1307	1402	21

Ventilo-convecteurs avec ventilateur centrifuge

ESTRO 1 - 11 kW

PLUS

- » Moteur à 3 ou 6 vitesse
- » Ventilateurs centrifuges en ABS
- » Batterie jusqu'à 4 rangs
- » Raccords hydrauliques réversibles
- » Habillage en acier / ABS
- » Système d'assainissement JONIX incorporable

La plus vaste gamme de ventiloconvecteurs présente sur le marché associée à la technologie, à la qualité et à la fiabilité Galletti

Sur le marché, la gamme de ventilo-convecteurs ESTRO est sans conteste celle qui propose le plus grand nombre de modèles et d'accessoires pour répondre à tous les besoins des professionnels du secteur.

La série comprend 20 modèles réalisés en 9 versions

Pour la réalisation de la ligne ESTRO, Galletti a opté pour les matériaux haute qualité qui, alliés à un assemblage des composants soigné dans les moindres détails, permettent aux nouveaux ventilo-convecteurs d'offrir toutes les garanties de fiabilité en termes de performances et tous les gages de confort acoustique.

La conception technique de la ligne ESTRO permet d'associer les modèles à installation verticale aux modèles à installation horizontale. Sont disponibles des versions pour une installation apparente, murale, au sol et en plafonnier, et pour une installation encastrée murale, en plafonnier et au sol surbaissé.

Dans la version gainable encastré, ESTRO s'accompagne d'une série d'accessoires qui assurent une installation à la fois rapide et économique, réalisée à l'aide de gaines flexibles directement accouplées à des grilles de diffusions d'air.

ESTRO peut être associé à une gamme de panneaux de commandes sur l'appareil ou murale comprenant 20 options, selon le degré de réglage et de confort demandés.

Un système innovant d'ionisation de l'air assure l'assainissement de l'unité et la désodorisation de l'air ambiant.

VERSIONS DISPONIBLES

ESTRO FL

Version avec habillage, installation murale en applique. Sortie d'air verticale, filtre à air sur l'aspiration fixé sur l'habillage au moyen de vis ¼ de tour.

ESTRO FL est disponibile in 20 modèles.

ESTRO FA

Installation murale en applique avec habillage. La sortie d'air inclinée sur le devant permet à la version ESTRO FA de s'adapter parfaitement à une installation dans des niches de 150 mm de profondeur (max).

ESTRO FA est disponibile in 19 modèles.

ESTRO CL

Installation murale en applique avec habillage, sortie d'air verticale. Proposée dans différentes teintes pastelle, elle s'intègre aux aménagements de style traditionnel ainsi qu'aux architectures dont les couleurs chaudes et les formes élégantes font de ESTRO CL un véritable complément d'ameublement. Couleur panneau en tôle: RAL 9001 Couleur parties en ABS: pantone "warm gray 2U"

ESTRO CL est disponibile in 20 modèles.

ESTRO FU

Version avec habillage, installation en applique au sol et en plafonnier. Sur l'habillage sont présents la grille de sortie d'air et les grilles d'aspiration dotées de filtre incorporé.

ESTRO FU est disponibile in 20 modèles.

ESTRO FP

Version avec habillage, installation en applique et en plafonnier. L'aspiration de l'air se produit à l'arrière des grilles de sortie. Cette version est particulièrement utile dans le cas de présence de volets de prise d'air neuf.

ESTRO FP est disponibile in 20 modèles.

ESTRO FB

Version surbaissée avec habillage, installation en applique au sol et en plafonnier. Sur l'habillage sont présents la grille de sortie d'air et les grilles d'aspiration dotées de filtre incorporé. Le repositionnement des composants internes a permis de ramener la hauteur à seulement 438 mm.

ESTRO FB est disponibile in 9 modèles.

ESTRO FC

Installation murale encastrée verticale ou horizontale, aspiration d'air en ligne avec le soufflage, carter en tôle d'acier zinguée, à isolation thermique. Les raccords et le plenum complètent le système d'aspiration et d'admission d'air dans la pièce.

ESTRO FC est disponibile in 20 modèles.

ECTDO EE

Installation encastrée verticale ou horizontale, aspiration d'air frontale, carter en tôle d'acier zinguée, à isolation thermique. L'aspiration frontale permet l'installation au sol encastrée ou bien horizontale avec aspiration directe depuis le faux plafond.

ESTRO FF est disponibile in 20 modèles.

ESTRO FRC

Surbaissé à installation encastrée verticale ou horizontale, aspiration d'air frontale avec filtre à air, carter en tôle d'acier zinguée, à isolation thermique. Le repositionnement des composants internes a permis de ramener la hauteur à seulement 412 mm

ESTRO FBC est disponibile in 9 modèles.

Unités hydroniques ESTRO

COMPOSANTS PRINCIPAUX

Habillage

Habillage constitué d'un panneau en tôle d'acier laquée, flasques latérales, grille de soufflage (orientable à 180°) et grille de reprise d'air en ABS.

Formes arrondies et couleurs parfaitement intégrées aux critères actuels d'ameublement, ligne qui répond aux exigences architecturales.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autœxtinguible (Classe 1). Les versions FU – FB – FC – FF et FBC sont équipées avec une double bac de collecte des condensats.

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Moteur électrique

Monté sur supports antivibratoires, équipé de condensateur permanent et de protection thermique des enroulements, directement accouplé aux ventilateurs, il est disponible à la fois à 3 et 6 vitesses de rotation pour répondre à toutes les exigences en termes de performances, émissions sonores et consommation de courant.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés Les ventilateurs sont logés dans une volute en ABS hautes performances.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien. Sur la version FU les filtres à air sont logés dans la grille d'aspiration.

CONFIGURATEUR													
Les modèles sont entièrement configurables en sélectionnant	Version	Champs	1	2	3	4	5	6	7	8	9	10	11
la version et les options. À côté, figure un exemple de configuration.	EF03		L	0	М	0	1	E	0	0	0	0	Α

FF Famille FSTRO: 03 Taille

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- A Installation murale avec habillage
- B Installation murale avec habillage surbaissé
- C Installation encastrée
- F Installation encastrée G

- BC Installation encastrée surbaissée L Installation murale avec habillage CLASSIC Installation murale avec habillage
- P Installation au plafond avec habillage U - Installation murale / au plafond avec habillage
- Moteur
- Moteur à 3 vitesse
- Groupe moto-ventilateur Greentech Moteur BLDC G
- Moteur à 6 vitesse

Côté raccords batterie principale

- Raccords à gauche à 4 rangs
- Raccords à droite Raccords à droite à 4 rangs

Côté raccords batterie supplémentaire/résistance électrique

- Absent
- RE Résistance électrique
- Raccords a gauche
- Raccords à droite

Vanne

- Absent
- VKS Vanne à 3 voies 230 V ON/OFF kit complet
- KV Vanne à 2 voies 230 V ON/OFF
- VKMS Vanne à 3 voies 24 V MODULANTE kit complet
- VKM Vanne à 2 voies 24V MODULANTE VKS24 Vanne à 3 voies 24V 0N/0FF kit complet KV24 Vanne à 2 voies 24V 0N/0FF VKSND Vanne à 3 voies 230 V 0N/0FF kit côté batterie
- VKMSND Vanne à 3 voies 24 V MODULANTE kit côté batterie
- VKS24ND Vanne à 3 voies 24 V ON/OFF kit côté batterie
- VPIK Vanne à 2 voies pressure independent 230 V ON/OFF
- VPIKM Vanne à 2 voies pressure independent 24 V MODULANT

Panneau de commande

- Absent
- CB Commutateur de vitesse
- TB Thermostat et commutateur
- TIB Thermostat, commutateur et sélecteur E/I
- TED 2T Commande électronique 2 tuyaux TED 4T Commande électronique 4 tuyaux TED 10 Commande électronique BLDC

- MCBE My comfort base
- MCME My comfort medium
- MCLE My comfort large

- LED 503 EVOBOARD Carte de puissance EVOBOARD + EVODISP (Carte de puissance + écran)
- Carte de puissance EVOBOARD + module Wireless NAVEL

- ASSA Sonde air éloignée pour MYCOMFORT, LED503 et EVO
 SW Sonde eau pour MYCOMFORT, LED503 et EVO
 SU Sonde humidité pour MYCOMFORT et EVO
 SA + SW Sondes air + eau pour MYCOMFORT, LED503 et EVO
 SA + SU Sondes air + humidité pour MYCOMFORT et EVO
- SA + SU + SW Sonde air + humidité + eau pour MYCOMFORT et EVO
- TC Thermostat d'arrêt du ventilateur
- SA Sonde air éloignée pour TED
- SW Sonde eau pour TED SA + SW Sondes air + eau pour TED
- Accessoires

- Absent
- JONIX
- BV Bac auxiliaire BH Bac auxiliaire
- GIVK Coque vanne
- Filtre
- Filtre à air standard

Release

PANNE	AUX DE COMMANDE		
Panneaux de c	ommande électromécaniques	KL	Kit d'installation du contrôleur LED 503 sur l'unité ESTRO
СВ	Sélecteur de vitesse sur l'unité	LED503	Commande électronique à installation murale avec moniteur LED 503
CD	Sélecteur de vitesse à installation murale encastrée	MCBE	Commande à microprocesseur avec moniteur MY COMFORT BASE
TB	Thermostat et sélecteur sur l'unité	MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
TC	Thermostat de température minimum de l'eau en mode chauffage (42 °C)	MCME	Commande à microprocesseur avec moniteur MY COMFORT MEDIUM
Panneaux de c	ommande électroniques à microprocesseur avec moniteur	MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
DIST	Entretoise contrôleur MY COMFORT pour installation murale	MCSWE	Sonde eau pour commandes MY COMFORT et EVO
E2TK	Interface utilisateur à écran tactile 2,8" EVO-2-TOUCH pour commande EVO, candre en allumi-	Panneaux de	commande électroniques à microprocesseur
LZIK	nium noir RAL9005	KB A	Kit d'installation des commandes TED sur l'unité ESTRO FA
E2TY	Interface utilisateur à écran tactile 2,8″ EVO-2-TOUH pour commande EVO, candre en aluminium	KB L DX	Kit d'installation à droite du commande TED sur l'unité ESTRO FL/FU/FB
	naturel brossé	KB L SX	Kit d'installation à gauche du commande TED sur l'unité ESTRO FL/FU/FB
EVOBOARD	Carte de puissance pour commande EVO	TED 2T	Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO	TED 4T	Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone	TED SWA	Sonde de température air ou eau pour commandes TED
KBESTE	Kit d'installation du contrôleur MY COMFORT sur l'unité ESTRO		

ACCES	SSOIRES		
Interface de	puissance et commandes pour volets	SM	Volet motorisé, moteur à droite, avec transformateur
CSB	Commande intégrée pour ouverture/fermeture proportionnelle du volet motorisé	SM	Volet motorisé, moteur à gauche, avec transformateur
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet	SMC	Volet motorisé, moteur à droite, pour commande centralisé
CSD	motorisé SM	SMC	Volet motorisé, moteur à gauche, pour commande centralisé
КР	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une unique	Vannes	
Rattorio addi	commande itionnelle pour systèmes à 4 tubes	KV	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections, pour batterie principale
	Batterie additionnelle à 1 rang pour systèmes à 4 tubes (non utilisable sur les modèles ESTRO		Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique côté connections,
DF	"M")	KV24	pour batterie principale
Bacs auxiliaiı	res de collecte des condensats, coques d'isolation, pompe purge des condensats	I/V24DE	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique côté connections,
ВН	Bac auxilliaire pour ventilo-convecteurs installation horizontal	KV24DF	pour batterie principale et supplémentaire
BV	Bac auxilliaire pour ventilo-convecteurs installation vertical	KVDF	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections,
GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche	- IVI	pour batterie principale et supplémentaire
GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite	KVM	Vanne à 2 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique côté connections,
KSC	Kit pompe purge des condensats		pour batterie principale
	tien et caches extérieurs	KVMDF	Vanne à 2 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique côté connections, pour batterie principale et supplémentaire
D	Supports pour ESTRO FC		Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique complet, pour
ZA	Paire de pieds de soutien et caches extérieurs pour ESTRO FA	VKDF	batterie supplémentaire
ZAG	Paire de pieds de soutien et caches extérieurs avec grille frontale pour ESTRO FA		Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique complet, pour
ZC	Paire de pieds de soutien et caches extérieurs pour ESTRO CL	VKDF24	batterie supplémentaire
ZCG	Pieds de soutien et caches avec grille antérieure pour Estro CL	W/DF2 (ND	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique sans détenteur, pour
ZL	Pieds de soutien et caches extérieurs pour ESTRO FL	VKDF24ND	batterie supplémentaire
ZLG	Paire de pieds de soutien et caches extérieurs avec grille frontale pour ESTRO FL	VKDFND	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique sans détenteur,
	fermeture arrière	VKDFND	pour batterie supplémentaire
PH	Panneau laqué de fermeture arrière pour modèles à installation horizontale avec habillage	VKMDF	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique complet, pour
PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage		batterie supplémentaire
Résistances é		VKMDFND	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique sans détenteur,
RE	Résistance électrique avec kit de montage, boîtier relais et sécurités		pour batterie supplémentaire
	Ifflage et reprise d'air	VKMS	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique complet, pour batterie principale
GEF	Grille en aluminium d'aspiration d'air externe avec contre-cadre Grille d'aspiration reprise d'air externe en aluminium, avec contre-cadre et filtre à air		Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique sans détenteur,
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre	VKMSND	pour batterie principale
RGC	Plenum avec colliers circulaires pour grille de soufflage d'air		Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique complet, pour
Plenum et ra	1 3	VKS	batterie principale
RA90	Raccord d'aspiration angulaire	VKS24	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique complet, pour
RAD	Raccord d'aspiration droit	VN324	batterie principale
RADC	Plenum d'aspiration avec colliers circulaires	VKS24ND	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique sans détenteur, pour
RM90	Raccord de souffllage angulaire	VIOLAND	batterie principale
RM90C	Raccord de souffllage angulaire isolé	VKSND	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique sans détenteur,
RMCD	Raccord de soufflage droit isolé		pour batterie principale
RMCD C	Plenum de soufflage avec colliers circulaires	VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydraulique pour batterie principale et additionnelle
RMD	Raccord de soufflage droit	Système d'ass	. , , , , , , , , , , , , , , , , , , ,
	se d'air externe	JONIX - on	
S	Volet manuel de prise d'air externe	board	Module d'assainissement JONI pour installation sur l'unité
-			

Unités hydroniques ESTRO

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

ESTRO				1			2			3			4	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	0,75	0,90	1,12	1,02	1,21	1,50	1,24	1,48	1,69	1,34	1,66	1,91
Puissance frigorifique sensible	(1)(E)	kW	0,57	0,68	0,84	0,77	0,94	1,16	0,93	1,10	1,25	0,98	1,20	1,37
Classe FCEER	(E)								E					
Débit d'eau	(2)	l/h	129	155	193	176	208	258	214	255	291	231	286	329
Perte de charge	(2)(E)	kPa	4	5	7	7	9	13	8	11	14	7	10	13
Puissance calorifique	(3)(E)	kW	0,95	1,11	1,32	1,21	1,48	1,82	1,45	1,72	1,84	1,50	1,81	2,15
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	164	191	227	208	255	313	250	296	317	258	312	370
Perte de charge	(3)(E)	kPa	5	6	8	8	11	15	9	12	14	6	9	12
Débit d'air nominal		m³/h	127	189	231	167	233	319	210	271	344	214	271	344
Puissance absorbée	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Puissance acoustique globale	(4)(E)	dB(A)	30	32	40	37	42	47	38	44	49	40	44	50

ESTRO				4M			5			6			6M	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	1,48	1,81	2,19	1,57	1,99	2,36	1,73	2,34	2,87	1,90	2,60	3,23
Puissance frigorifique sensible	(1)(E)	kW	1,04	1,28	1,55	1,15	1,53	1,82	1,23	1,66	2,05	1,30	1,79	2,24
Classe FCEER	(E)			D			E			D			D	
Débit d'eau	(2)	l/h	255	312	377	270	343	406	298	403	494	327	448	556
Perte de charge	(2)(E)	kPa	10	14	20	8	12	16	6	9	13	7	12	17
Puissance calorifique	(3)(E)	kW	1,53	1,88	2,29	1,74	2,26	2,70	1,76	2,37	2,94	1,94	2,68	3,37
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	263	324	394	300	389	465	303	408	506	334	461	580
Perte de charge	(3)(E)	kPa	9	12	17	8	12	17	5	8	11	6	10	15
Débit d'air nominal		m³/h	211	271	344	267	341	442	293	341	442	241	341	442
Puissance absorbée	(E)	W	30	45	66	29	44	57	29	43	56	29	43	56
Puissance acoustique globale	(4)(E)	dB(A)	41	45	51	35	43	48	36	42	48	35	43	49

ESTRO				7			7M			8			8M	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	1,94	2,58	3,45	2,44	3,33	4,48	2,47	3,21	4,23	2,74	3,64	4,86
Puissance frigorifique sensible	(1)(E)	kW	1,41	1,99	2,69	1,69	2,31	3,12	1,76	2,39	3,05	1,90	2,53	3,40
Classe FCEER	(E)			E			D			D			D	
Débit d'eau	(2)	l/h	334	444	594	420	573	771	425	553	728	472	627	837
Perte de charge	(2)(E)	kPa	4	7	12	6	11	18	5	8	12	7	12	20
Puissance calorifique	(3)(E)	kW	2,39	3,13	4,05	2,51	3,40	4,57	2,47	3,24	4,24	2,80	3,70	4,95
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	412	539	697	432	585	787	425	558	730	482	637	852
Perte de charge	(3)(E)	kPa	5	8	13	5	9	15	4	6	10	6	10	17
Débit d'air nominal		m³/h	331	450	640	320	450	640	420	497	706	361	497	706
Puissance absorbée	(E)	W	40	50	65	37	61	98	38	61	98	38	61	98
Puissance acoustique globale	(4)(E)	dB(A)	35	43	52	36	44	53	35	43	53	36	44	54

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

ESTRO				9			9M			95		10				
Vitesse			min	moy	max											
Puissance frigorifique totale	(1)(E)	kW	2,95	3,59	4,41	3,47	4,30	5,30	3,37	4,12	5,15	3,88	5,14	6,53		
Puissance frigorifique sensible	(1)(E)	kW	2,27	2,85	3,55	2,42	3,00	3,72	2,29	2,93	3,72	2,75	3,70	4,73		
Classe FCEER	(E)			D			D			D			E			
Débit d'eau	(2)	l/h	508	618	759	598	740	913	580	709	887	668	885	1124		
Perte de charge	(2)(E)	kPa	7	10	14	11	16	24	10	14	21	5	9	12		
Puissance calorifique	(3)(E)	kW	3,31	4,08	4,98	3,53	4,37	5,39	3,52	4,32	5,49	3,97	5,17	6,49		
Classe FCCOP	(E)								E							
Débit d'eau	(3)	I/h	570	703	858	608	753	928	606	744	945	684	890	1118		
Perte de charge	(3)(E)	kPa	7	10	14	10	14	20	8	12	18	4	7	10		
Débit d'air nominal		m³/h	527	605	785	470	605	785	601	615	814	661	771	1011		
Puissance absorbée	(E)	W	47	68	98	47	68	98	52	73	107	86	127	182		
Puissance acoustique globale	(4)(E)	dB(A)	43	49	56	44	50	57	44	51	58	47	54	61		

ESTRO				10M			11			11M			12	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	4,32	5,69	7,20	4,00	6,07	7,78	4,55	6,81	8,74	6,76	8,53	10,7
Puissance frigorifique sensible	(1)(E)	kW	2,98	3,93	4,99	2,94	4,46	5,72	3,18	4,78	6,15	4,91	6,22	7,76
Classe FCEER	(E)								E					
Débit d'eau	(2)	l/h	744	980	1240	689	1045	1340	784	1173	1505	1164	1469	1841
Perte de charge	(2)(E)	kPa	8	14	21	6	13	20	9	19	29	14	22	32
Puissance calorifique	(3)(E)	kW	4,28	5,56	6,96	4,39	6,53	8,37	4,75	7,02	9,00	7,45	9,29	12,2
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	737	957	1199	756	1124	1441	818	1209	1550	1283	1600	2101
Perte de charge	(3)(E)	kPa	7	11	16	6	12	18	8	16	25	14	20	33
Débit d'air nominal		m³/h	570	771	1011	682	1022	1393	642	1022	1393	1154	1317	1850
Puissance absorbée	(E)	W	86	127	182	109	169	244	109	169	244	210	240	310
Puissance acoustique globale	(4)(E)	dB(A)	48	55	62	49	60	67	50	61	68	60	64	71

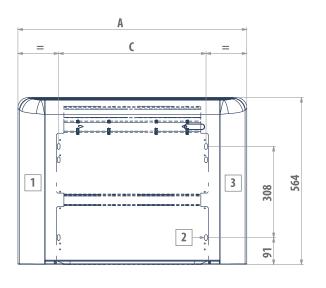
⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

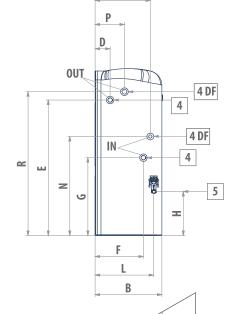
Unités hydroniques ESTRO

DONNÉES TECHNIQUES NOMINALES - 4 TUBES

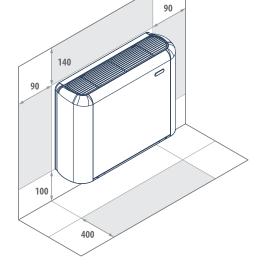
ESTRO				1			2			3			4	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	0,74	0,88	1,10	0,97	1,11	1,42	1,22	1,44	1,64	1,24	1,52	1,74
Puissance frigorifique sensible	(1)(E)	kW	0,56	0,67	0,83	0,73	0,87	1,10	0,91	1,07	1,22	0,96	1,18	1,41
Classe FCEER	(E)								E					
Débit d'eau	(2)	l/h	127	152	189	167	191	245	210	248	282	214	262	300
Perte de charge	(2)(E)	kPa	4	5	7	6	8	12	8	11	14	7	10	13
Puissance calorifique	(3)(E)	kW	1,18	1,31	1,49	1,31	1,49	1,66	1,36	1,56	1,76	1,36	1,56	1,76
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	102	113	128	113	128	143	117	134	152	117	134	152
Perte de charge	(3)(E)	kPa	2	3	4	3	4	4	4	5	7	4	5	6
Débit d'air nominal		m³/h	146	184	226	174	225	307	205	261	330	205	261	327
Puissance absorbée	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Puissance acoustique globale	(4)(E)	dB(A)	30	32	40	33	39	45	40	44	49	38	44	50

ESTRO				5			6			7	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Puissance frigorifique totale	(1)(E)	kW	1,55	1,96	2,32	1,70	2,29	2,81	1,92	2,54	3,36
Puissance frigorifique sensible	(1)(E)	kW	1,14	1,50	1,79	1,21	1,62	2,01	1,40	1,96	2,61
Classe FCEER	(E)			Е			D			Е	
Débit d'eau	(2)	l/h	267	338	400	293	394	484	331	437	579
Perte de charge	(2)(E)	kPa	8	12	16	5	8	11	4	7	12
Puissance calorifique	(3)(E)	kW	1,78	2,18	2,53	1,88	2,31	2,68	2,82	3,47	4,20
Classe FCCOP	(E)						Е				
Débit d'eau	(3)	l/h	153	188	218	162	199	231	243	299	362
Perte de charge	(3)(E)	kPa	2	3	3	2	3	4	8	12	16
Débit d'air nominal		m³/h	238	334	432	237	332	431	316	444	628
Puissance absorbée	(E)	W	29	44	57	29	43	56	37	61	98
Puissance acoustique globale	(4)(E)	dB(A)	34	43	48	33	41	47	36	45	53


ESTRO				8			9			95	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Puissance frigorifique totale	(1)(E)	kW	2,44	3,17	4,16	3,06	3,74	4,57	3,49	4,27	5,31
Puissance frigorifique sensible	(1)(E)	kW	1,74	2,36	2,99	2,23	2,80	3,47	2,38	3,01	3,78
Classe FCEER	(E)						D				
Débit d'eau	(2)	l/h	420	546	716	527	644	787	601	735	914
Perte de charge	(2)(E)	kPa	5	7	12	7	10	14	10	14	20
Classe FCCOP	(E)						Е				
Puissance calorifique	(3)(E)	kW	2,73	3,22	3,82	3,55	4,07	4,64	3,70	4,20	4,84
Débit d'eau	(3)	l/h	235	277	329	306	350	400	319	362	417
Perte de charge	(3)(E)	kPa	8	10	14	5	6	8	7	9	12
Débit d'air nominal		m³/h	356	490	690	460	593	763	478	603	792
Puissance absorbée	(E)	W	38	61	98	47	68	98	52	73	107
Puissance acoustique globale	(4)(E)	dB(A)	39	46	56	48	53	58	46	52	59


ESTRO				10			11			12	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Puissance frigorifique totale	(1)(E)	kW	3,84	5,10	6,46	3,96	5,99	7,64	6,70	8,44	10,5
Puissance frigorifique sensible	(1)(E)	kW	2,73	3,67	4,67	2,91	4,40	5,61	4,86	6,15	7,63
Classe FCEER	(E)						E				
Débit d'eau	(2)	l/h	661	878	1112	682	1031	1316	1154	1453	180
Perte de charge	(2)(E)	kPa	5	8	12	5	10	16	14	21	30
Classe FCCOP	(E)						Е				
Puissance calorifique	(3)(E)	kW	5,02	6,02	6,97	4,85	6,29	7,35	6,93	8,01	9,52
Débit d'eau	(3)	l/h	432	518	600	418	542	633	597	690	820
Perte de charge	(3)(E)	kPa	14	19	24	14	22	29	24	31	42
Débit d'air nominal		m³/h	565	765	998	636	1007	1362	999	1300	181
Puissance absorbée	(E)	W	86	127	182	109	169	244	210	240	310
Puissance acoustique globale	(4)(E)	dB(A)	46	54	60	48	58	66	63	64	71

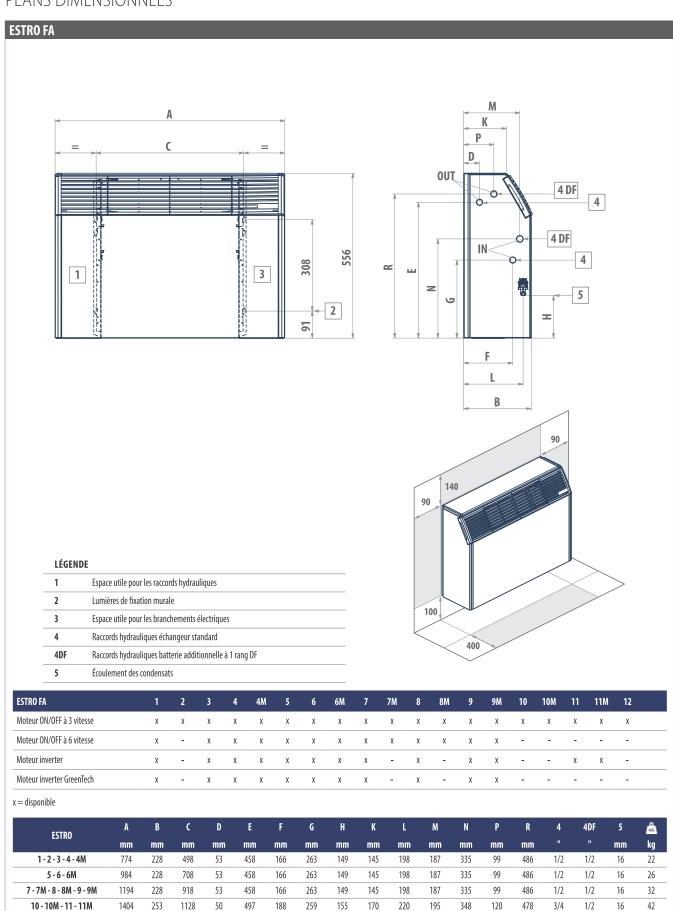
PLANS DIMENSIONNELS


ESTRO FL - CL

LÉGENDE

1	Espace utile pour les raccords hydrauliques
2	Lumières de fixation murale
3	Espace utile pour les branchements électriques
4	Raccords hydrauliques échangeur standard
4DF	Raccords hydrauliques batterie additionnelle à 1 rang DF
5	Écoulement des condensats

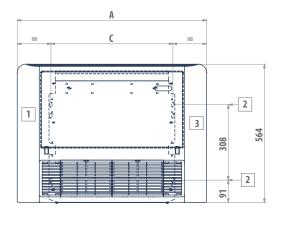
ESTRO	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Moteur ON/OFF à 3 vitesse	χ	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х
Moteur ON/OFF à 6 vitesse	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	-	-	-	-
Moteur inverter	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	Х	-	-	Х	Х	-
Moteur inverter GreenTech	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	-	-	-	-	-	-

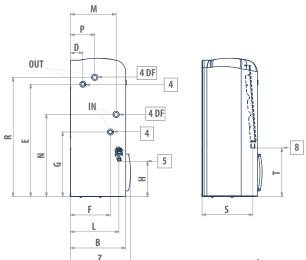

 $x = {\sf disponible}$

A	В	C	D	E	F	G	Н	L	M	N	P	R	4	4DF	5	À
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	kg
774	226	498	51	458	163	263	149	198	187	335	99	486	1/2	1/2	16	21
984	226	708	51	458	163	263	149	198	187	335	99	486	1/2	1/2	16	27
1194	226	918	51	458	163	263	149	198	187	335	99	486	1/2	1/2	16	33
1194	251	918	48	497	185	259	155	220	195	348	120	478	3/4	1/2	16	34
1404	251	1128	48	497	185	259	155	220	195	348	120	478	3/4	1/2	16	43
1614	251	1338	48	497	185	259	155	220	195	348	120	478	3/4	1/2	16	53
	774 984 1194 1194 1404	mm mm 774 226 984 226 1194 226 1194 251 1404 251	mm mm mm 774 226 498 984 226 708 1194 226 918 1194 251 918 1404 251 1128	mm mm mm mm 774 226 498 51 984 226 708 51 1194 226 918 51 1194 251 918 48 1404 251 1128 48	mm mm mm mm 774 226 498 51 458 984 226 708 51 458 1194 226 918 51 458 1194 251 918 48 497 1404 251 1128 48 497	mm mm mm mm mm mm 774 226 498 51 458 163 984 226 708 51 458 163 1194 226 918 51 458 163 1194 251 918 48 497 185 1404 251 1128 48 497 185	mm mm mm mm mm mm mm 774 226 498 51 458 163 263 984 226 708 51 458 163 263 1194 226 918 51 458 163 263 1194 251 918 48 497 185 259 1404 251 1128 48 497 185 259	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<

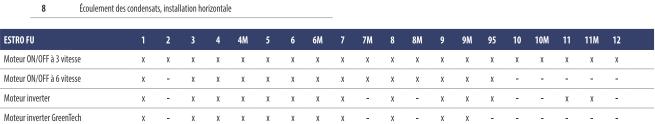
Unités hydroniques ESTRO

PLANS DIMENSIONNELS


3/4


1/2

PLANS DIMENSIONNELS

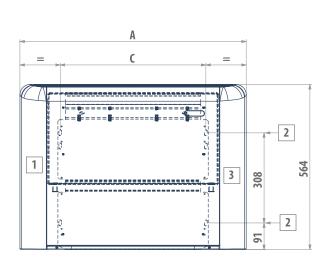

ESTRO FU

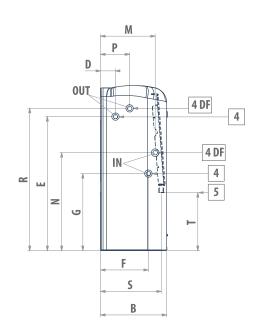
LÉGENDE

1	Espace utile pour les raccords hydrauliques
2	Lumières de fixation murale
3	Espace utile pour les branchements électriques
4	Raccords hydrauliques échangeur standard
4DF	Raccords hydrauliques batterie additionnelle à 1 rang DF
5	Écoulement des condensats, installation verticale
8	Écoulement des condensats, installation horizontale

x = disponible

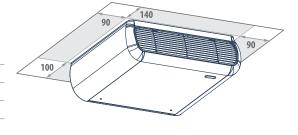
ESTRO FU	A	В	C	D	E	F	G	Н	L	M	N	P	R	S	T	Z	4	A
ESINOFO	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
1 - 2 - 3 - 4 - 4M	774	226	498	51	458	163	263	149	198	187	335	99	486	208	198	246	1/2	22
5 - 6 - 6M	984	226	708	51	458	163	263	149	198	187	335	99	486	208	198	246	1/2	29
7 - 7M - 8 - 8M - 9 - 9M	1194	226	918	51	458	163	263	149	198	187	335	99	486	208	198	246	1/2	35
95	1194	251	918	48	497	185	259	155	220	195	348	120	478	234	208	271	3/4	36
10 - 10M - 11 - 11M	1404	251	1128	48	497	185	259	155	220	195	348	120	478	234	208	271	3/4	45
12	1614	251	1338	48	497	185	259	155	220	195	348	120	478	234	208	271	3/4	55




ESTRO FP

Unités hydroniques ESTRO

PLANS DIMENSIONNELS

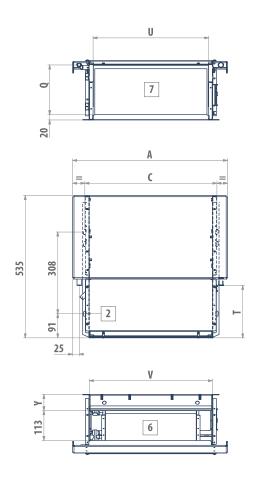

L/ (11) DIMENSIONNEL

LÉGENDE

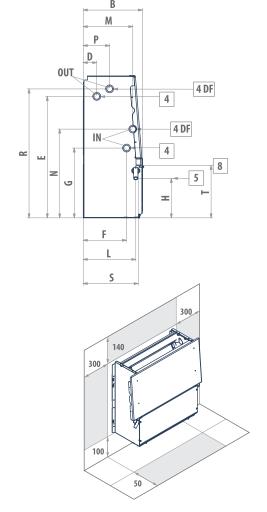
LLGLIN	DL .
1	Espace utile pour les raccords hydrauliques
2	Lumières de fixation murale
3	Espace utile pour les branchements électriques
4	Raccords hydrauliques échangeur standard
4DF	Raccords hydrauliques batterie additionnelle à 1 rang DF
5	Écoulement des condensats

ESTRO FP	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Moteur ON/OFF à 3 vitesse	Х	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Х	Х
Moteur ON/OFF à 6 vitesse	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	-	-	-	-
Moteur inverter	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	Х	-	-	Х	Х	-
Moteur inverter GreenTech	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	-	-	-	-	-	-

x = disponible


A	В	C	D	E	F	G	M	N	P	R	S	Ţ	4	4DF	5	å
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	kg
774	226	498	51	458	163	263	187	335	99	486	208	198	1/2	1/2	16	22
984	226	708	51	458	163	263	187	335	99	486	208	198	1/2	1/2	16	29
1194	226	918	51	458	163	263	187	335	99	486	208	198	1/2	1/2	16	35
1194	251	918	48	497	185	259	195	348	120	478	234	208	3/4	1/2	16	36
1404	251	1128	48	497	185	259	195	348	120	478	234	208	3/4	1/2	16	45
1614	251	1338	48	497	185	259	195	348	120	478	234	208	3/4	1/2	16	55
	774 984 1194 1194 1404	mm mm 774 226 984 226 1194 226 1194 251 1404 251	mm mm mm 774 226 498 984 226 708 1194 226 918 1194 251 918 1404 251 1128	mm mm mm mm 774 226 498 51 984 226 708 51 1194 226 918 51 1194 251 918 48 1404 251 1128 48	mm mm mm mm 774 226 498 51 458 984 226 708 51 458 1194 226 918 51 458 1194 251 918 48 497 1404 251 1128 48 497	mm mm mm mm mm mm 774 226 498 51 458 163 984 226 708 51 458 163 1194 226 918 51 458 163 1194 251 918 48 497 185 1404 251 1128 48 497 185	mm mm mm mm mm mm mm 774 226 498 51 458 163 263 984 226 708 51 458 163 263 1194 226 918 51 458 163 263 1194 251 918 48 497 185 259 1404 251 1128 48 497 185 259	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<	mm mm<

ESTRO FC


PLANS DIMENSIONNELS

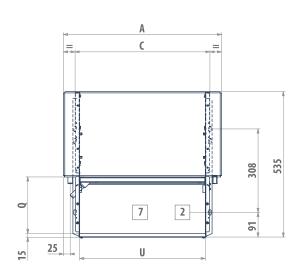
LANS DIVILIASIONNEL.

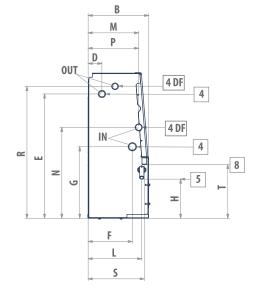
LÉGENDE

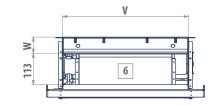
2	Lumières de fixation murale
4	Raccords hydrauliques échangeur standard
4DF	Raccords hydrauliques batterie additionnelle à 1 rang DF
5	Écoulement des condensats, installation verticale
6	Sortie d'air
7	Aspiration d'air
8	Écoulement des condensats, installation horizontale

ESTRO FC	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Moteur ON/OFF à 3 vitesse	Х	Х	Х	Х	Х	Х	χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х
Moteur ON/OFF à 6 vitesse	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	-	-	-	-
Moteur inverter	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	Х	-	-	Х	Х	Х
Moteur inverter GreenTech	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	-	-	-	-	-	Х

x = disponible

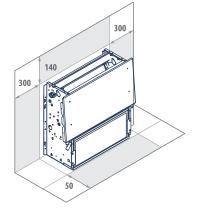

ESTRO	A	В	C	D	E	F	G	Н	L	M	N	P	Q	R	S	T	U	V	Y	4	å
LJINO	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
1 - 2 - 3 - 4 - 4M	584	224	498	51	458	163	263	149	198	187	335	99	189	486	208	198	436	464	61	1/2	18
5 - 6 - 6M	794	224	708	51	458	163	263	149	198	187	335	99	189	486	208	198	646	674	61	1/2	23
7 - 7M - 8 - 8M - 9 - 9M	1004	224	918	51	458	163	263	149	198	187	335	99	189	486	208	198	856	884	61	1/2	27
95	1004	249	918	48	497	185	259	155	220	195	348	120	215	478	234	208	856	884	67	3/4	27
10 - 10M - 11 - 11M	1214	249	1128	48	497	185	259	155	220	195	348	120	215	478	234	208	1066	1094	67	3/4	37
12	1424	249	1338	48	497	185	259	155	220	195	348	120	215	478	234	208	1276	1304	67	3/4	43




Unités hydroniques ESTRO

PLANS DIMENSIONNELS

ESTRO FF



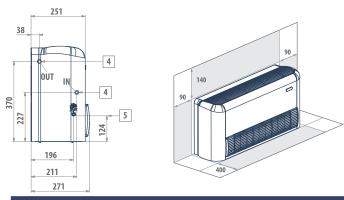
LÉGENDE

2	Lumières de fixation murale
4	Raccords hydrauliques échangeur standard
4DF	Raccords hydrauliques batterie additionnelle à 1 rang DF
5	Écoulement des condensats, installation verticale
6	Sortie d'air
7	Aspiration d'air
8	Écoulement des condensats, installation horizontale

ESTRO FF	1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Moteur ON/OFF à 3 vitesse	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ
Moteur ON/OFF à 6 vitesse	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	-	-	-	-	-
Moteur inverter	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	-	-	-	Х	Х	-
Moteur inverter GreenTech	Х	-	Х	Х	Х	Х	Х	Х	Х	-	Х	-	Х	Х	-	-	-	-	-	-

 $x = \mathsf{disponible}$

ESTRO	A	В	C	D	E	F	G	Н	L	M	N	P	Q	R	S	T	U	٧	W	4	A
ESINO	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
1 - 2 - 3 - 4 - 4M	584	224	498	51	458	163	263	149	198	187	335	99	189	486	208	198	436	464	61	1/2	18
5 - 6 - 6M	794	224	708	51	458	163	263	149	198	187	335	99	189	486	208	198	646	674	61	1/2	23
7 - 7M - 8 - 8M - 9 - 9M	1004	224	918	51	458	163	263	149	198	187	335	99	189	486	208	198	856	884	61	1/2	27
95	1004	249	918	48	497	185	259	155	220	195	348	120	215	478	234	208	856	884	67	3/4	27
10 - 10M - 11 - 11M	1214	249	1128	48	497	185	259	155	220	195	348	120	215	478	234	208	1066	1094	67	3/4	37
12	1424	249	1338	48	497	185	259	155	220	195	348	120	215	478	234	208	1276	1304	67	3/4	43

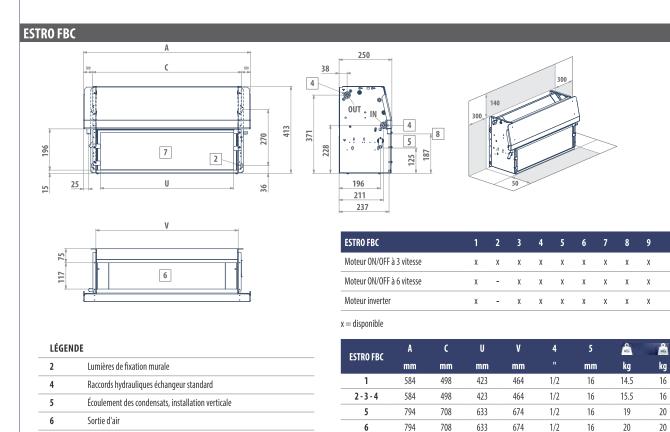

ESTRO FB

LÉGENDE

PLANS DIMENSIONNELS

A = C = 2 888

35



ESTRO FB	1	2	3	4	5	6	7	8	9	
Moteur ON/OFF à 3 vitesse	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Moteur ON/OFF à 6 vitesse	Х	-	Χ	Χ	Х	χ	Х	Х	Х	
Moteur inverter	Х	-	Х	Х	Х	χ	Х	Х	Х	

x = disponible

1	Espace utile pour les raccords hydrauliques
2	Lumières de fixation murale
3	Espace utile pour les branchements électriques
4	Raccords hydrauliques échangeur standard
5	Écoulement des condensats

ESTRO	A	C	4	5	<u> </u>
LJINU	mm	mm		mm	kg
1-2-3-4	774	498	1/2	16	19
5-6	984	708	1/2	16	28
7-8-9	1194	918	1/2	16	29

7

8

Aspiration d'air

Écoulement des condensats, installation horizontale

7 - 8

9

1004

1004

918

918

843

843

884

884

1/2

1/2

16

16

24

24.5

25

25

Ventilo-convecteurs à ventilateur centrifuge et moteur EC

ESTRO i 1 - 9 kW

à 2 tubes

verticale

Ventilateur centrifuge

Économies d'énergie et confort en une unique solution

L'innovation constante qui caractérise le projet ESTRO propose des groupes de ventilation à moteurs à aimants permanents EC commandés par un inverter.

L'utilisation de ce type de moteur permet d'obtenir une importante réduction de la puissance absorbée, un plus grand confort hygrothermique perçu et de très importantes réductions des émissions sonores.

Des analyses et des contrôles ont montré que la réduction de la puissance absorbée, par rapport aux traditionnels moteurs AC atteint 70% en fonctionnement intégré, et qu'elle s'accompagne d'une réduction des émissions de CO2.

La technologie Inverter DC permet d'adapter de manière constante le débit d'air aux besoins effectifs de l'espace ambiant et de réduire considérablement les oscillations de la température ambiante, propres aux réglages par étages. La modulation constante du débit d'air permet d'adapter la puissance thermique distribuée et, conséquemment, d'obtenir une mise à régime rapide dans les environnements contrôlés ainsi que des niveaux sonores exceptionnellement bas en phase de maintien. Les ventilo-convecteurs ESTRO i fonctionnent avec les panneaux de commande à microprocesseur MYCOMFORT LARGE et EVO qui, grâce aux sorties analogiques et à des logiques de réglage sophistiquées, permettent de contrôler parfaitement le fonctionnement des moteurs EC et des vannes de régulation.

PLUS

- » Moteur EC controlé par inverter
- » Consommations d'énergie limitées
- » Fonctionnement modulant
- » Silence maximum
- » Batterie jusqu'à 4 rangs
- » Système d'assainissement JONIX incorporable

VERSIONS DISPONIBLES

surbaissé

ESTRO FL i Installation murale avec habillage **ESTRO FA i** Installation murale en niche avec habillage **ESTRO CLi** Installation murale avec habillage **ESTRO FU i** Installation au sol et en plafonnier avec habillage **ESTRO FP i** Installation en plafonnier avec habillage **ESTRO FB i** Installation au sol et en plafonnier avec habillage **ESTRO FC i** Installation encastrée verticale et horizontale avec aspiration arrière

ESTRO FF i Installation encastrée verticale et horizontale avec aspi-

ration frontale

ESTRO FBC i Installation encastrée verticale et horizontale avec aspi-

ration frontale

COMPOSANTS PRINCIPAUX

Habillage

Habillage constitué d'un panneau en tôle d'acier laquée, flasques latérales, grille de soufflage (orientable à 180°) et grille de reprise d'air en ABS.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autœxtinguible (Classe 1). Les versions FUi – FBi – FCi – FFi et FBCi sont prévues pour installation verticale et horizontale grâce au double système de collecte et d'écoulement des condensats.

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés. Les ventilateurs sont logés dans une volute en ABS hautes performances.

Moteur électrique EC

Moteur à aimants permanents. L'unité est équipée de carte inverter de contrôle du moteur, permettant un réglage précis de la vitesse de rotation du moteur (signal de contrôle 0-10 V).

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien. Dans les versions FUi et FBi les filtres à air sont insérés dans les grilles d'aspiration.

ACCESS	OIRES
	mmande électroniques à microprocesseur avec moniteur
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
KBE	Kit integré de installation MYCOMFORT
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de co	mmande électroniques à microprocesseur
KB A	Kit d'installation des commandes TED sur l'unité ESTRO FA
KB L DX	Kit d'installation à droite du commande TED sur l'unité ESTRO FL/FU/FB
KB L SX	Kit d'installation à gauche du commande TED sur l'unité ESTRO FL/FU/FB
TED 10	Commande électronique pour le contrôle du ventilateur inverter EC et d'une ou deux vannes ON OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED
Interface de pu	issance et commandes pour volets
CSB	Commande intégrée pour ouverture/fermeture proportionnelle du volet motorisé
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet motorisé SM
Batterie additio	nnelle pour systèmes à 4 tubes
DF	Batterie additionnelle à 1 rang pour systèmes à 4 tubes (non utilisable sur les modèles ESTRO "M")
Bacs auxiliaires	de collecte des condensats, coques d'isolation, pompe purge des condensats
BH	Bac auxilliaire pour ventilo-convecteurs installation horizontal
BV	Bac auxilliaire pour ventilo-convecteurs installation vertical
GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche
GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite
KSC	Kit pompe purge des condensats
Pieds de soutie	n et caches extérieurs
ZA	Paire de pieds de soutien et caches extérieurs pour ESTRO FA
ZAG	Paire de pieds de soutien et caches extérieurs avec grille frontale pour ESTRO FA
ZC	Paire de pieds de soutien et caches extérieurs pour ESTRO CL
ZCG	Pieds de soutien et caches avec grille antérieure pour Estro CL

ZL	Pieds de soutien et caches extérieurs pour ESTRO FL
ZLG	Paire de pieds de soutien et caches extérieurs avec grille frontale pour ESTRO FL
Panneaux de	fermeture arrière
PH	Panneau laqué de fermeture arrière pour modèles à installation horizontale avec habillage
PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage
Grilles de sou	fflage et reprise d'air
GE	Grille en aluminium d'aspiration d'air externe avec contre-cadre
GEF	Grille d'aspiration reprise d'air externe en aluminium, avec contre-cadre et filtre à air
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre
RGC	Plenum avec colliers circulaires pour grille de soufflage d'air
Plenum et rac	ccords
RA90	Raccord d'aspiration angulaire
RAD	Raccord d'aspiration droit
RADC	Plenum d'aspiration avec colliers circulaires
RM90	Raccord de soufflage angulaire
RM90C	Raccord de souffllage angulaire isolé
RMCD	Raccord de soufflage droit isolé
RMCD C	Plenum de soufflage avec colliers circulaires
RMD	Raccord de soufflage droit
Volets de pris	e d'air externe
SM	Volet motorisé, moteur à droite, avec transformateur
SM	Volet motorisé, moteur à gauche, avec transformateur
SM	Volet motorisé de prise d'air
SMC	Volet motorisé, moteur à droite, pour commande centralisé
SMC	Volet motorisé, moteur à gauche, pour commande centralisé
Vannes	
KV	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections, pour batterie principale
KVM	Vanne à 2 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique côté connections pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydraulique pour batterie principale et additionnelle
Système d'ass	ainissement
JONIX - on board	Module d'assainissement JONI pour installation sur l'unité

Ventilo-convecteurs ESTRO i

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

ESTRO i				1			3			4		4M		
Vitesse			min	moy	max									
Tension à l'entrée	(E)	٧	4,00	5,30	6,50	5,20	6,90	8,40	5,20	6,90	8,40	5,20	6,90	8,40
Puissance frigorifique totale	(1)(E)	kW	0,77	0,91	1,14	1,25	1,51	1,72	1,35	1,69	1,94	1,49	1,84	2,22
Puissance frigorifique sensible	(1)(E)	kW	0,59	0,69	0,86	0,94	1,13	1,28	1,04	1,30	1,49	1,05	1,31	1,58
Classe FCEER	(E)								В					
Débit d'eau	(2)	l/h	133	157	196	215	260	296	232	291	334	257	317	382
Perte de charge	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	10	14	20
Puissance calorifique	(3)(E)	kW	0,95	1,11	1,32	1,45	1,72	1,84	1,50	1,81	2,15	1,53	1,88	2,29
Classe FCCOP	(E)			C			В			В			C	
Débit d'eau	(3)	l/h	164	191	227	250	296	317	258	312	370	263	324	394
Perte de charge	(3)(E)	kPa	5	6	8	9	12	14	6	9	12	9	12	17
Débit d'air nominal		m³/h	149	189	231	211	271	344	211	271	344	211	271	344
Puissance absorbée	(E)	W	6	8	9	7	9	19	7	9	19	9	12	24
Puissance acoustique globale	(4)(E)	dB(A)	30	32	40	38	44	49	40	44	50	41	45	51

ESTRO i				5			6			6M			7	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	٧	3,80	5,70	7,30	3,80	5,70	7,30	3,80	5,70	7,30	3,60	5,40	8,00
Puissance frigorifique totale	(1)(E)	kW	1,59	2,02	2,40	1,75	2,37	2,91	1,92	2,63	3,27	1,97	2,62	3,49
Puissance frigorifique sensible	(1)(E)	kW	1,17	1,56	1,86	1,25	1,69	2,09	1,32	1,82	2,28	1,44	2,03	2,73
Classe FCEER	(E)			А			А			А			C	
Débit d'eau	(2)	l/h	274	348	413	301	408	501	331	453	563	339	451	601
Perte de charge	(2)(E)	kPa	8	12	16	5	8	11	7	12	17	4	7	12
Puissance calorifique	(3)(E)	kW	1,74	2,26	2,70	1,76	2,37	2,94	1,74	2,41	3,03	2,39	3,13	4,05
Classe FCCOP	(E)			А			А			В			C	
Débit d'eau	(3)	l/h	300	389	465	303	408	506	300	415	522	412	539	697
Perte de charge	(3)(E)	kPa	8	12	17	5	8	11	6	10	15	5	8	13
Débit d'air nominal		m³/h	241	341	442	241	341	442	241	341	442	320	450	640
Puissance absorbée	(E)	W	6	8	16	8	10	20	6	8	16	10	17	34
Puissance acoustique globale	(4)(E)	dB(A)	35	43	48	36	42	48	35	43	49	35	46	52

ESTRO i				8			9			9M			95	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	V	3,70	5,40	8,00	5,00	6,70	8,90	5,00	6,70	8,90	4,80	6,10	8,30
Puissance frigorifique totale	(1)(E)	kW	2,50	3,26	4,30	2,99	3,64	4,48	3,51	4,35	5,37	3,41	4,17	5,22
Puissance frigorifique sensible	(1)(E)	kW	1,79	2,44	3,12	2,31	2,90	3,62	2,46	3,05	3,79	2,47	3,11	3,95
Classe FCEER	(E)			Α			В			А			А	
Débit d'eau	(2)	l/h	430	561	740	515	627	771	604	749	925	587	718	899
Perte de charge	(2)(E)	kPa	6	10	15	7	10	14	11	16	24	10	14	21
Puissance calorifique	(3)(E)	kW	2,47	3,24	4,24	3,36	4,11	4,88	3,53	4,37	5,39	3,52	4,32	5,49
Classe FCCOP	(E)								В					
Débit d'eau	(3)	l/h	425	558	730	579	708	840	608	753	928	606	744	945
Perte de charge	(3)(E)	kPa	5	8	14	7	9	13	10	14	20	8	12	18
Débit d'air nominal		m³/h	361	497	706	470	605	785	470	605	785	488	615	814
Puissance absorbée	(E)	W	10	13	27	15	20	41	17	23	47	15	18	43
Puissance acoustique globale	(4)(E)	dB(A)	35	43	53	43	49	56	44	50	57	44	51	58

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

NOTE: Les schémas dimensionnels de ESTRO i inverter est le même de la version ESTRO ON/OFF. Ils sont rapporté de la page 47.

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

ESTRO i				11			11M	
Vitesse			min	moy	max	min	moy	max
Tension à l'entrée	(E)	V	3,60	6,20	8,60	3,60	6,20	8,60
Puissance frigorifique totale	(1)(E)	kW	4,11	6,24	8,02	4,65	6,94	8,89
Puissance frigorifique sensible	(1)(E)	kW	3,05	4,63	5,96	3,28	4,91	6,30
Classe FCEER	(E)			В			Α	
Débit d'eau	(2)	l/h	708	1075	1381	801	1195	1531
Perte de charge	(2)(E)	kPa	6	13	20	9	19	29
Puissance calorifique	(3)(E)	kW	4,39	6,53	8,37	4,75	7,02	9,00
Classe FCCOP	(E)				I	3		
Débit d'eau	(3)	l/h	756	1124	1441	818	1209	1550
Perte de charge	(3)(E)	kPa	6	12	18	8	16	25
Débit d'air nominal		m³/h	642	1022	1393	642	1022	1393
Puissance absorbée	(E)	W	17	50	114	13	38	87
Puissance acoustique globale	(4)(E)	dB(A)	49	60	67	50	61	68

- (1) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 (2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 (3) Température eau 45°C / 40°C, température air 20°C
 (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
 (E) Données certificats EUROVENT
 Alimentation électrique 230-1-50 (V-ph-Hz)

Ventilo-convecteurs ESTRO i

DONNÉES TECHNIQUES NOMINALES - 4 TUBES

ESTRO i				1			3			4			5	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	V	4,00	5,30	6,50	5,10	6,60	8,10	5,10	6,60	8,10	3,70	5,50	7,20
Puissance frigorifique totale	(1)(E)	kW	0,75	0,89	1,12	1,23	1,47	1,67	1,25	1,55	1,77	1,57	1,99	2,37
Puissance frigorifique sensible	(1)(E)	kW	0,57	0,68	0,85	0,92	1,10	1,25	0,97	1,21	1,44	1,16	1,53	1,84
Classe FCEER	(E)			C			В			В			Α	
Débit d'eau	(2)	l/h	129	153	193	212	253	288	215	267	305	270	343	408
Perte de charge	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	8	12	16
Puissance calorifique	(3)(E)	kW	1,18	1,31	1,49	1,36	1,56	1,76	1,36	1,56	1,76	1,78	2,18	2,53
Classe FCCOP	(E)			В			В			В			В	
Débit d'eau	(3)	l/h	102	113	128	117	134	152	117	134	152	153	188	218
Perte de charge	(3)(E)	kPa	2	3	4	4	5	7	4	5	6	2	3	3
Débit d'air nominal		m³/h	146	184	226	205	261	330	205	261	327	238	334	432
Puissance absorbée	(E)	W	7	8	9	7	8	18	7	8	18	8	10	19
Puissance acoustique globale	(4)(E)	dB(A)	29	32	40	40	44	49	38	44	50	34	43	48

ESTRO i			6			7			8		
Vitesse			min	moy	max	min	moy	max	min	moy	max
Tension à l'entrée	(E)	V	3,80	5,70	7,30	3,60	5,40	8,00	3,70	5,40	8,00
Puissance frigorifique totale	(1)(E)	kW	1,72	2,32	2,86	1,95	2,59	3,44	2,47	3,22	4,24
Puissance frigorifique sensible	(1)(E)	kW	1,23	1,65	2,06	1,43	2,01	2,69	1,77	2,41	3,07
Classe FCEER	(E)		A								
Débit d'eau	(2)	l/h	296	400	492	336	446	592	425	554	730
Perte de charge	(2)(E)	kPa	5	8	11	4	7	12	5	7	12
Puissance calorifique	(3)(E)	kW	1,88	2,31	2,68	2,82	3,47	4,20	2,73	3,22	3,82
Classe FCCOP	(E)		В			В			A		
Débit d'eau	(3)	l/h	162	199	231	243	299	362	235	277	329
Perte de charge	(3)(E)	kPa	2	3	4	8	12	16	8	10	14
Débit d'air nominal		m³/h	237	332	431	316	444	628	356	490	690
Puissance absorbée	(E)	W	6	11	17	9	12	17	9	13	25
Puissance acoustique globale	(4)(E)	dB(A)	33	41	47	36	45	53	39	46	56

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT

NOTE: Les schémas dimensionnels de ESTRO i inverter est le même de la version ESTRO ON/OFF. Ils sont rapporté de la page 47.

DONNÉES TECHNIQUES NOMINALES - 4 TUBES

ESTRO i			9			95			11		
Vitesse			min	moy	max	min	moy	max	min	moy	max
Tension à l'entrée	(E)	V	5,00	6,70	8,90	4,80	6,10	8,30	3,60	6,20	8,60
Puissance frigorifique totale	(1)(E)	kW	3,10	3,79	4,64	3,53	4,32	5,39	3,76	5,67	7,20
Puissance frigorifique sensible	(1)(E)	kW	2,27	2,85	3,54	2,42	3,06	3,86	3,00	4,52	5,73
Classe FCEER	(E)		В			A			В		
Débit d'eau	(2)	l/h	534	653	799	608	744	928	647	976	1240
Perte de charge	(2)(E)	kPa	7	10	14	10	14	20	5	10	16
Puissance calorifique	(3)(E)	kW	3,55	4,07	4,64	3,70	4,20	4,84	4,85	6,29	7,35
Classe FCCOP	(E)		В								
Débit d'eau	(3)	I/h	306	350	400	319	362	417	418	542	633
Perte de charge	(3)(E)	kPa	7	8	11	7	9	12	14	22	29
Débit d'air nominal		m³/h	460	593	763	478	603	792	636	1007	1362
Puissance absorbée	(E)	W	19	25	48	13	16	34	18	51	116
Puissance acoustique globale	(4)(E)	dB(A)	48	53	58	46	52	59	48	58	66

(1) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT

Ventilo-convecteur avec habillage design, profondeur 17 cm

FLAT S 1 - 3 kW

La réponse aux nouvelles exigences de conception dans le domaine résidentiel

La série FLAT de Galletti est devenue SLIM. Avec une profondeur de 17 cm seulement, la série FLAT S est caractérisée par des dimensions compactes qui facilitent son intégration dans n'importe quel contexte et répondent aux nouvelles tendances de conception dans le secteur résidentiel (et autres encore). La mini série FLAT S est également synonyme d'innovation en termes de conception technique, pour garantir des performances du plus haut niveau en matière d'émissions sonores, sans compter un design exclusif qui s'intègre aussi bien à un environnement résidentiel qu'à un environnement commercial. Il habillage design couleur RAL9010, de dimensions réduites, est réalisé en tôle d'acier et en ABS stabilisé aux rayons UV. La grille supérieure est formée par un déflecteur et des ailettes orientables, équipée de micro-rupteur qui arrête le fonctionnement de l'unité quand il est porté en position de fermeture.

L'adoption d'ABS, stabilisé aux UV pour les parties qui forment l'habillage et antistatique dans le groupe de ventilation (volute et ventilateur centrifuge) est gage d'esthétique et de performances sonores constantes pendant tout le cycle de vie du produit.

Installation

Installation

Ventilateur centrifuge

PLUS

- » Habillage design, profondeur 17 cm
- » Microswitch sur flap de sortie d'air
- » Utilisation d'ABS stabilisé aux rayons UV
- » Raccords hydrauliques réversibles
- » Moteur à 3 vitesse
- » Ventilateurs centrifuges en ABS
- » Système d'assainissement JONIX incorporable

COMPOSANTS PRINCIPAUX

Habillage

Habillage design, couleur RAL9010, profondeur 17 cm, panneau frontal en tôle d'acier. Flasques latérales, grille supérieure et volets latéraux en ABS stabilisé aux rayons UV pour maintenir la couleur inchangée dans le temps. La grille supérieure est formée par un déflecteur et des ailettes orientables. Le déflecteur est équipé de micro-rupteur qui arrête le fonctionnement de l'unité quand il est porté en position de fermeture.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autœxtinguible (Classe 1).

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés Les ventilateurs sont logés dans une volute en ABS hautes performances.

Moteur électrique

Monté sur supports antivibratoires, avec condensateur permanent équipé de protection thermique des enroulements, directement accouplé aux ventilateurs. Deux versions sont disponibles, à 3 et à 6 vitesses pour répondre à toutes les exigences en termes de performances, émissions sonores et consommation de courant.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

CONFIGURATEUR													
Les modèles sont entièrement configurables en sélectionnant	Version	Champs	1	2	3	4	5	6	7	8	9	10	11
la version et les options. À côté, figure un exemple de configuration.	FLATS13		L	0	М	0	1	E	0	0	0	0	Α

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- Version
- L Installation murale avec habillage
- Moteur
- 0 Moteur à 3 vitesse
- Moteur EC
- Côté raccords batterie principale
- Raccords a gauche
- Raccords à droite
- Côté raccords batterie supplémentaire/résistance électrique
- Absent
- Raccords a gauche Raccords à droite
- Vanne
 - Absent

- VKS Vanne à 3 voies 230 V 0N/0FF kit complet KV Vanne à 2 voies 230 V 0N/0FF VKMS Vanne à 3 voies 24 V MODULANTE kit complet KVM Vanne à 2 voies 24 V MODULANTE
- VKS24 Vanne à 3 voies 24 V ON/OFF kit complet KV24 Vanne à 2 voies 24 V ON/OFF
- VKSND Vanne à 3 voies 230 V ON/OFF kit côté batterie
- VKMSND Vanne à 3 voies 24 V MODULANTE kit côté batterie
- VKS24ND Vanne à 3 voies 24 V ON/OFF kit côté batterie
- Panneau de commande
- Absent
- CB Commutateur de vitesse
- TB Thermostat et commutateur
- TIB Thermostat, commutateur et sélecteur E/I
- TED 2T Commande électronique 2 tuyaux

- TED 4T Commande électronique 4 tuyaux
- TED 10 Commande électronique EC
- MCBE My comfort base

- MCME My comfort medium MCLE My comfort large EVOBOARD Carte de puissance
- Carte de puissance EVOBOARD + module Wireless NAVEL
- Sondes
- 0 Absent

- ABSENT
 SA Sonde air éloignée pour MYCOMFORT, LED 503 et EVO
 SW Sonde eau pour MYCOMFORT, LED 503 et EVO
 SU Sonde humidité pour MYCOMFORT et EVO
 SA + SW Sonde air + eau pour MYCOMFORT, LED 503 et EVO
- SA + SU Sonde air + humidité pour MYCOMFORT et EVO
- SA + SU + SW Sonde air + humidité + eau pour MY COMFORT et EVO
- TC Thermostat d'arrêt du ventilateur SA Sonde air éloignée pour TED SW Sonde eau pour TED SA + SW Sonde air + eau pour TED

- Accessoires
- Absent
- JONIX
- BV Bac auxiliaire GIVK Coque vanne
- 6 Filtre
- 0
- Filtre à air standard Release
- 10 0 0
 - Α
- Α

ACCESS	OIRES		
Panneaux de co	mmande électromécaniques	Bacs auxiliaire	s de collecte des condensats, coques d'isolation, pompe purge des condensats
CB	Sélecteur de vitesse sur l'unité	BVK	Bac auxilliaire pour ventilo-convecteurs installation vertical
CD	Sélecteur de vitesse à installation murale encastrée	GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche
TC	Thermostat de température minimum de l'eau en mode chauffage (42 °C)	GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite
TIB	Thermostat, interrupteur et sélecteur été/hiver sur l'unité	Pieds de soutie	en et caches extérieurs
Panneaux de co	mmande électroniques à microprocesseur avec moniteur	ZLS	Pieds de soutien et caches extérieurs pour FLAT S
COB	Plaque de finition pour commande LED 503 couleur noir RAL 9005	Panneaux de fo	ermeture arrière
COG	Plaque de finition pour commande LED 503 couleur gris RAL 7031	PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage
COW	Plaque de finition pour commande LED 503 couleur blanc RAL 9003	Vannes	
DIST	Entretoise contrôleur MY COMFORT pour installation murale	KV	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections,
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO		pour batterie principale
EVOBOARD	Carte de puissance pour commande EVO	KV24DF	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique côté connections,
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO		pour batterie principale et supplémentaire
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone	V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
KBFLAE	Kit d'installation du contrôleur MY COMFORT sur l'unité FLAT		lique pour batterie principale et additionnelle Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
LED503	Commande électronique à installation murale avec moniteur LED 503	V2VSTD	lique pour batterie principale
MCBE	Commande à microprocesseur avec moniteur MY COMFORT BASE		Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE	V3VDF	lique pour batterie additionnelle
MCME	Commande à microprocesseur avec moniteur MY COMFORT MEDIUM		Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO	V3VSTD	lique pour batterie principale
MCSWE	Sonde eau pour commandes MY COMFORT et EVO	WWDEDA	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique complet, pour
	mmande électroniques à microprocesseur	VKDF24	batterie supplémentaire
KB F	Kit d'installation du contrôleur TED sur l'unité FLAT/FLAT S	VKMS	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique complet, pour
TED 2T	Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V	VIVIO	batterie principale
TED 4T	Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V	VKMSND	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique sans détenteur,
TED SWA	Sonde de température air ou eau pour commandes TED	Timisito	pour batterie principale
Interface de pui	ssance et commandes pour volets	VKSND	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique sans détenteur,
KP	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une unique		pour batterie principale
	commande	VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
	nnelle pour systèmes à 4 tubes	Système d'assa	
DF	Batterie additionnelle à 1 rang pour système à 4 tubes	JONIX inside	Module d'assainissement JONI pour installation sur l'unité
		JONIN IURIGE	module a assamissement John pour installation sur l'unite

Ventilo-convecteurs

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

FLAT S				13			23			33			43	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,39	1,73	2,28	1,75	2,12	2,75
Puissance frigorifique sensible	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Classe FCEER	(E)		D						D					
Débit d'eau	(2)	l/h	148	168	213	186	230	300	243	303	399	303	368	477
Perte de charge	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Puissance calorifique	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,59	1,52	1,85	2,40	1,85	2,22	2,86
Classe FCCOP	(E)			D			D			Е			D	
Débit d'eau	(3)	l/h	155	176	221	174	211	277	264	321	417	321	386	497
Perte de charge	(3)(E)	kPa	2	3	4	3	5	8	3	4	7	4	6	9
Débit d'air nominal		m³/h	115	135	170	135	170	225	200	250	340	250	310	420
Puissance absorbée	(E)	W	12	17	23	14	20	27	25	31	41	25	31	42
Puissance acoustique globale	(4)(E)	dB(A)	30	35	40	35	40	46	32	38	46	37	42	49

- Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021 Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) Température eau 45°C / 40°C, température air 20°C Puissance acoustique mesurée selon ISO 3741 et ISO 3742

- (E) Données certificats EUROVENT

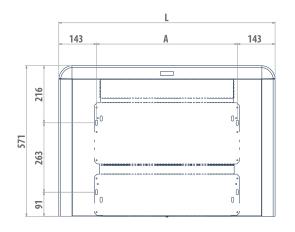
Alimentation électrique 230-1-50 (V-ph-Hz)

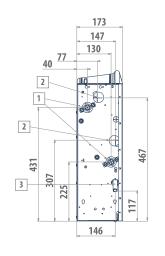
DONNÉES TECHNIQUES NOMINALES - 4 TUBES

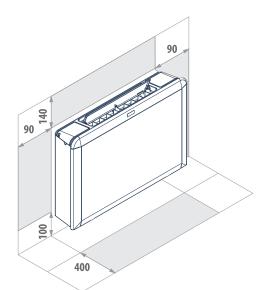
FLAT S				13			23			33			43	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,40	1,74	2,29	1,75	2,12	2,75
Puissance frigorifique sensible	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Classe FCEER	(E)								D					
Débit d'eau	(2)	l/h	148	168	213	186	230	300	243	303	399	303	368	477
Perte de charge	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Puissance calorifique	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	1,88	2,16	2,69	2,16	2,45	3,02
Classe FCCOP	(E)								D					
Débit d'eau	(3)	l/h	91	100	119	118	136	167	165	189	235	189	215	264
Perte de charge	(3)(E)	kPa	2	2	3	4	5	7	1	2	3	2	2	3
Débit d'air nominal		m³/h	115	135	170	135	170	225	200	250	340	250	310	420
Puissance absorbée	(E)	W	12	17	23	14	20	27	23	28	37	25	31	42
Puissance acoustique globale	(4)(E)	dB(A)	30	35	40	35	40	46	32	38	46	37	42	49

- (1) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021

 [2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)


 [3] Température eau 65°C / 55°C, température air 20°C


- (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
 (E) Données certificats EUROVENT


Alimentation électrique 230-1-50 (V-ph-Hz)

FLAT S

LÉGENDE

2 Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2" 3 Diamétre ècoulement des condensats, installation verticale ø 16 mm	Diamétre ècoulement des condensats, installation horizontale ø 17 mm						
2 Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2"	3	Diamétre ècoulement des condensats, installation verticale ø 16 mm					
, 1	2	Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2"					
1 Raccords hydrauliques échangeur standard ø 1/2" femme	1	Raccords hydrauliques échangeur standard ø 1/2" femme					

FLAT S	A	L	RG.
FLAI 5	mm	mm	kg
13	534	820	17
23	704	990	21
33 - 43	874	1160	23
33 - 43	874	1160	23

Ventilo-convecteurs FLA T S i

Ventilo-convecteur avec habillage design, profondeur 17 cm et moteur EC

FLAT S i 1 - 3 kW

Installation

à 2 tubes

Installation

La réponse aux nouvelles exigences de conception dans le domaine résidentiel

La série FLAT de Galletti est devenue SLIM. Avec une profondeur de 17 cm seulement, la série FLAT S est caractérisée par des dimensions compactes qui facilitent son intégration dans n'importe quel contexte et répondent aux nouvelles tendances de conception dans le secteur résidentiel (et autres encore).

La mini série FLAT S est également synonyme d'innovation en termes de conception technique, pour garantir des performances du plus haut niveau en matière d'émissions sonores, sans compter un design exclusif qui s'intègre aussi bien à un environnement résidentiel qu'à un environnement commercial. Les unités hydroniques FLAT S i de Galletti sont équipées d'un moteur électrique à aimants permanents (brushless) qui, commandé par un inverter, permet d'assurer un réglage constant de la vitesse de rotation du ventilateur.

Outre l'importante réduction des consommations d'électricité par rapport aux moteurs AC, l'utilisation de la technologie EC à variateur de fréquence permet d'adapter constamment le fonctionnement de l'unité à la charge hygrothermique effective de l'espace ambiant, ce qui se traduit par d'évidents bénéfices en termes de confort et de niveau sonore.

Le recours à cette technologie s'avère particulièrement efficace lors d'un fonctionnement aux charges partielles (le plus fréquent) puisque la logique de réglage permet d'optmiser le moteur à une vitesse de rotation minime, ce qui se traduit par de très importantes réductions des consommations d'électricité et des émissions sonores.

Le fonctionnement des unités à moteur brushless est contrôlé par le panneau de commande à microprocesseur EVO ou MY-COMFORT LARGE, par l'intermédiaire d'une sortie analogique (0-10V) reliée à l'inverter.

PLUS

- » Habillage design, profondeur 17 cm
- » Consommations d'énergie limitées
- » Fonctionnement modulant
- » Microswitch sur flap de sortie d'air
- » Raccords hydrauliques réversibles
- » Moteur EC controlé par inverter
- » Ventilateurs centrifuges en ABS
- » Système d'assainissement JONIX incorporable

VERSIONS DISPONIBLES

Installation murale en applique, habillage à soufflage d'air vertical Installation à 2 et 4 tubes

COMPOSANTS PRINCIPAUX

Habillage

Habillage design, couleur RAL9010, profondeur 17 cm, panneau frontal en tôle d'acier. Flasques latérales, grille supérieure et volets latéraux en ABS stabilisé aux rayons UV pour maintenir la couleur inchangée dans le temps. La grille supérieure est formée par un déflecteur et des ailettes orientables. Le déflecteur est équipé de micro-rupteur qui arrête le fonctionnement de l'unité quand il est porté en position de fermeture.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autoextinguible (Classe 1).

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés Les ventilateurs sont logés dans une volute en ABS hautes performances.

Moteur électrique

L'unité est équipée de carte inverter de contrôle du moteur, fournie à part ou montée sur le moteur, permettant un réglage précis de la grande vitesse du moteur (signal de contrôle 0-10 V) surtout dans les cas où la réduction de la vitesse comporte une réduction des émissions sonores.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

ACCESS	SOIRES
	mmande électroniques à microprocesseur avec moniteur
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8″ pour commande EVO
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
KBFLAE	Kit d'installation du contrôleur MY COMFORT sur l'unité FLAT
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de co	mmande électroniques à microprocesseur
KB F	Kit d'installation du contrôleur TED sur l'unité FLAT/FLAT S
TED 10	Commande électronique pour le contrôle du ventilateur inverter EC et d'une ou deux vannes ON, OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED
Batterie additio	onnelle pour systèmes à 4 tubes
DF	Batterie additionnelle à 1 rang pour système à 4 tubes
Bacs auxiliaires	de collecte des condensats, coques d'isolation, pompe purge des condensats
BV	Bac auxilliaire pour ventilo-convecteurs installation vertical
GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche
GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite
Pieds de soutie	n et caches extérieurs
ZLS	Pieds de soutien et caches extérieurs pour FLAT S
Panneaux de fe	rmeture arrière
PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage
Vannes	· · · · · · · · · · · · · · · · · · ·
KV	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections, pour batterie principale
KV24	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique côté connections, pour batterie principale
KV24DF	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique côté connections, pour batterie principale et supplémentaire

KVDF	Vanne à 2 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique côté connections, pour batterie principale et supplémentaire
KVM	Vanne à 2 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique côté connections, pour batterie principale
KVMDF	Vanne à 2 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique côté connections, pour batterie principale et supplémentaire
VKDF	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique complet, pour batterie supplémentaire
VKDF24	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique complet, pour batterie supplémentaire
VKDF24ND	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique sans détenteur, pour batterie supplémentaire
VKDFND	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique sans détenteur, pour batterie supplémentaire
VKMDF	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique complet, pour batterie supplémentaire
VKMDFND	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique sans détenteur, pour batterie supplémentaire
VKMS	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique complet, pour batterie principale
VKMSND	Vanne à 3 voies, actionneur MODULANT, alimentation 24 V, avec kit hydraulique sans détenteur, pour batterie principale
VKS	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique complet, pour batterie principale
VKS24	Vanne à 3 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique complet, pour batterie principale
VKS24ND	Vanne à 2 voies, actionneur ON/OFF, alimentation 24 V, avec kit hydraulique sans détenteur, pour batterie principale
VKSND	Vanne à 3 voies, actionneur ON/OFF, alimentation 230 V, avec kit hydraulique sans détenteur, pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
Système d'assa	inissement
JONIX inside	Module d'assainissement JONI pour installation sur l'unité

Ventilo-convecteurs FLATS i

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

FLATSi				13			23			43	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Tension à l'entrée	(E)	٧	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Puissance frigorifique totale	(1)(E)	kW	0,85	0,97	1,23	0,93	1,19	1,53	1,75	2,12	2,75
Puissance frigorifique sensible	(1)(E)	kW	0,60	0,69	0,88	0,74	0,93	1,20	1,26	1,54	2,01
Classe FCEER	(E)						В				
Débit d'eau	(2)	l/h	148	168	213	186	230	300	303	368	477
Perte de charge	(2)(E)	kPa	3	3	5	6	8	12	5	7	10
Puissance calorifique	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,54	1,85	2,22	2,86
Classe FCCOP	(E)						-				
Débit d'eau	(3)	l/h	155	176	221	174	211	277	321	386	497
Perte de charge	(3)(E)	kPa	2	3	4	5	8	11	4	6	9
Débit d'air nominal		m³/h	115	135	170	135	170	225	250	310	420
Puissance absorbée	(E)	W	7	8	10	7	8	11	10	12	21
Puissance acoustique globale	(4)(E)	dB(A)	30	35	40	35	40	46	37	42	49

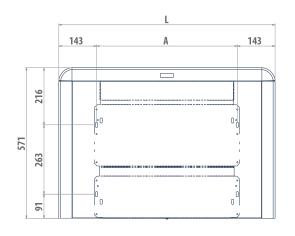
 ⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 (2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 (3) Température eau 45°C / 40°C, température air 20°C
 (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742

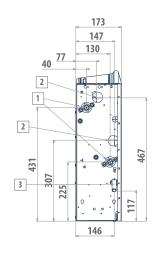
Alimentation électrique 230-1-50 (V-ph-Hz)

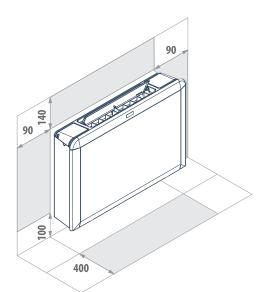
DONNÉES TECHNIQUES NOMINALES - 4 TUBES

FLATSi				13			23			43	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Tension à l'entrée	(E)	٧	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Puissance frigorifique totale	(1)(E)	kW	0,85	0,97	1,23	1,08	1,33	1,74	1,75	2,12	2,75
Puissance frigorifique sensible	(1)(E)	kW	0,60	0,69	0,88	0,74	0,92	1,21	1,26	1,54	2,01
Classe FCEER	(E)						В				
Débit d'eau	(2)	l/h	148	168	213	186	230	300	303	368	477
Perte de charge	(2)(E)	kPa	3	3	5	4	7	11	5	7	10
Puissance calorifique	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	2,16	2,45	3,02
Classe FCCOP	(E)			C			В			В	
Débit d'eau	(3)	l/h	91	100	119	118	136	167	189	215	264
Perte de charge	(3)(E)	kPa	2	2	3	4	5	7	2	2	3
Débit d'air nominal		m³/h	115	135	170	135	170	225	250	310	420
Puissance absorbée	(E)	W	7	8	10	7	8	11	10	12	21
Puissance acoustique globale	(4)(E)	dB(A)	30	35	40	35	40	46	37	42	49

Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 Température eau 65°C / 55°C, température air 20°C
 Puissance acoustique mesurée selon ISO 3741 et ISO 3742


Alimentation électrique 230-1-50 (V-ph-Hz)


⁽E) Données certificats EUROVENT


⁽E) Données certificats EUROVENT

FLAT S i

LÉGENDE

Diamétre ècoulement des condensats, installation horizontale ø 17 mm						
3	Diamétre ècoulement des condensats, installation verticale ø 16 mm					
2	Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2"					
1	Raccords hydrauliques échangeur standard ø 1/2" femme					

A	L	KG
mm	mm	kg
534	820	17
704	990	21
874	1160	23
	mm 534 704	mm mm 534 820 704 990

Ventilo-convecteurs design à ventilateur centrifuge

FLAT 2 - 5 kW

Installation

à 4 tubes

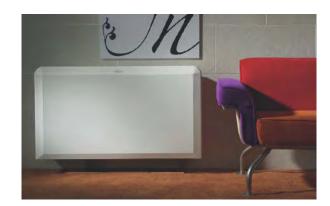
Installation verticale

Ventilateur centrifuge

FLAT Galletti: performances et design en une seule unité interne

FLAT de Galletti constitue une nouvelle génération de ventilo-convecteurs conçus pour offrir des performances au top de la catégorie accompagnées d'un design irréprochable.

Les atouts exceptionnels des ventilo-convecteurs FLAT reposent sur l'utilisation de matériaux de très haute qualité qui contribuent à la robustesse inégalable de l'appareil et qui garantissent des performances constantes et durables.


FLAT optimise la distribution de l'air dans l'espace ambiant grâce à la grille de sortie d'air intégrée qui permet d'orienter l'air traité et filtré dans 4 directions. Le déflecteur principal est doté d'un micro-interrupteur qui interrompt le fonctionnement du ventilateur et place les vannes en OFF en cas de fermeture. Le déflecteur est utile pour éviter l'accumulation de poussières pendant les arrêts.

L'adoption d'ABS, stabilisé aux UV pour les parties qui forment l'habillage et antistatique dans le groupe de ventilation (volute et ventilateur centrifuge) est gage d'esthétique et de performances sonores constantes pendant tout le cycle de vie du produit.

La conception du groupe de moto-ventilation est particulièrement soignée et garantit des performances exceptionnelles en termes de niveau de bruit, aussi bien avec les moteurs à 3 vitesses qu'avec les moteurs à 6 vitesses.

PLUS

- » Habillage design
- » Microswitch sur flap de sortie d'air
- » Utilisation d'ABS stabilisé aux rayons UV
- » Raccords hydrauliques réversibles
- » Moteur à 3 ou 6 vitesse
- » Ventilateurs centrifuges en ABS
- » Système d'assainissement JONIX incorporable

COMPOSANTS PRINCIPAUX

Habillage

Couleur RAL9010, panneau frontal en tôle d'acier. Flasques latérales, grille supérieure et volets latéraux en ABS stabilisé UV pour maintenir la couleur inchangée dans le temps. La grille supérieure est formée par un déflecteur et des ailettes orientables. Le déflecteur est équipé de microinterrupteur qui arrête le fonctionnement de l'unité quand il est porté en position de fermeture.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autœxtinguible (Classe 1).

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés Les ventilateurs sont logés dans une volute en ABS hautes performances.

Moteur électrique

Monté sur supports antivibratoires, avec condensateur permanent équipé de protection thermique des enroulements, directement accouplé aux ventilateurs. Deux versions sont disponibles, à 3 et à 6 vitesses pour répondre à toutes les exigences en termes de performances, émissions sonores et consommation de courant.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

CONFIGURATEUR													
Les modèles sont entièrement configurables en sélectionnant	Version	Champs	1	2	3	4	5	6	7	8	9	10	11
la version et les options. À côté, figure un exemple de configuration	FLAT10		L	0	M	0	1	E	0	0	0	0	Α

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- Version
- L Installation murale avec habillage
- Moteur

3

- Moteur à 3 vitesse
- Moteur BLDC
- Moteur à 6 vitesse
- Côté raccords batterie principale
- Raccords a gauche Raccords à droite
- Côté raccords batterie supplémentaire/résistance électrique
- Absent
- Raccords a gauche
- Raccords à droite
- Vanne
 - Absent
 - VKS Vanne à 3 voies 230 V ON/OFF kit complet
 - KV Vanne à 2 voies 230 V ON/OFF
- VKMS Vanne à 3 voies 24 V MODULANTE kit complet VMM - Vanne à 2 voies - 24 V MODULANTE VKS24 - Vanne à 3 voies - 24 V - ON/OFF - kit complet KV24 - Vanne à 3 voies - 24 V - ON/OFF VKSND - Vanne à 3 voies - 230 V - ON/OFF - kit côté batterie

- VKMSND Vanne à 3 voies 24 V MODULANTE kit côté batterie VKS24ND - Vanne à 3 voies - 24 V - ON/OFF - kit côté batterie
- Panneau de commande
- Absent

TED 4T

- CB Commutateur de vitesse TIB Thermostat, commutateur et sélecteur E/I
- TED 2T Commande électronique 2 tuyaux
- TED 4T Commande électronique 4 tuyaux
- TED 10 Commande électronique BLDC

- MCBE My comfort base MCME My comfort medium MCLE My comfort large
- EVOBOARD Carte de puissance
- EVOBOARD Carte de puissance + module Wireless NAVEL
- Sondes
 - Absent
- SA Sonde air éloignée pour MYCOMFORT, LED503 et EVO SW Sonde eau pour MYCOMFORT, LED 503 et EVO
- SU Sonde humidité pour MYCOMFORT et EVO

- SA + SW Sonde air + eau pour MYCOMFORT, LED 503 et EVO
 SA + SU Sonde air + humidité pour MYCOMFORT et EVO
 SA + SU + SW Sonde air + humidité + eau pour MY COMFORT et EVO
 TC Thermostat d'arrêt du ventilateur
 SA Sonde air éloignée pour TED

- SW Sonde eau pour TED
- SA + SW Sonde air + eau pour TED
- Accessoires
- Absent
- JONIX
- BV Bac auxiliaire
- GIVK Coque vanne
- Ioniseur
- loniseur avec commande
- Filtre

9

- Filtre à air standard 0
- 10 Release
- 0 0
- Α
- Release 11

ACCESS	SOIRES
Panneaux de co	mmande électromécaniques
СВ	Sélecteur de vitesse sur l'unité
CD	Sélecteur de vitesse à installation murale encastrée
CDE	Sélecteur de vitesse à installation murale
TA	Thermostat d'ambiance à installation murale
TA2	Thermostat d'ambiance avec sélecteur été/hiver à installation murale
TC	Thermostat de température minimum de l'eau en mode chauffage (42 °C)
TIB	Thermostat, interrupteur et sélecteur été/hiver sur l'unité
Panneaux de co	mmande électroniques à microprocesseur avec moniteur
COB	Plaque de finition pour commande LED 503 couleur noir RAL 9005
COG	Plaque de finition pour commande LED 503 couleur gris RAL 7031
COW	Plaque de finition pour commande LED 503 couleur blanc RAL 9003
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8″ pour commande EVO
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
KBFLAE	Kit d'installation du contrôleur MY COMFORT sur l'unité FLAT
LED503	Commande électronique à installation murale avec moniteur LED 503
MCBE	Commande à microprocesseur avec moniteur MY COMFORT BASE
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCME	Commande à microprocesseur avec moniteur MY COMFORT MEDIUM
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
	mmande électroniques à microprocesseur
KB F	Kit d'installation du contrôleur TED sur l'unité FLAT/FLAT S
TED 2T	Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V

Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V

TED SWA	Sonde de température air ou eau pour commandes TED
Interface de pu	rissance et commandes pour volets
KP	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une uniqu commande
Batterie additi	onnelle pour systèmes à 4 tubes
DF	Batterie additionnelle à 1 rang pour système à 4 tubes
Bacs auxiliaires	s de collecte des condensats, coques d'isolation, pompe purge des condensats
BH	Bac auxilliaire pour ventilo-convecteurs installation horizontal
BV	Bac auxilliaire pour ventilo-convecteurs installation vertical
GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche
GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite
Pieds de soutie	n et caches extérieurs
ZL	Pieds de soutien et caches extérieurs pour FLAT L
Panneaux de fe	ermeture arrière
PH	Panneau laqué de fermeture arrière pour modèles à installation horizontale avec habillage
PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage
Vannes	
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydraulique pour batterie principale et additionnelle
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie additionnelle
V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
Système d'assa	inissement
JONIX inside	Module d'assainissement JONI pour installation sur l'unité

Ventilo-convecteurs FLAT

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

FLAT				10			20			30			40	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	1,19	1,34	1,77	1,38	1,71	2,22	1,44	2,01	2,66	1,67	2,29	2,87
Puissance frigorifique sensible	(1)(E)	kW	0,86	0,96	1,27	1,02	1,27	1,66	1,10	1,53	2,03	1,27	1,75	2,20
Classe FCEER	(E)			D			Е			E			E	
Débit d'eau	(2)	l/h	205	231	305	238	294	382	248	346	458	288	394	494
Perte de charge	(2)(E)	kPa	6	7	12	6	8	13	3	5	7	4	6	10
Puissance calorifique	(3)(E)	kW	1,16	1,29	1,71	1,38	1,67	2,17	1,55	2,04	2,72	1,76	2,32	2,89
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	200	222	294	238	288	374	267	351	468	303	400	498
Perte de charge	(3)(E)	kPa	4	5	9	6	8	12	2	4	6	3	5	8
Débit d'air nominal		m³/h	212	226	305	227	284	378	239	344	467	277	407	520
Puissance absorbée	(E)	W	19	23	33	25	38	57	28	43	57	29	45	60
Puissance acoustique globale	(4)(E)	dB(A)	34	38	44	38	44	50	30	38	44	33	42	48

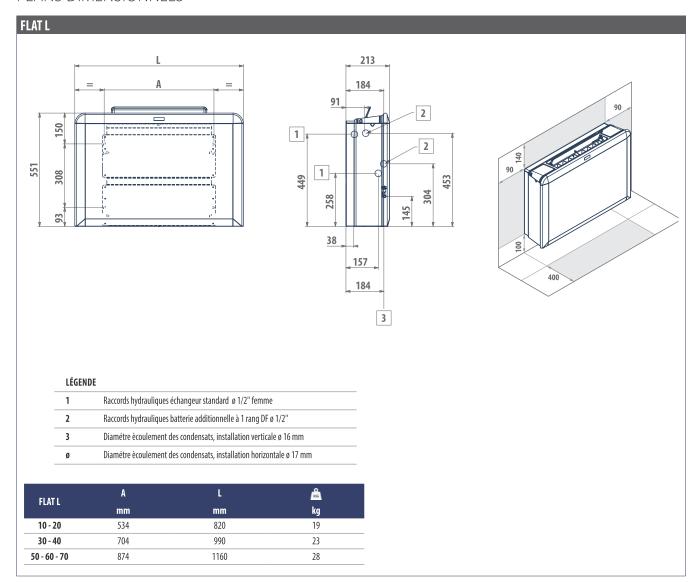
FLAT			50				60		70		
Vitesse			min	moy	max	min	moy	max	min	moy	max
Puissance frigorifique totale	(1)(E)	kW	2,05	2,56	3,26	2,21	2,92	4,08	2,53	3,30	4,38
Puissance frigorifique sensible	(1)(E)	kW	1,61	2,00	2,53	1,76	2,33	3,28	2,04	2,69	3,60
Classe FCEER	(E)			E			E			D	
Débit d'eau	(2)	l/h	353	441	561	381	503	703	436	568	754
Perte de charge	(2)(E)	kPa	4	5	8	3	5	8	8	13	23
Puissance calorifique	(3)(E)	kW	2,24	2,67	3,36	2,64	3,36	4,61	2,96	3,76	4,96
Classe FCCOP	(E)						Е				
Débit d'eau	(3)	l/h	386	460	579	455	579	794	510	647	854
Perte de charge	(3)(E)	kPa	3	4	5	4	7	11	8	14	22
Débit d'air nominal		m³/h	338	466	593	365	552	800	418	659	911
Puissance absorbée	(E)	W	40	56	75	38	58	88	41	65	96
Puissance acoustique globale	(4)(E)	dB(A)	36	42	50	42	52	59	43	51	58

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

DONNÉES TECHNIQUES NOMINALES - 4 TUBES

FLAT				10			20			30			40	
Vitesse			min	moy	max									
Puissance frigorifique totale	(1)(E)	kW	1,23	1,39	1,76	1,32	1,64	2,04	1,39	1,95	2,51	1,61	2,22	2,70
Puissance frigorifique sensible	(1)(E)	kW	0,88	1,00	1,28	0,97	1,22	1,54	1,06	1,48	1,93	1,22	1,70	2,08
Classe FCEER	(E)			D			E			E			E	
Débit d'eau	(2)	l/h	212	239	303	227	282	351	239	336	432	277	382	465
Perte de charge	(2)(E)	kPa	5	6	9	5	8	12	2	4	7	3	6	9
Puissance calorifique	(3)(E)	kW	1,35	1,46	1,76	1,44	1,65	1,96	1,78	2,13	2,59	1,96	2,35	2,74
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	116	126	152	124	142	169	153	183	223	169	202	236
Perte de charge	(3)(E)	kPa	3	3	5	3	4	6	6	9	12	7	10	13
Débit d'air nominal		m³/h	187	215	289	205	270	359	232	332	451	273	393	502
Puissance absorbée	(E)	W	28	34	49	25	38	57	28	43	57	29	45	60
Puissance acoustique globale	(4)(E)	dB(A)	34	41	47	40	45	50	31	39	45	35	43	49

DONNÉES TECHNIQUES NOMINALES - 4 TUBES


FLAT				50			60			70	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Puissance frigorifique totale	(1)(E)	kW	1,96	2,46	3,06	2,12	2,82	3,82	2,43	3,18	4,09
Puissance frigorifique sensible	(1)(E)	kW	1,55	1,92	2,40	1,69	2,24	3,10	1,96	2,59	3,40
Classe FCEER	(E)						Е				
Débit d'eau	(2)	l/h	338	424	527	365	486	658	418	548	704
Perte de charge	(2)(E)	kPa	3	4	6	6	8	15	5	8	12
Puissance calorifique	(3)(E)	kW	2,55	2,87	3,36	2,70	3,15	3,91	2,98	3,46	4,16
Classe FCCOP	(E)						E				
Débit d'eau	(3)	l/h	220	247	289	232	271	337	257	298	358
Perte de charge	(3)(E)	kPa	4	6	8	5	8	10	3	3	5
Débit d'air nominal		m³/h	356	447	569	390	530	768	462	631	873
Puissance absorbée	(E)	W	40	56	75	38	58	88	41	65	96
Puissance acoustique globale	(4)(E)	dB(A)	36	45	50	42	48	56	43	51	58

- Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021 Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) Température eau 65°C / 55°C, température air 20°C Puissance acoustique mesurée selon ISO 3741 et ISO 3742

- Données certificats EUROVENT

Alimentation électrique 230-1-50 (V-ph-Hz)

PLANS DIMENSIONNELS

Ventilo-convecteur design à ventilateur centrifuge et moteur EC

FLAT i 2 - 5 kW

Technologie et design en une unique solution.

Les unités hydroniques FLAT i de Galletti sont équipées d'un moteur électrique à aimants permanents (brushless) qui, commandé par un inverter, permet d'assurer un réglage constant de la vitesse de rotation du ventilateur.

Outre l'importante réduction des consommations d'électricité par rapport aux moteurs AC, l'utilisation de la technologie EC à variateur de fréquence permet d'adapter constamment le fonctionnement de l'unité à la charge hygrothermique effective de l'espace ambiant, ce qui se traduit par d'évidents bénéfices en termes de confort et de niveau sonore.

Le recours à cette technologie s'avère particulièrement efficace lors d'un fonctionnement aux charges partielles (le plus fréquent) puisque la logique de réglage permet d'optmiser le moteur à une vitesse de rotation minime, ce qui se traduit par de très importantes réductions des consommations d'électricité et des émissions sonores.

Le fonctionnement des unités à moteur brushless est contrôlé par le panneau de commande à microprocesseur EVO, MY-COMFORT LARGE, TED par l'intermédiaire d'une sortie analogique (0-10 V) reliée à l'inverter.

Installation

Installation à 4 tubes

Installation verticale

centrifuge

PLUS

- » Moteur EC controlé par inverter
- » Consommations d'énergie limitées
- » Fonctionnement modulant
- » Ventilateurs centrifuges en ABS
- » Habillage design ABS stabilisé UV
- » Microswitch sur flap de sortie d'air
- » Raccords hydrauliques réversibles
- » Système d'assainissement JONIX incorporable

VERSIONS DISPONIBLES

FLAT Li

Installation murale en applique, habillage à soufflage d'air vertical.

COMPOSANTS PRINCIPAUX

Habillage au design raffiné

Couleur RAL9010, panneau frontal en tôle d'acier. Flasques latérales, grille supérieure et volets latéraux en ABS stabilisé UV pour maintenir la couleur inchangée dans le temps. La grille supérieure est formée par un déflecteur et des ailettes orientables. Le déflecteur est équipé de microinterrupteur qui arrête le fonctionnement de l'unité quand il est porté en position de fermeture.

Structure

En tôle d'acier zinguée de grande épaisseur, équipée de panneaux calorifugés et insonorisés en matériau autoextinguible (Classe 1).

Batterie d'échange thermique

À haut rendement, en tubes de cuivre et ailettes en aluminium, équipée de collecteurs en laiton et vanne de purge d'air. Les raccords hydrauliques sont réversibles dans la phase d'installation. Sur demande une batterie additionnelle peut être montée pour les systèmes à 4 tubes.

Ventilateurs

Centrifuges à double aspiration et équilibrage statique et dynamique, réalisés en ABS antistatique avec pales à profil alaire et modules décalés Les ventilateurs sont logés dans une volute en ABS hautes performances.

Moteur électrique EC

L'unité est équipée de carte inverter de contrôle du moteur, fournie à part ou montée sur le moteur, permettant un réglage précis de la grande vitesse du moteur (signal de contrôle 0-10 V) surtout dans les cas où la réduction de la vitesse comporte une réduction des émissions sonores.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

ACCES	Soires
Panneaux de co	ommande électroniques à microprocesseur avec moniteur
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8″ pour commande EVO
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
KBFLAE	Kit d'installation du contrôleur MY COMFORT sur l'unité FLAT
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de co	ommande électroniques à microprocesseur
KB F	Kit d'installation du contrôleur TED sur l'unité FLAT/FLAT S
TED 10	Commande électronique pour le contrôle du ventilateur inverter EC et d'une ou deux vannes ON/ OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED
Batterie additi	onnelle pour systèmes à 4 tubes
DF	Batterie additionnelle à 1 rang pour système à 4 tubes
Bacs auxiliaires	s de collecte des condensats, coques d'isolation, pompe purge des condensats
ВН	Bac auxilliaire pour ventilo-convecteurs installation horizontal
BV	Bac auxilliaire pour ventilo-convecteurs installation vertical

GIVKL	Coquille isolante pour vanne VKS, raccords hydrauliques à gauche
GIVKR	Coquille isolante pour vanne VKS, raccords hydrauliques à droite
Pieds de soutie	n et caches extérieurs
ZL	Pieds de soutien et caches extérieurs pour FLAT L
Panneaux de fo	ermeture arrière
PH	Panneau laqué de fermeture arrière pour modèles à installation horizontale avec habillage
PV	Panneau laqué de fermeture arrière pour modèles à installation verticale avec habillage
Vannes	
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale et additionnelle
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie additionnelle
V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
Système d'assa	inissement
JONIX inside	Module d'assainissement JONI pour installation sur l'unité

Ventilo-convecteurs FLA T i

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

FLAT i				20			40		70			
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Tension à l'entrée	(E)	٧	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90	
Puissance frigorifique totale	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,56	3,34	4,43	
Puissance frigorifique sensible	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	2,07	2,73	3,65	
Classe FCEER	(E)						В					
Débit d'eau	(2)	l/h	239	300	389	251	344	430	441	575	763	
Perte de charge	(2)(E)	kPa	6	8	13	4	6	10	6	8	16	
Puissance calorifique	(3)(E)	kW	1,52	1,84	2,39	1,76	2,32	2,89	2,96	3,76	4,96	
Classe FCCOP	(E)						В					
Débit d'eau	(3)	l/h	262	317	412	303	400	498	510	647	854	
Perte de charge	(3)(E)	kPa	6	8	12	3	5	8	5	9	14	
Débit d'air nominal		m³/h	216	284	378	283	407	520	482	659	911	
Puissance absorbée	(E)	W	7	11	22	9	15	31	13	21	49	
Puissance acoustique globale	(4)(E)	dB(A)	38	44	53	33	42	48	43	51	58	

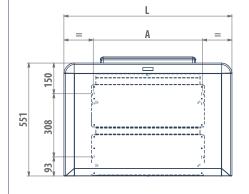
 ⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 (2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 (3) Température eau 45°C / 40°C, température air 20°C
 (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742

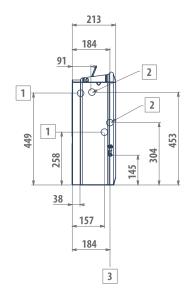
Alimentation électrique 230-1-50 (V-ph-Hz)

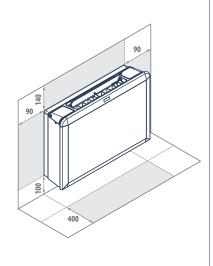
DONNÉES TECHNIQUES NOMINALES - 4 TUBES

FLATi				20			40		70			
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Tension à l'entrée	(E)	٧	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90	
Puissance frigorifique totale	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,46	3,22	4,14	
Puissance frigorifique sensible	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	1,99	2,63	3,45	
Classe FCEER	(E)			C			A			В		
Débit d'eau	(2)	l/h	208	260	324	281	387	472	424	554	713	
Perte de charge	(2)(E)	kPa	5	8	12	3	6	9	4	6	9	
Puissance calorifique	(3)(E)	kW	1,44	1,65	1,96	1,96	2,35	2,74	2,98	3,46	4,16	
Classe FCCOP	(E)			C			В			В		
Débit d'eau	(3)	l/h	124	142	169	169	202	236	257	298	358	
Perte de charge	(3)(E)	kPa	3	4	6	7	10	13	3	3	5	
Débit d'air nominal		m³/h	205	270	359	273	393	502	462	631	873	
Puissance absorbée	(E)	W	10	16	31	7	12	24	13	21	49	
Puissance acoustique globale	(4)(E)	dB(A)	40	45	50	35	43	49	43	51	58	

Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 Température eau 65°C / 55°C, température air 20°C
 Puissance acoustique mesurée selon ISO 3741 et ISO 3742


Alimentation électrique 230-1-50 (V-ph-Hz)


⁽E) Données certificats EUROVENT


⁽E) Données certificats EUROVENT

FLAT L i

LÉGENDE

Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2" Diamétre ècoulement des condensats, installation verticale ø 16 mm Diamétre ècoulement des condensats, installation verticale ø 17 mm	1	Raccords hydrauliques échangeur standard ø 1/2" femme
	2	Raccords hydrauliques batterie additionnelle à 1 rang DF ø 1/2"
Diamétro àcquiament des condensats installation herizontale « 17 mm	3	Diamétre ècoulement des condensats, installation verticale ø 16 mm
b Diametre econiement des condensats, instanation nonzontale ø 17 mm	ø	Diamétre ècoulement des condensats, installation horizontale ø 17 mm

FLAT L i	A	L	NG.
TEAT ET	mm	mm	kg
20	534	820	19
40	704	990	23
70	874	1160	28

Ventilo-convecteurs installation encastrée avec structure métallique

CFV 1 - 4 kW

Moteur EC

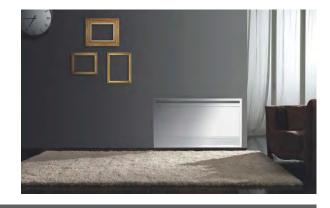
Ventilateur tangentiel

Installation In: verticale ho encastrée e

Installation horizontale encastrée

Installat à 2 tub

Installation


CLIMATISATION INVISIBLE GAGE DE CONFORT EXCEPTIONNEI

CFV est la solution idéale pour répondre au besoin de dissimuler entièrement l'unité de l'installation. Le cœur de ce système est le ventilo-convecteur CF adapté à tout type d'installation grâce à une profondeur de 12,6 cm seulement. Les dimensions compactes sont associées à de faibles consommations d'énergie grâce au moteur EC à onduleur qui, comparé au moteur traditionnel AC, garantit des économies d'énergie qui peuvent atteindre 70 % pendant le fonctionnement saisonnier.

Le ventilo-convecteur est logé dans le coffrage CYC en acier galvanisé, pour une installation aussi bien verticale qu'horizontale. Des pré-découpes sont prévues dans la structure métallique à hauteur des raccords hydrauliques et des bornes de branchement électrique de l'appareil pour faciliter l'installation. Le panneau frontal de couverture CYP non seulement dissimule le ventilo-convecteur mais le rend également plus facile d'accès pour toutes les opérations d'entretien. L'intégration au mur est maximale compte tenu de la possibilité de peindre le panneau frontal qui peut ainsi s'effacer totalement de l'espace à climatiser.

PLUS

- » Moteur EC controlé par inverter
- » Consommations d'énergie limitées
- » Fonctionnement modulant
- » Facilité d'accès au ventilo-convecteur
- » Panneau frontal à peindre

VERSION

CEV INSTALLATION VERTICALE

- 1. Panneau frontal CYPV
- 2. Ventilo-convecteur CF
- 3. Structure métallique CYC

CFV INSTALLATION HORIZONTALE

- 1. Panneau frontal CYPH
- 2. Ventilo-convecteur CF
- 3. Structure métallique CYC
- 4. Canal télescopique CYRMCD
- 5. Grille de soufflage à profil droit CY8048

ENVIRONNEMENTS

CONFIGURATION
Les modèles sont entièrement configurables en sélectionnant
la version et les options. À côté, figure un exemple de
configuration.

Version	Champs	1	2	3	4	5	6	7	8	9	10	11
CF10		C	I	L	0	1	7	0	0	0	0	Α

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- Version
- 2 Moteur
 - Moteur onduleur
- Côté raccords batterie principale
 - Gauche
- Côté raccords batterie supplémentaire/résistance électrique
 - Absent
 - DF gauche
 - DF droite
- Vanne
- 3 voies on/off 230 V

- 2 voies on/off 230 V
- Panneau de commande
- Carte électronique intégrée à la machine pour la connexion à MY COMFORT LARGE
- Sondes SW Sonde à eau pour la commande de MY COMFORT Accessoires
- 8
- Absent
- - Filtre à air standard à la place de G0
- 10 Release
 - 0 0
 - Α Α

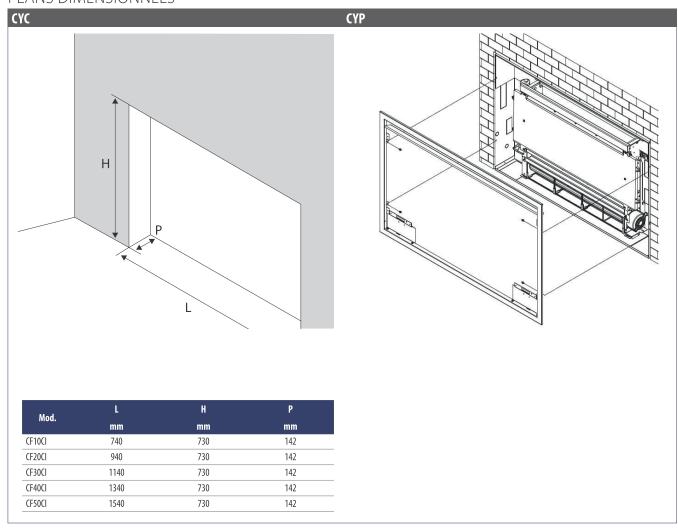
ACCES:	SOIRES		
Panneaux de o	commande électroniques à microprocesseur avec moniteur	RMCD	Canal de distribution d'air télescopique
CYBOARD	Carte électronique monté sur l'unité pour la connexion à MYCOMFORT	Accessoires	
DIST	Entretoise contrôleur MY COMFORT pour installation murale	C*0A00	Coffrage en tôle galvanisée pour version à 2 tuyaux
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE	C*0A01	Coffrage en tôle galvanisée pour version à 4 tuyaux
Grilles de souf	flage et reprise d'air	P*0AH0	Panneau de couverture au plafond avec cadre et grille d'aspiration pour version à 2 tuyaux
8048	Grille de soufflage d'air en aluminium à double rang d'ailettes	P*0AH1	Panneau de couverture au plafond avec cadre et grille d'aspiration pour version à 4 tuyaux
Vannes		P*OAVO	Panneau de couverture mural avec cadre, grille d'aspiration et ailettes de soufflage pour version
K4S	Kit vanne 3 voies - 4 tuyaux	r vavv	à 2 tuyaux
KV24K	Kit vanne 2 voies - 4 tuyaux	P*0AV1	Panneau de couverture mural avec cadre, grille d'aspiration et ailettes de soufflage pour version
KVK	Kit vannes à 2 voies, moteur thermoélectrique	I VAVI	à 4 tuyaux
Plenum, modu	ıles d'aspiration et raccords d'aspiration et de soufflage d'air et habillage	т	Câble de branchement moteur pour déplacer les raccords hydrauliques de gauche à droite sur
RMC90	Canal de soufflage d'air incurvé à 90°	<u> </u>	le chantier

DONNÉES TECHNIQUES NOMINALES - 2 TUBES

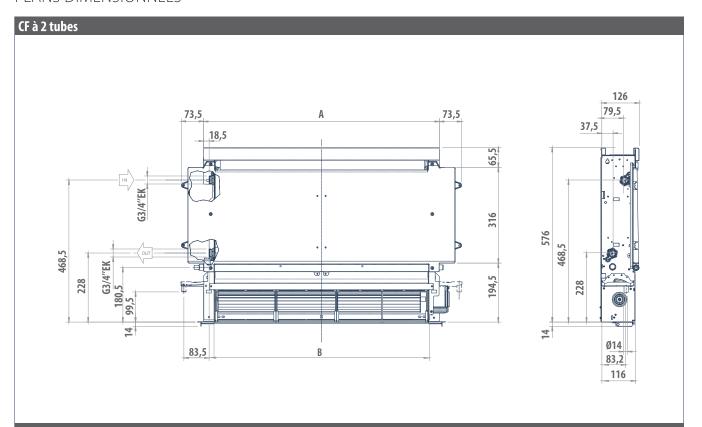
CFV				10			20			30			40		50		
Vitesse			min	moy	max												
Tension à l'entrée	(E)	V	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0
Puissance frigorifique totale	(1)(E)	kW	0,43	0,73	0,91	0,75	1,36	2,12	1,15	2,08	2,81	1,32	2,39	3,30	1,36	2,57	3,71
Puissance frigorifique sensible	(1)(E)	kW	0,29	0,51	0,71	0,59	1,04	1,54	0,83	1,51	2,11	1,02	1,84	2,65	1,05	1,98	2,90
Classe FCEER	(E)			C			В			Α			А			Α	
Débit d'eau	(2)	I/h	74	126	157	129	234	365	198	358	484	227	412	568	234	443	639
Perte de charge	(2)(E)	kPa	6	10	12	2	4	8	3	10	17	3	9	18	3	11	21
Puissance calorifique	(3)(E)	kW	0,37	0,69	1,02	0,82	1,53	2,21	1,20	2,16	3,02	1,47	2,59	3,81	1,49	2,82	4,32
Classe FCCOP	(E)			D			В			В			В			В	
Débit d'eau	(3)	l/h	64	119	176	141	263	381	207	372	520	253	446	656	257	486	744
Perte de charge	(3)(E)	kPa	3	7	9	2	4	9	3	9	19	3	9	21	3	7	23
Débit d'air nominal		m³/h	49	90	146	118	210	294	180	318	438	247	410	567	262	479	663
Puissance absorbée	(E)	W	5	7	11	4	8	19	6	11	20	5	11	29	6	12	33
Puissance acoustique globale	(4)(E)	dB(A)	37	47	54	37	47	54	37	47	54	37	47	55	37	48	57

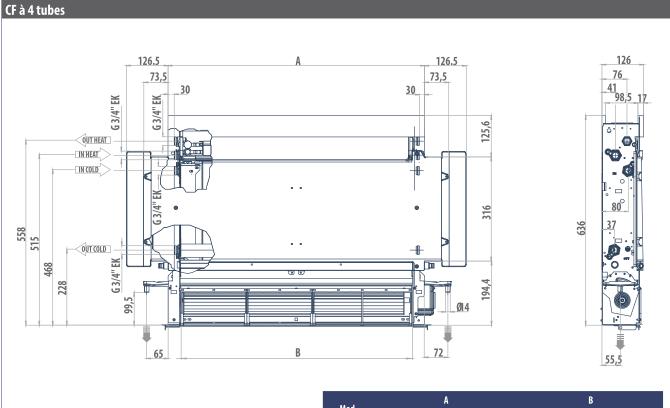
- (1) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 (2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 (3) Température eau 45°C / 40°C, température air 20°C
 (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
 (E) Données certificats EUROVENT
 Alimentation électrique 230-1-50 (V-ph-Hz)

Unités hydroniques CFV


DONNÉES TECHNIQUES NOMINALES - 4 TUBES

CFV				10			20			30			40		50		
Vitesse			min	moy	max												
Tension à l'entrée	(E)	V	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10
Puissance frigorifique totale	(1)(E)	kW	0,40	0,73	0,84	0,75	1,34	1,93	1,08	1,95	2,50	1,21	2,20	2,92	1,30	2,30	3,21
Puissance frigorifique sensible	(1)(E)	kW	0,27	0,51	0,65	0,59	1,02	1,39	0,78	1,42	1,87	0,94	1,70	2,28	1,01	1,79	2,53
Classe FCEER	(E)			C			В			А			Α			А	
Débit d'eau	(2)	l/h	69	126	144	129	230	332	186	335	430	208	378	502	224	396	552
Perte de charge	(2)(E)	kPa	5	10	11	2	4	7	2	9	14	2	8	15	3	9	17
Puissance calorifique	(3)(E)	kW	0,30	0,51	0,45	0,63	0,94	1,10	0,92	1,28	1,51	1,30	1,94	2,21	1,39	2,11	2,54
Classe FCCOP	(E)			D			C			В			В			В	
Débit d'eau	(3)	l/h	52	88	77	108	162	189	158	220	260	224	334	380	239	363	437
Perte de charge	(3)(E)	kPa	2	2	2	2	2	4	4	4	6	2	3	4	2	3	6
Débit d'air nominal		m³/h	46	91	132	124	207	260	194	291	370	302	367	476	364	416	542
Puissance absorbée	(E)	W	4	6	11	4	8	19	4	9	20	4	10	29	5	12	33
Puissance acoustique globale	(4)(E)	dB(A)	37	44	51	37	47	54	37	47	54	37	47	55	37	48	57


- (1) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
 (2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
 (3) Température eau 65°C / 55°C, température air 20°C
 (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
 (E) Données certificats EUROVENT
 Alimentatique destricus 220.4 50 (M. ph. Un)


Alimentation électrique 230-1-50 (V-ph-Hz)

PLANS DIMENSIONNELS

Unités terminales type mural haute

FM 2 - 4 kW

Instalation

murale haute

tangentiel

Télécommande

à infrarouge

Nouvelle unité hydronique Galletti qui associe bas niveau sonore, design et gestion du confort

FM se caractérise par ses solutions hautement technologiques, comprenant un moteur EC, la vanne de réglage incorporée et le système de communication sérielle.

Le contrôle automatique de la vitesse de ventilation est géré à travers une logique proportionnelle, dérivative et intégrative, capable d'assurer stabilité, précision et rapidité d'intervention. La communication sérielle est en mesure de faire interagir jusqu'à 32 unités, assurant une gestion globale et la modification automatique des paramètres sur toutes les unités, coordonnée depuis un point seulement.

L'accessoire WALLPAD permet de contrôler individuellement toutes les unités reliées au système.

FM permet l'interconnexion à un système de supervision avec communication Modbus.

Alors que la vanne déjà montée et le système de gaines flexibles permettent une installation à la fois rapide et sûre la technologie de ventilation à moteur EC et la batterie gage d'échange thermique optimisé offrent à l'utilisateur une unité silencieuse, gage de hautes performances et de basses consommations.

PLUS

- » Moteur EC a Contrôle électronique
- » Dimensions réduites et identiques sur toute la gamme
- » Vannes ON/OFF à 2 voies incorporées
- » Réglage PID
- » Développement de réseaux globaux adressables, à superviseur externe

Modèles 022/032/042

Les modèles avec vanne à 2 voies intégrée sont particulièrement adaptés aux systèmes comprenant un circulateur modulant ou autres moyens de variation du débit d'eau.

COMPOSANTS PRINCIPAUX

Habillage

Design attrayant adapté à tout type d'environnement. Construction en ABS. La sortie d'air intégrée est dotée de déflecteur motorisé, à mouvement automatique ou réglable par l'utilisateur, et d'ailettes orientables pour assurer une distribution uniforme de l'air dans la pièce. Le panneau frontal est doté d'un moniteur pour visualiser les informations sur le fonctionnement et la température ambiante.

Batterie d'échange thermique

Échangeur de chaleur à bloc aileté, en tuyau de cuivre et ailette en aluminium à claire-voie.

Le traitement hydrophile des ailettes assure un échange thermique optimum y compris en présence de condensats superficiels.

Groupe vannes

Vannes ON/OFF à 2 voies et installées à l'intérieur de l'unité Pour le raccordement à l'unité sont prévus des gaines flexibles situés dans la partie arrière de l'unité.

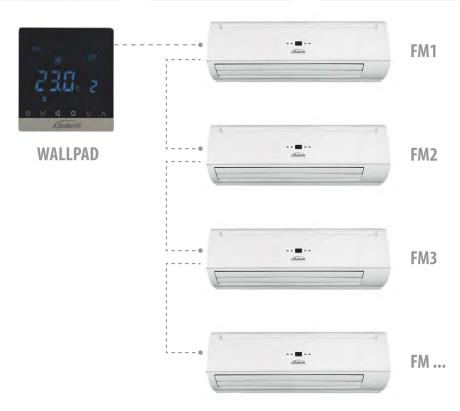
Sans augmentation des dimensions ni complications d'installation, la vanne se ferme au moment où la valeur de consigne est atteinte. A ce point la recirculation du flux d'eau a lieu empêchant ainsi l'entrée dans l'échangeur.

Télécommande

Fournie avec l'appareil, la télécommande infrarouge contrôle une seule unité ou un réseau combiné et la programmation de plages horaires journalières.

Moteur EC

Moteur électronique à aimants permanents permettant une modulation constante de la vitesse de ventilation et des réductions des absorptions électriques de plus de la moitié par rapport aux moteurs asynchrones.


Ventilateur

Ventilateur tangentiel à basses émissions sonores.

WALLPAD

Le véritable point de force de cette commande est lié au développement de réseaux de communication. En branchant jusqu'à 32 unités par l'intermédiaire d'un bus de réseau et reliant la commande WALLPAD à une de ces unités (Master) il est possible d'en contrôler le fonctionnement.

L'utilisateur peut décider de communiquer simultanément avec toutes les unités branchées, en modifiant la modalité de fonctionnement du système tout entier, ou bien de communiquer avec une seule unité en modifiant les paramètres de réglage entre les ventilo-convecteurs. Le choix entre communication « globale » ou avec une seule unité est effectué au moyen d'un simple bouton.

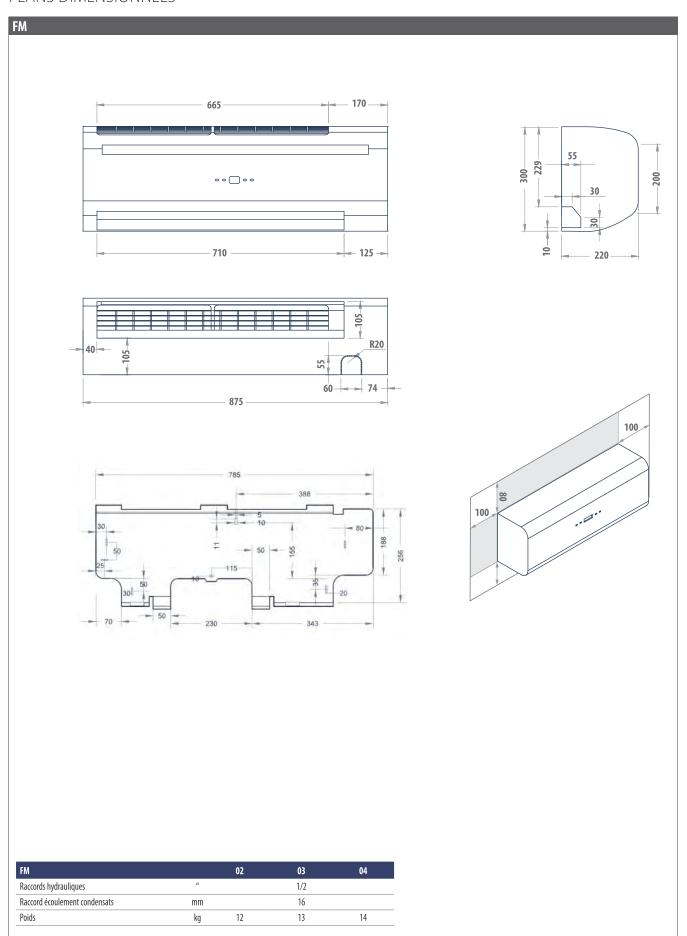
ACCESSOIRES

Commande à distance à fil

WALLPAD

Le dispositif de commande à fil à installation murale permet une gestion avancée de l'unité hydronique. En particulier, ce dispositif permet à l'utilisateur de connaître dans le détail et à tout moment l'état de fonctionnement de l'unité, comprenant les températures, les valeurs de consigne, la vitesse, le mode de fonctionnement, l'activité du déflecteur et d'autres informations utiles. En plus, il effectue un contrôle hebdomadaire des plages horaires, avec timer de marche et d'arrêt.

Ventilo-convecteurs FM


DONNÉES TECHNIQUES NOMINALES

FM				02			03			04			
Vitesse			min	moy	max	min	moy	max	min	moy	max		
Puissance frigorifique totale	(1)(E)	kW	1,21	1,43	1,82	1,58	2,09	2,55	2,66	3,26	3,71		
Puissance frigorifique sensible	(1)(E)	kW	1,00	1,20	1,53	1,35	1,81	2,22	1,94	2,40	2,74		
Classe FCEER				C			В			В			
Débit d'eau	(2)	l/h	209	247	316	320	426	520	458	564	642		
Perte de charge	(2)(E)	kPa	12	19	29	16	28	39	28	40	50		
Perte de charge vanne à 2 et à 3 voies	(2)	kPa	2	3	5	5	6	11	11	17	22		
Puissance calorifique	(3)(E)	kW	1,38	1,76	2,23	2,07	2,65	3,25	3,12	3,86	4,06		
Classe FCCOP				C			В			В			
Débit d'eau	(3)	l/h	240	306	388	359	461	566	543	672	695		
Perte de charge	(3)(E)	kPa	12	19	29	17	28	39	32	46	52		
Débit d'air nominal		m³/h	290	370	500	370	500	645	570	740	788		
Puissance absorbée	(E)	W	10	13	18	10	15	22	13	20	30		
Puissance acoustique globale	(4)(E)	dB(A)	33	41	49	40	43	54	46	53	58		

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 o 220/-1-60 (V-ph-Hz)

Modèles avec vanne 2 voies intégrée **02**2 / **03**2 / **04**2 Modèles avec vanne 3 voies intégrée **02**3 / **03**3 / **04**3 (sur demande)

Module design à effet Coandă - EFFETTO

Module design avec effet Coandă

EFFETTO

La parfaite harmonie du confort et du design

Galletti présente EFFETTO, le module design pour l'aspiration et la diffusion de l'air, conçu pour s'intégrer à la fiabilité et au confort des cassettes hydroniques ACQVARIA et ACQVARIA i (modèle 600 x 600 mm).

EFFETTO casse les codes des cassettes hydroniques en dépassant la traditionnelle grille en ABS à ailettes orientables et présente un module design qui exploite l'effet Coandă.

La Advanced Design Unit de Galletti a fait voir le jour à une cassette hydronique Made in Italy au design épuré et linéaire qui s'intègre au style de tout environnement, y compris au niveau chromatique.

EFFETTO est synonyme d'esthétique mais aussi de confort parce qu'il à été conçu pour optimiser la diffusion de l'air grâce à l'effet Coandă.

Le panneau métallique Dibond dont EFFETTO est doté est un panneau sandwich en aluminium et polyéthylène.

La finition métallique raffinée se marie aux propriétés isolantes du polyéthylène pour prévenir les phénomènes de condensation. La grille d'aspiration en acier crée une surface unique avec le panneau et exalte ainsi la légèreté d'ensemble du produit. Le filtre est facile à retirer pour procéder aux opérations d'entretien. Le convoyeur est réalisé en polystyrène noir RAL 9005 pour assurer un parfait coordonné des couleurs et sa configuration géométrique a été conçue pour optimiser le flux d'air diffusé dans l'espace.

La luminosité de l'aluminium permet à la grille de s'adapter à tout contexte, en maintenant toujours bien visible le bord fraisé du panneau qui délimite la forme, y compris dans les environnements peu lumineux. Le module, espacé du plafond, interagit avec tous les éléments et les sources lumineuses de l'espace ambiant.

EFFETTO est le meilleur choix pour offrir à l'espace à climatiser la garantie d'une esthétique épurée et linéaire.

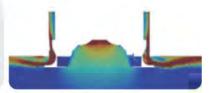
VERSIONS DISPONIBLES

Trois versions chromatiques sont disponibles : aluminium naturel brossé, blanc RAL 9010 et noir RAL 9005. Le noir est appliqué à tous les éléments de la structure interne et technologique de façon à recréer un effet d'ombre sur les surfaces qui l'entourent, qui a pour effet de faire « flotter » le panneau dans l'air.

Grey - aluminium naturel brossé

White - blanc RAL9010

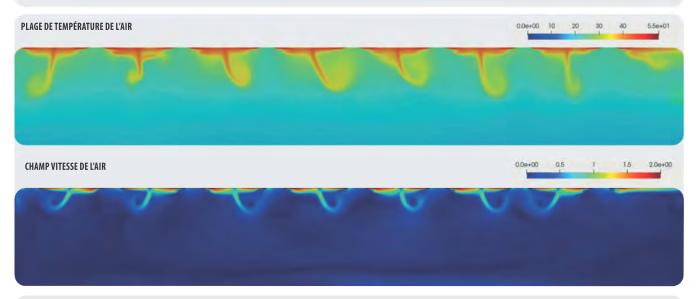
Black - noir RAL9005



SIMULATIONS NUMÉRIQUES DE MÉCANIQUE DES FLUIDES

CONVOYEUR

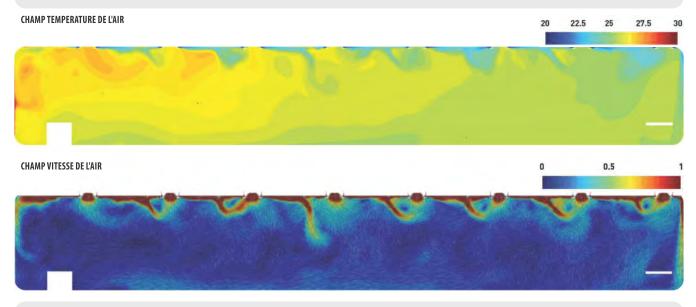
Les simulations numériques de mécanique des fluides (CFD) ont permis d'étudier la diffusion de l'air dans l'espace ambiant afin d'exploiter au maximum l'effet Coandă : le flux d'air effleure le plafond sans jamais atteindre directement les personnes présentes, en prévenant ainsi les phénomènes d'inconfort localisés.


Section du module EFFETTO où les flux d'air sont mis en évidence.

CAS TYPE DE CHAUFFAGE

Les simulations CFD ont été effectuées en se basant sur un local aménagé comme restaurant d'une capacité d'environ 100 couverts et équipé de 9 cassettes hydroniques ACQVARIA avec module EFFETTO. Les conditions estivales du projet sont les suivantes : température air extérieur 5°C, température ambiante programmée 20°C.

La norme UNI EN ISO 7730 établit les indices qui définissent les situations d'inconfort thermo-hygrométrique : Température du sol ; Haute hétérogénéité de la température verticale ; Courants d'air ; Vote moyen prévisible.



CAS TYPE DE RAFRAÎCHISSEMENT

Les simulations CFD ont été effectuées en se basant sur un local aménagé comme restaurant d'une capacité d'environ 100 couverts et équipé de 9 cassettes hydroniques ACQVARIA avec module EFFETTO. Les conditions estivales du projet sont les suivantes : température air extérieur 33°C, température ambiante programmée 26 °C.

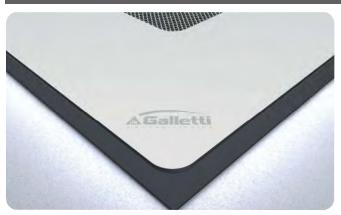
La géométrie des convoyeurs en polystyrène noir a été conçue à l'aide de simulations CFD et d'essais expérimentaux dans les laboratoires de recherche et développement de l'entreprise Galletti.

L'objectif était de faire en sorte que le jet d'air touche le plafond et les murs sans jamais toucher directement l'occupant par l'effet Coandă. La distribution de l'air dans la pièce est homogène, la zone de gauche a une température d'air plus élevée que la moyenne car elle est adjacente à la cuisine.

CONCLUSIONS

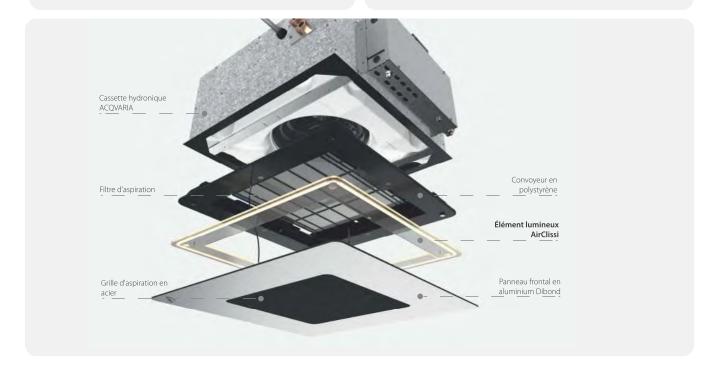
Tous les indices de confort pris en compte ont confirmé que les conditions de confort thermo-hygrométrique sont garanties y compris en présence d'une stratification de l'air dans les zones adjacentes au plafond, phénomène fréquent pendant la saison de chauffage.

Module design à effet Coandă - EFFETTO

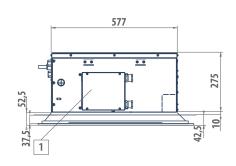

EFFETT Jir Cliss

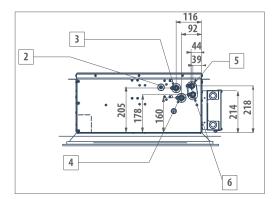
EFFETTO AIRCLISSI

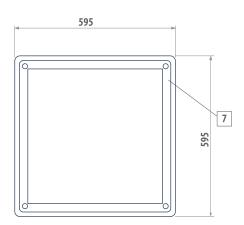
Souvent, les unités hydroniques sont évaluées sur la base d'un unique critère: leurs performances techniques. Les performances thermodynamiques et acoustiques revêtent assurément une très grande importance, mais il n'empêche qu'elles doivent être envisagées dans une globalité plus large. L'unité hydronique doit aujourd'hui être considérée sur un pied d'égalité avec tous les autres éléments d'ameublement présents dans les espaces à climatiser, telle une plateforme à même de dialoguer avec la physionomie de l'environnement et avec les personnes qui y vivent. L'interaction est plus forte encore à présent, avec un contenu émotionnel indélit pour les cassettes hydroniques: la lumière. Désormais AirClissi est intégré à EFFETTO qui devient ainsi, dans le monde des cassettes hydroniques, le premier module lumineux à effet Coandă, où les éléments air et lumière s'unissent en un design exclusif. Avec EFFETTO AirClissi, Galletti hisse le concept de cassette hydronique à un niveau esthétique jamais atteint, où la lumière entre en scène comme protagoniste à part entière.

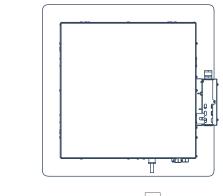

VERSIONS DISPONIBLES

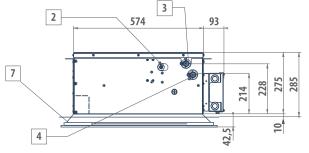
Le module lumineux AirClissi est disponible dans la couleur neutre 4000 K. Cette version chromatique est compatible avec EFFETTO Grey, White et Black.

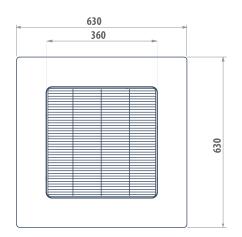

L'intensité lumineuse est modulable grâce au contrôleur à microprocesseur EVO ; un unique dispositif garantit le contrôle absolu des conditions thermo-hygrométriques de l'espace ambiant et, désormais, également de l'éclairage. L'extrême élégance de cette solution est atteinte grâce à la combinaison de lignes minimalistes et de traits de caractère, du Dibond®, le matériau, et de la lumière.








ACQVARIA 10-20-30-35 + EFFETTO + AirClissi



ACQVARIA	≜ kg
AQ10Q0B0 - AQ10QIB0 - AQ10Q0BB - AQ10QIBB	23 + 2,5
AQ20Q0B0 - AQ20Q1B0 - AQ20Q0BB - AQ30Q0B0 - AQ30Q1B0 - AQ30Q0BB - AQ30Q1BB	24 + 2,5

LÉGENDE

1	Boîtier électrique
2	Purge des condensats ø 10
3	Sortie d'eau ø 1/2" gaz femme
4	Entrée d'eau ø 1/2" gaz femme
5	Sortie d'eau ø 1/2" DF gaz femme
6	Entrée d'eau ø 1/2" DF gaz femme
7	Panneau AirClissi (option)

Unités terminales type cassette

ACQVARIA 3 - 10 kW

Installation dans le faux plafond

PLUS

- » Fiabilité et robustesse rassemblées en une structure compacte
- » Air frais introduit directement ou mélangé
- » Échangeur de chaleur jusqu'à 3 rangs
- » Pompe d'évacuation des condensats pour dénivellations jusqu'à 0,9 m
- » Temps d'installation et de mise en service réduits
- » Système d'assainissement JONIX incorporable

VERSIONS DISPONIBLES

En plus des 2 grilles en ABS à ailettes réglables, sont disponibles EFFETTO et EFFETTO AirClissi.

EFFETTO, le module design pour l'aspiration et la diffusion de l'air à effet Coandă.

EFFETTO Airclissi, qui intègre la lumière avec la diffusion de l'air par effet Coandă.

Grey - aluminium naturel brossé

White - blanc RAL9010

EFFETTO

Black - noir RAL9005

Solidité et efficacité en un seul produit.

La série de cassettes hydroniques ACQVARIA, à moteur à 3 vitesse, comprend 6 modèles pour installations à 2 tuyaux et 6 modèles pour installations à 4 tuyaux.

Développée en deux modèles dimensionnels (modularité 600 x 600 mm et 900 x 900 mm), elle se caractérise par de hautes performances et des niveaux sonores minimes, grâce à l'attention particulière accordée lors de la conception aux échangeurs de chaleur et aux groupes de ventilation.

L'unité installée sous faux plafond est dotée de tous les composants, de la batterie d'échange thermique, du groupe de moto-ventilation et du système de collecte et d'évacuation des condensats. Sa structure est prévue pour l'introduction d'air primaire dans l'espace, pour le mélanger à de l'air de recirculation et pour la distribution de l'air traité par la cassette dans des pièces/locaux attenants.

La pompe d'évacuation des condensats, adaptée à des dénivelés jusqu'à 90 cm, est commandée par un flotteur à 3 niveaux d'activation, ce qui permet de garantir un fonctionnement silencieux et gage de sécurité.

Le design et la couleur, RAL9003 ou RAL9010, de la grille d'aspiration et de diffusion de l'air dans l'espace garantissent la parfaite intégration aux panneaux des faux plafonds. Filtre à air facile d'accès pour les opérations de nettoyage.

Aux cassettes ACQVARIA peuvent être associés tous les panneaux de commande à interface utilisateur installée au mur, électroniques ou à microprocesseur programmables.

Sur demande, il est possible d'installer sur l'appareil le régulateur EVO BOARD, des sondes d'air, eau et humidité, ainsi que des vannes à 2 ou 3 voies, avec contacteur ON-OFF ou modulant. Sont disponibles aussi vannes d'équilibragae et de contrôle indépendant de la pression, dont l'utilisation réduit considérablement les temps de mise en service.

EFFETTO + AirClissi

COMPOSANTS PRINCIPAUX

Structure

Réalisée en tôle d'acier zinguée avec revêtement interne en polyuréthane expansé et externe en floqué PES gage d'isolation thermique et acoustique. L'introduction d'air frais dans l'espace ambiant peut être assurée directement par l'unité, celle-ci étant dotée de raccords prévus pour l'introduction neutre ou mélangée. Des accessoires sont disponibles pour le raccordement aux canaux d'adduction. L'unité est dotée de systèmes qui permettent sa fixation au plafond. Les câblages électriques sont réalisés dans un boîtier facile d'accès sur le côté pour faciliter les branchements

Batterie d'échange thermique

En tuyau de cuivre et ailettes en aluminium à haute efficacité bloquées sur le tuyau par une expansion mécanique. Avec au moins deux rangs sur les modèles d'installations à 2 tuyaux, la batterie est disponible dans la configuration 2+1 sur les modèles pour installations à 4 tuyaux. La batterie est équipée de vannes manuelles pour la purge de l'air. Sur demande, il est possible de raccorder à la batterie des vannes de réglage et d'équilibrage du fonctionnement de l'unité.

Groupe moto-ventilateur

Moteur électrique à 3 vitesses, directement relié à un ventilateur centrifuge à pale inversée et à profil optimisé pour garantir un fonctionnement stable à tous les régimes de rotation.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

Système de récupération et d'évacuation des condensats

Placé sous l'échangeur de chaleur, le bac principal est réalisé en polystyrène et est logé à l'intérieur de profils optimisés pour la distribution de l'air dans l'espace ambiant. La pompe d'évacuation des condensats parvient à soulever les condensats jusqu'à 0,9 m au-dessus du point de sortie de l'appareil. Le fonctionnement de la pompe est contrôlé par un flotteur à trois niveaux d'intervention, un premier pour l'activer, un deuxième pour l'arrêter et un troisième qui, en cas de dépassement du seuil critique, arrête le fonctionnement du ventilateur de la cassette et ferme la vanne d'eau. La fourniture est complétée par le bac auxiliaire de collecte des condensats provenant des vannes de réglage.

Grille

De forme carrée, pour l'aspiration et la diffusion de l'air dans l'espace ambiant, elle est réalisée en ABS couleur RAL9003 ou RAL9010. La grille d'aspiration est ouvrante pour pouvoir accéder au filtre à air. La diffusion de l'air dans l'espace ambiant s'effectue sur les 4 côtés, lesquels sont pourvus d'une ailette orientable équipée d'une isolation thermique.

Le nouveau module design EFFETTO pour l'aspiration et la diffusion de l'air à effet Coandă est désormais également disponible.

Modalités de contrôle

Galletti renouvelle les modalités de contrôle des ventilo-convecteurs en intégrant à la plateforme EVO la nouvelle interface utilisateur EVO-2-TOUCH et le dispositif NAVEL qui permet la gestion via un smartphone.

EVO-2-TOUCH

est une interface à écran capacitif de 2,8", avec sondes de température et humidité intégrées, dont l'utilisation est facilitée pour l'utilisateur final.

NAVEL

est le dispositif associé à EVOBOARD qui rend possible la communication Wi-Fi ou Bluetooth avec le smartphone sur lequel l'application GALLETTI APP est présente (disponible pour iOS et Android).

JONIX Non Thermal Plasma Technology (Optional)

Il purifie les espaces en mettant à profit les propriétés de l'air lorsqu'il est activé par l'énergie produite par les générateurs NTP brevetés JONIX. L'air activé est composé de molécules « excitées » (dérivés réactifs) qui attaquent les molécules polluantes, en les désagrégeant, et les microorganismes, en leur causant des dommages structurels et fonctionnels tels qu'ils en deviennent inactifs (action biocide et virucide). Les dispositifs Jonix Non Thermal Plasma Technology, correctement utilisés et dimensionnés, agissent sur une grande variété d'agents polluants tels que les virus, les bactéries, les moisissures, les allergènes, les composés chimiques volatiles et tout type d'odeur, en contribuant ainsi à la prévention des contagions de maladies à transmission aérienne (Covid-19 compris).

ACCESSOIRES mande électroniques à microprocesseur avec moniteur DIST Entretoise contrôleur MY COMFORT pour installation murale EVO-2-TOUCH Interface utilisateur à écran tactile 2,8" pour commande EVO **FVOROARD** Carte de puissance pour commande EVO **FVODISP** Interface utilisateur avec moniteur pour contrôleur EVO Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone FYNAVFI LED503 Commande électronique à installation murale avec moniteur LED 503 MCRF Commande à microprocesseur avec moniteur MY COMFORT BASE MCLE Commande à microprocesseur avec moniteur MY COMFORT LARGE MCME Commande à microprocesseur avec moniteur MY COMFORT MEDIUM MCSUF Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO MCSWE Sonde eau pour commandes MY COMFORT et EVO Panneau mande électroniques à microprocesseur TED 2T Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V TED 4T Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V TED SWA Sonde de température air ou eau pour commandes TED

Interface de p	ouissance et commandes pour volets
KP	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une unique commande
Vannes	
PIC-AQ	Vannes à 2 voies, PRESSURE INDEPENDENT
V2-AQ	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour modèle avec 1 ou 2 batterie
V3-AQ	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour modèle avec 1 ou 2 batterie
Plenum, mod	ules d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
BAR	Spigot pour entrée d'air neuf mélange
MOB	Habillage pour cassette
PAR	Plenum pour entrée d'air neuf sans mélange
PMAA	Plenum pour la soufflage d'air
Système d'ass	ainissement
JONIX - on board	Module d'assainissement JONI pour installation sur l'unité

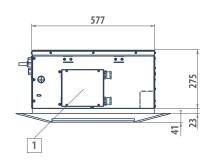
DONNÉES TECHNIQUES NOMINALES 2 TUBES

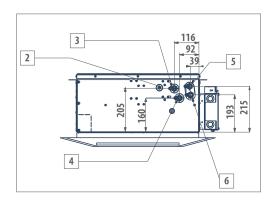
ACQVARIA				AQ10Q0B0			AQ20Q0B0		AQ30Q0B0			
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Puissance frigorifique totale	(1)(E)	kW	1,70	1,97	2,53	2,39	3,55	4,31	3,40	4,61	5,00	
Puissance frigorifique sensible	(1)(E)	kW	1,33	1,60	2,14	1,66	2,53	3,18	2,43	3,44	3,79	
Classe FCEER	(E)			C			C			D		
Débit d'eau	(1)	l/h	295	342	441	416	616	749	593	803	873	
Perte de charge	(1)(E)	kPa	3	4	6	9	19	26	9	16	18	
Puissance calorifique	(2)(E)	kW	1,97	2,33	3,10	2,29	3,44	4,30	3,49	4,92	5,35	
Classe FCCOP	(E)			C			D			E		
Débit d'eau	(2)	l/h	342	404	539	399	597	747	607	855	930	
Perte de charge	(2)(E)	kPa	3	5	8	7	15	22	8	15	17	
Débit d'air nominal		m³/h	297	379	557	306	487	640	479	717	805	
Puissance absorbée	(E)	W	18	23	42	32	40	50	57	74	89	
Puissance acoustique globale	(3)(E)	dB(A)	33	37	45	40	44	50	47	55	58	

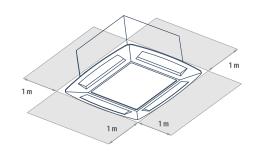
ACQVARIA				AQ40Q0B0			AQ50Q0B0		AQ60Q0B0			
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Puissance frigorifique totale	(1)(E)	kW	4,64	5,36	7,01	5,16	6,11	8,24	6,34	8,61	9,73	
Puissance frigorifique sensible	(1)(E)	kW	3,42	3,99	5,29	3,68	4,37	6,10	4,59	6,40	7,35	
Classe FCEER	(E)						С					
Débit d'eau	(1)	l/h	805	930	1223	893	1060	1434	1097	1498	1696	
Perte de charge	(1)(E)	kPa	14	18	28	12	16	26	16	26	32	
Puissance calorifique	(2)(E)	kW	5,16	6,06	8,17	5,22	6,53	9,18	6,71	9,53	11,1	
Classe FCCOP	(E)			D			C			D		
Débit d'eau	(2)	l/h	897	1053	1420	908	1136	1596	1167	1656	1930	
Perte de charge	(2)(E)	kPa	14	18	30	10	15	26	15	26	33	
Débit d'air nominal		m³/h	801	997	1494	718	902	1380	902	1380	1651	
Puissance absorbée	(E)	W	47	64	108	47	64	108	64	108	147	
Puissance acoustique globale	(3)(E)	dB(A)	35	40	51	35	40	51	40	51	56	

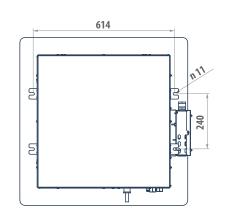
⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 45°C / 40°C, température air 20°C
(3) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

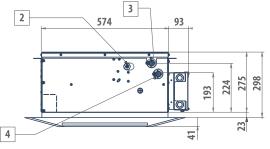
DONNÉES TECHNIQUES NOMINALES 4 TUBES

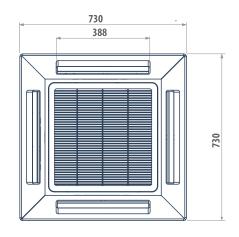

ACQVARIA			AQ10Q0BB			AQ20Q0BB			AQ30Q0BB			
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Puissance frigorifique totale DF	(1)(E)	kW	1,56	1,85	2,35	2,01	2,83	3,38	2,58	3,38	3,62	
Puissance frigorifique sensible DF	(1)(E)	kW	1,24	1,49	1,94	1,49	2,22	2,77	2,00	2,77	3,02	
Classe FCEER DF	(E)		C				E			E		
Débit d'eau		l/h	271	321	410	351	493	589	453	593	637	
Perte de charge	(E)	kPa	3	4	6	10	16	22	5	8	9	
Puissance calorifique	(2)(E)	kW	2,53	2,88	3,55	2,75	3,62	4,22	3,67	4,54	4,81	
Classe FCCOP	(E)			C		D			E			
Débit d'eau	(2)	I/h	222	258	311	241	317	369	322	398	421	
Perte de charge	(2)(E)	kPa	4	5	8	6	9	12	5	8	9	
Débit d'air nominal		m³/h	289	366	533	306	487	640	479	717	805	
Puissance absorbée	(E)	W	18	23	42	35	55	73	57	74	89	
Puissance acoustique globale	(3)(E)	dB(A)	33	37	45	40	44	50	47	55	58	


ACQVARIA				AQ35Q0BB			AQ40Q0BB			AQ60Q0BB		
Vitesse			min	moy	max	min	moy	max	min	moy	max	
Puissance frigorifique totale DF	(1)(E)	kW	3,50	4,39	4,68	4,73	6,60	7,45	5,83	8,48	9,00	
Puissance frigorifique sensible DF	(1)(E)	kW	2,56	3,17	3,50	3,47	5,04	5,81	4,29	6,56	6,98	
Classe FCEER DF	(E)		D				C			D		
Débit d'eau		l/h	602	755	805	822	1148	1299	1010	1477	1571	
Perte de charge	(E)	kPa	8	12	15	10	20	25	16	31	34	
Puissance calorifique	(2)(E)	kW	2,57	2,94	3,18	6,57	8,76	9,67	8,64	11,7	12,4	
Classe FCCOP	(E)			E			C			C		
Débit d'eau	(2)	l/h	221	253	273	634	840	929	757	1026	1083	
Perte de charge	(2)(E)	kPa	7	12	14	12	19	23	16	27	30	
Débit d'air nominal		m³/h	479	717	805	718	1147	1380	902	1544	1651	
Puissance absorbée	(E)	W	44	67	75	47	86	108	64	128	147	
Puissance acoustique globale	(3)(E)	dB(A)	47	55	58	39	47	51	40	54	56	

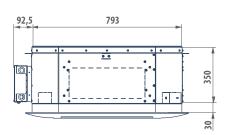

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021 (2) Température eau 65°C / 55°C, température air 20°C (3) Puissance acoustique mesurée selon ISO 3741 et ISO 3742 (E) Données certificats EUROVENT

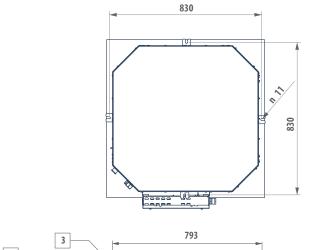

Alimentation électrique 230-1-50 (V-ph-Hz)


ACQVARIA 10-20-30-35

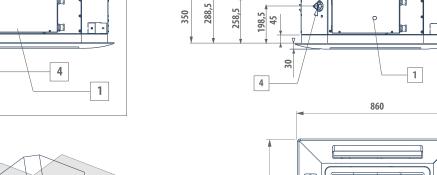


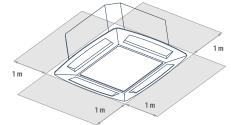
LÉGENDE


1	Boîtier électrique					
2	Purge des condensats ø 10					
3	Sortie d'eau ø 1/2" gaz femme					
4	Entrée d'eau ø 1/2" gaz femme					
5	Sortie d'eau ø 1/2" DF gaz femme					
6	Entrée d'eau ø 1/2" DF gaz femme					
NOTE II est nossible de combiner le module FEFFTTO et FFFFTTO AirClissi avec les						


NOTE II est possible de combiner le module EFFETTO et EFFETTO AirClissi avec les cassettes ACQVARIA 60x60 cm, pour les dimensions voir page 87


ACQVARIA	≜ kg
AQ10Q0B0 - AQ10Q0BB	23 + 2,5
AQ20Q0B0 - AQ30Q0B0 - AQ20Q0BB - AQ30Q0BB - AQ35Q0BB	24 + 2,5




ACQVARIA 40-50-60 (Taille 50 non disponible pour la version à double batterie)

860				
<u> </u>				
	<	485	-	

ACQVARIA	≟ kg
AQ40Q0B0 - AQ40Q0BB	42 + 5
AQ50Q0B0 - AQ60Q0B0 - AQ60Q0BB	43 + 5

L	Ŀ	u	Ŀ	N	υ	Ŀ

1	Boîtier électrique
2	Purge des condensats ø 10
3	Sortie d'eau ø 3/4" gaz femme
4	Entrée d'eau ø 3/4" gaz femme
5	Entrée d'eau ø 1/2" DF gaz femme
6	Sortie d'eau ø 1/2" DF gaz femme

Unités terminales type cassette avec moteur EC

ACQVARIA i 3 - 10 kW

à 2 tubes

Installation à 4 tubes

dans le faux plafond

PLUS

- » Technologie GreenTech
- » Moteur EC à aimants permanents assure le contrôle précis et constant des fonctionnement
- » Consommations d'énergie limitées
- » Air frais introduit directement ou mélangé
- » Pompe d'évacuation des condensats pour dénivellations jusqu'à 0,9 m
- » Temps d'installation et de mise en service réduits
- » Système d'assainissement JONIX incorporable

Confort, silence et efficacité en parfaite harmonie!

La nouvelle série de cassettes hydroniques ACQVARIA i, à moteur EC à aimants permanents contrôlé par un inverter, comprend six modèles (10-20-30-40-50-60) pour installations à 2 tuyaux et quatre modèles (10-30-35-40-60) pour installations à 4 tuyaux.

Les caractéristiques de l'unité permettent de développer jusqu'à 5 kW en phase de refroidissement au standard des faux plafonds modulaires de 600 x 600 mm et plus de 10 kW dans la modularité de 860 x 860 mm, avec des niveaux sonores extrêmement bas lors des phases de maintien du confort ambiant.

Aux avantages connus des moteurs EC, vient s'ajouter la technologie GreenTech (sur les modèles 10-20-30-35) qui intègre l'inverter directement au groupe de moto-ventilation.

ACQVARIA i exploite toute la plateforme de contrôleurs à microprocesseur Galletti, MYCOMFORT, EVO et TED10 qui offrent des logiques de réglage gage de haute précision en fonction de la température de l'air, de l'humidité de l'air et de la température de l'eau. Les avantages se traduisent en une plus grande précision des conditions de confort voulues et dans leur maintien grâce à la modulation de la vitesse de ventilation sans compter qu'ils permettent de réduire les émissions sonores, lesquelles correspondent à la charge thermique effective.

Les consommations électriques sont par ailleurs réduites dans des proportions qui peuvent atteindre 75 % comparées aux moteurs CA traditionnels à vitesse fixe.

L'unité installée sous faux plafond est dotée de tous les composants, de la batterie d'échange thermique, du groupe de moto-ventilation et du système de collecte et d'évacuation des condensats. Sa structure est prévue pour l'introduction d'air primaire dans l'espace, pour le mélanger à de l'air de recirculation et pour la distribution de l'air traité par la cassette dans des pièces/locaux attenants.

Le design et la couleur, RAL9003 ou RAL9010, de la grille d'aspiration et de diffusion de l'air dans l'espace garantissent la parfaite intégration aux panneaux des faux plafonds. Filtre à air facile d'accès pour les opérations de nettoyage.

L'unité peut être fournie équipée de vannes, entre autres de vannes d'équilibrage et de contrôle indépendant de la pression, dont l'utilisation réduit considérablement les temps de mise en service.

VERSIONS DISPONIBLES

En plus des 2 grilles en ABS à ailettes réglables, sont disponibles EFFETTO et EFFETTO AirClissi.

EFFETTO, le module design pour l'aspiration et la diffusion de l'air à effet Coandă.

EFFETTO Airclissi, qui intègre la lumière avec la diffusion de l'air par effet Coandă.

Grey - aluminium naturel brossé

EFFETTO

Black - noir RAL9005

EFFETTO + AirClissi

COMPOSANTS PRINCIPAUX

Structure

Réalisée en tôle d'acier zinguée avec revêtement interne en polyuréthane expansé et externe en floqué PES gage d'isolation thermique et acoustique. L'introduction d'air frais dans l'espace ambiant peut être assurée directement par l'unité, celle-ci étant dotée de raccords prévus pour l'introduction neutre ou mélangée. Des accessoires sont disponibles pour le raccordement aux canaux d'adduction. L'unité est dotée de systèmes qui permettent sa fixation au plafond. Les câblages électriques sont réalisés dans un boîtier facile d'accès sur le côté pour faciliter les branchements

Batterie d'échange thermique

En tuyau de cuivre et ailettes en aluminium à haute efficacité bloquées sur le tuyau par une expansion mécanique. Avec au moins deux rangs sur les modèles d'installations à 2 tuyaux, la batterie est disponible dans la configuration 2+1 sur les modèles pour installations à 4 tuyaux. La batterie est équipée de vannes manuelles pour la purge de l'air. Sur demande, il est possible de raccorder à la batterie des vannes de réglage et d'équilibrage du fonctionnement de l'unité.

Groupe moto-ventilateur

Moteur électrique à aimants permanents EC contrôlé par un inverter (intégré sur les modèles Greentech) directement relié à un ventilateur centrifuge à pale inversée et à profil optimisé pour garantir un fonctionnement stable à tous les régimes de rotation.

Filtre à air

Filtre régénérable en polypropylène en nid d'abeille, facilement démontable pour les opérations d'entretien.

Système de récupération et d'évacuation des condensats

Placé sous l'échangeur de chaleur, le bac principal est réalisé en polystyrène et est logé à l'intérieur de profils optimisés pour la distribution de l'air dans l'espace ambiant. La pompe d'évacuation des condensats parvient à soulever les condensats jusqu'à 0,9 m au-dessus du point de sortie de l'appareil. Le fonctionnement de la pompe est contrôlé par un flotteur à trois niveaux d'intervention, un premier pour l'activer, un deuxième pour l'arrêter et un troisième qui, en cas de dépassement du seuil critique, arrête le fonctionnement du ventilateur de la cassette et ferme la vanne d'eau. La fourniture est complétée par le bac auxiliaire de collecte des condensats provenant des vannes de réglage.

Grille

De forme carrée, pour l'aspiration et la diffusion de l'air dans l'espace ambiant, elle est réalisée en ABS couleur RAL9003 ou RAL9010. La grille d'aspiration est ouvrante pour pouvoir accéder au filtre à air. La diffusion de l'air dans l'espace ambiant s'effectue sur les 4 côtés, lesquels sont pourvus d'une ailette orientable équipée d'une isolation thermique.

Le nouveau module design EFFETTO pour l'aspiration et la diffusion de l'air à effet Coandă est désormais également disponible.

Modalités de contrôle

A C C E C C O I D E C

Galletti renouvelle les modalités de contrôle des ventilo-convecteurs en intégrant à la plateforme EVO la nouvelle interface utilisateur EVO-2-TOUCH et le dispositif NAVEL qui permet la gestion via un smartphone.

EVO-2-TOUCH

est une interface à écran capacitif de 2,8", avec sondes de température et humidité intégrées, dont l'utilisation est facilitée pour l'utilisateur final.

NAVEL

est le dispositif associé à EVOBOARD qui rend possible la communication Wi-Fi ou Bluetooth avec le smartphone sur lequel l'application GALLETTI APP est présente (disponible pour iOS et Android).

JONIX Non Thermal Plasma Technology

Il purifie les espaces en mettant à profit les propriétés de l'air lorsqu'il est activé par l'énergie produite par les générateurs NTP brevetés JONIX. L'air activé est composé de molécules « excitées » (dérivés réactifs) qui attaquent les molécules polluantes, en les désagrégeant, et les microorganismes, en leur causant des dommages structurels et fonctionnels tels qu'ils en deviennent inactifs (action biocide et virucide). Les dispositifs Jonix Non Thermal Plasma Technology, correctement utilisés et dimensionnés, agissent sur une grande variété d'agents polluants tels que les virus, les bactéries, les moisissures, les allergènes, les composés chimiques volatiles et tout type d'odeur, en contribuant ainsi à la prévention des contagions de maladies à transmission aérienne (Covid-19 compris).

ACCE22	DUIRES								
Panneaux de co	Panneaux de commande électroniques à microprocesseur avec moniteur								
DIST	Entretoise contrôleur MY COMFORT pour installation murale								
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO								
EVOBOARD	Carte de puissance pour commande EVO								
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO								
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone								
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE								
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO								
MCSWE	Sonde eau pour commandes MY COMFORT et EVO								
Panneaux de co	mmande électroniques à microprocesseur								
	Commando álectronique pour le contrôle du ventilateur inverter PLDC et d'une ou deux vannes								

	bonac a namatic pour communication communication (meanant communication)
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de	commande électroniques à microprocesseur
TED 10	Commande électronique pour le contrôle du ventilateur inverter BLDC et d'une ou deux vannes ON/OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED

Vannes à 2 voies, PRESSURE INDEPENDENT
Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydraulique pour modèle avec 1 ou 2 batterie
Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydraulique pour modèle avec 1 ou 2 batterie
es d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
Spigot pour entrée d'air neuf mélange
Habillage pour cassette
Plenum pour entrée d'air neuf sans mélange
Plenum pour la soufflage d'air
nissement
Module d'assainissement JONI pour installation sur l'unité

DONNÉES TECHNIQUES NOMINALES 2 TUBES

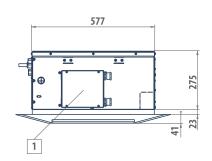
ACQVARIA i				AQ10	QIB0		AQ20QIB0				AQ30QIB0			
				min	moy	max		min	moy	max		min	moy	max
Vitesse			1	2	3	4	1	2	3	4	1	2	3	4
Tension à l'entrée		٧	2,00	3,50	4,50	6,00	2,00	4,00	5,50	8,00	2,00	4,00	6,50	10,0
Puissance frigorifique totale	(1)(E)	kW	1,33	1,93	2,24	2,63	1,49	2,68	3,40	4,39	1,54	2,76	3,95	5,23
Puissance frigorifique sensible	(1)(E)	kW	0,99	1,51	1,81	2,20	1,03	1,94	2,54	3,41	1,05	1,98	2,96	4,11
Classe FCEER	(E)								A					
Débit d'eau	(1)	I/h	229	331	385	452	256	460	584	754	264	473	678	898
Perte de charge	(1)(E)	kPa	2	4	5	7	3	10	15	23	3	9	18	29
Puissance calorifique	(2)(E)	kW	1,49	2,27	2,70	3,25	1,42	2,69	3,48	4,58	1,47	2,77	4,09	5,55
Classe FCCOP	(E)				A				В				В	
Débit d'eau	(2)	l/h	258	395	470	565	248	468	605	797	255	481	711	965
Perte de charge	(2)(E)	kPa	2	5	6	9	3	8	13	21	3	8	16	27
Débit d'air nominal		m³/h	212	397	454	583	187	397	551	796	190	397	650	980
Puissance absorbée	(E)	W	7	7	10	18	7	9	15	37	7	9	22	67
Puissance acoustique globale	(3)(E)	dB(A)	28	35	40	48	28	37	44	54	29	38	49	61

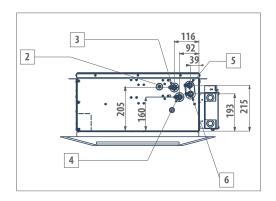
ACQVARIA i			AQ40QIB0				AQ50QIB0				AQ60QIB0			
			min	moy	max			min	moy	max		min	moy	max
Vitesse			1	2	3	4	1	2	3	4	1	2	3	4
Tension à l'entrée		V	2,00	3,00	5,00	10,0	2,00	3,00	5,00	8,00	2,00	4,00	6,50	10,0
Puissance frigorifique totale	(1)(E)	kW	4,80	5,36	6,39	8,27	5,17	5,92	7,26	9,01	5,26	6,70	8,37	10,5
Puissance frigorifique sensible	(1)(E)	kW	3,80	3,92	4,75	6,35	3,66	4,24	5,31	6,78	3,69	4,80	6,15	7,97
Classe FCEER	(E)		A				A				В			
Débit d'eau	(1)	l/h	833	921	1097	1420	888	1015	1245	1545	902	1150	1436	1805
Perte de charge	(1)(E)	kPa	12	16	21	34	10	13	18	27	10	15	22	33
Puissance calorifique	(2)(E)	kW	5,50	6,00	7,30	9,74	5,43	6,33	7,99	10,2	5,48	7,23	9,35	12,2
Classe FCCOP	(E)		A				В				В			
Débit d'eau	(2)	I/h	953	1043	1269	1692	944	1100	1390	1779	952	1257	1625	2116
Perte de charge	(2)(E)	kPa	3	16	23	38	9	12	19	29	9	15	23	36
Débit d'air nominal		m³/h	843	978	1276	1916	724	864	1143	1554	710	976	1321	1831
Puissance absorbée	(E)	W	14	18	36	150	14	18	36	93	14	25	60	150
Puissance acoustique globale	(3)(E)	dB(A)	35	39	45	57	35	39	48	53	36	43	50	58

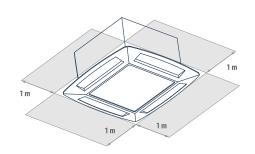
⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021 (2) Température eau 45°C / 40°C, température air 20°C (3) Puissance acoustique mesurée selon ISO 3741 et ISO 3742 (E) Données certificats EUROVENT Alimentation électrique 230-1-50 (V-ph-Hz)

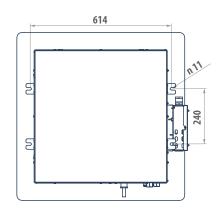
DONNÉES TECHNIQUES NOMINALES 4 TUBES

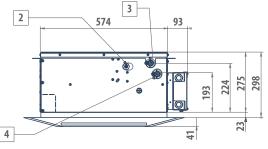
ACQVARIA i				AQ10	QIBB			AQ30	QIBB		AQ35QIBB			
				min	moy	max		min	moy	max		min	moy	max
Vitesse			1	2	3	4	1	2	3	4	1	2	3	4
Tension à l'entrée		V	2,00	3,50	4,50	6,00	2,00	4,00	6,50	10,0	2,00	4,00	6,50	10,0
Puissance frigorifique totale	(1)(E)	kW	1,24	1,85	2,18	2,60	1,55	2,62	3,53	4,41	2,34	3,03	3,83	5,01
Puissance frigorifique sensible	(1)(E)	kW	0,92	1,46	1,79	2,23	1,24	2,10	2,74	3,58	1,49	2,17	2,79	3,98
Classe FCEER DF	(E)								4					
Débit d'eau	(E)	l/h	213	317	374	447	267	451	607	759	403	521	659	862
Perte de charge	(E)	kPa	2	4	6	8	5	7	12	25	4	6	10	17
Puissance calorifique	(2)(E)	kW	2,03	2,90	3,34	3,86	2,35	3,73	4,38	5,51	1,92	2,39	2,88	3,43
Classe FCCOP	(E)				A				3				В	
Débit d'eau	(2)	l/h	178	254	292	338	202	321	377	474	165	206	248	295
Perte de charge	(2)(E)	kPa	3	6	8	11	3	4	8	11	4	5	10	16
Débit d'air nominal		m³/h	199	356	460	610	195	395	643	982	195	395	643	982
Puissance absorbée	(E)	W	7	7	10	18	7	9	22	67	7	9	22	67
Puissance acoustique globale	(3)(E)	dB(A)	28	35	40	48	29	38	49	61	29	38	49	61

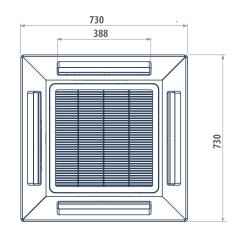

ACQVARIA i				AQ40	QIBB			AQ60	QIBB	IBB		
			min	moy	max			min	moy	max		
Vitesse			1	2	3	4	1	2	3	4		
Tension à l'entrée		V	2,00	3,00	5,00	10,0	2,00	4,00	6,50	10,0		
Puissance frigorifique totale	(1)(E)	kW	4,61	5,34	6,61	9,07	4,70	6,09	7,62	9,50		
Puissance frigorifique sensible	(1)(E)	kW	3,34	3,94	5,03	7,29	3,37	4,50	5,82	7,56		
Classe FCEER DF	(E)		A				В					
Débit d'eau	(E)	l/h	792	917	1135	1555	806	1045	1307	1631		
Perte de charge	(E)	kPa	12	15	22	37	11	17	25	37		
Puissance calorifique	(2)(E)	kW	7,01	7,96	9,53	12,3	7,15	8,96	10,8	12,9		
Classe FCCOP	(E)				A				В			
Débit d'eau	(2)	l/h	613	697	834	1078	626	785	947	1133		
Perte de charge	(2)(E)	kPa	11	14	19	30	12	18	24	33		
Débit d'air nominal		m³/h	687	841	1137	1823	673	956	1314	1823		
Puissance absorbée	(E)	W	14	18	36	150	14	25	60	150		
Puissance acoustique globale	(3)(E)	dB(A)	35	39	45	57	36	43	50	58		


⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 65°C / 55°C, température air 20°C
(3) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)



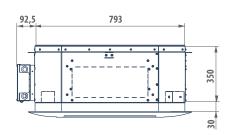

PLANS DIMENSIONNELS

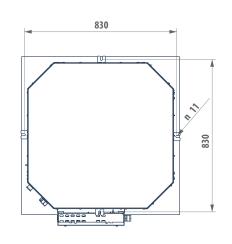

ACQVARIA i 10-20-30 (pour 2 tuyaux) - 10-30-35 (pour 4 tuyaux)

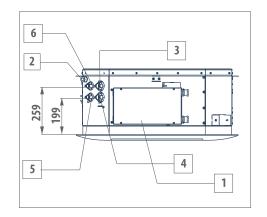


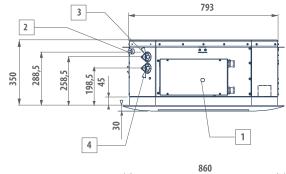
LÉGENDE

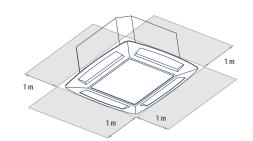
2 Purge des condensats ø 10 3 Sortie d'eau ø 1/2" gaz femme 4 Entrée d'eau ø 1/2" DF gaz femme 5 Sortie d'eau ø 1/2" DF gaz femme	
Purge des condensats ø 10 Sortie d'eau ø 1/2" gaz femme	
2 Purge des condensats ø 10	
1 rassage des cables electriques	
1 Passage des câbles électriques	

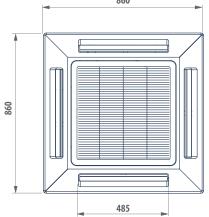

NOTE II est possible de combiner le module EFFETTO et EFFETTO AirClissi avec les cassettes ACQVARIA i 60x60 cm, pour les dimensions voir page 87


ACQVARIA i	≟ kg
AQ10QIB0 - AQ10QIBB	23 + 2,5
AQ20QIBO - AQ30QIBO - AQ30QIBB - AQ35QIBB	24 + 2,5




PLANS DIMENSIONNELS


ACQVARIA i 40-50-60 (Taille 50 non disponible pour la version à double batterie)



Mod.	≗ kg
AQ40QIB0	42 + 5
AQ50QIB0	43 + 5
AQ60QIB0	43 + 5
AQ40QIBB	42 + 5
AQ60QIBB	43 + 5

LÉGENDE

1	Boîtier électrique
2	Purge des condensats ø 10
3	Sortie d'eau ø 3/4" gaz femme
4	Entrée d'eau ø 3/4" gaz femme
5	Entrée d'eau ø 1/2" DF gaz femme
6	Sortie d'eau ø 1/2" DF gaz femme

Unité gainable DUCTIMAX

Unités gainables à pression statique disponible moyenne

DUCTIMAX 2 - 8 kW

Performances et dimensions réduites pour installation encastrée en plafonnier

L'unité gainable DUCTIMAX a été conçue pour la climatisation de locaux exigeant l'installation d'unités à pression statique disponible moyenne, performantes et aux dimensions réduites. La gamme couvre une plage de débits d'air allant de 300 à 1200 m3/h sur une série de 12 modèles La batterie d'échange thermique permet l'utilisation de DUCTIMAX dans les conditions d'utilisation les plus variées. À l'intérieur de la structure portante se trouve une batterie à 3 ou à 4 rangs à laquelle peut être ajouté un échangeur supplémentaire à 1 ou à 2 rangs (sur demande) pour atteindre des performances exceptionnelles y compris aux différentiels de température plus bas. Les batteries peuvent être optimisées pour applications centralisées telles que les district cooling. DUCTIMAX a été conçu pour installation horizontale en plafonnier. Le bac principal de collecte des condensats est situé à l'intérieur de la structure de l'unité et se trouve en état de pression positive par rapport à l'écoulement afin de faciliter le drainage des condensats.

Une ample gamme de commandes, de type électromécanique et à microprocesseur avec moniteur, est disponible pour instal-

Comme intégration du fonctionnement hydronique sont disponibles des résistances électriques de sécurité complètes. L'effet du filtre à air G3 ou G4 peut être associé au système d'ionisation de l'air.

PLUS

- » Moteur multivitesses
- » Batterie jusqu'à 4 rangs
- » Raccords hydrauliques réversibles
- » Ventilateurs centrifuges en ABS
- » Système d'assainissement JONIX incorporable

La structure permet l'utilisation d'une ample gamme d'accessoires de reprise et de soufflage pour arriver à la configuration optimale de l'unité.

VERSIONS DISPONIBLES

DMXXD0L0...A Unités pour systèmes à 2 tubes

DMXXD0LL...A Unité pour systèmes à 4 tubes dotée de batterie ad-

ditionnelle à 1 rang pour circuit d'eau chaude

Unité pour systèmes à 4 tubes dotée de batterie additionnelle à 2 rangs pour circuit d'eau chaude (Sur

demande)

Sur demande est disponible un système de décontamination de l'air monté sur le plenum prévu à cet effet.

DMXXD0LM...A

FC-101

COMPOSANTS PRINCIPAUX

Structure

En tôle d'acier zinguée, équipée de panneaux calorifugés et insonorisés en matériau autoextinguible (Classe 1). Modèle surbaissé pour faciliter l'installation en position horizontale, sous faux-plafonds; La structure comprend le bac auxiliaire de collecte et d'évacuation des condensats.

Batterie d'échange thermique

À 3 ou 4 rangs, à haut rendement, en tubes de cuivre et ailettes en aluminium, bloquées aux tubes par expansion mécanique, équipée de collecteurs en laiton et vannes de purge d'air. La batterie, normalement livrée avec des raccords à gauche, peut être tournée de 180°. Sur demande, sont disponibles des batterieshaute efficacité optimisées pour les applications district cooling.

Moteur électrique

Moteur électrique multivitesses de type asynchrone monophasé, monté sur supports antivibratoires, équipé de condensateur permanent et de protection thermique.

Ventilateurs

Ventilateurs centrifuges à double aspiration réalisés en ABS ou en aluminium avec pales avancées, à équilibrage statique et dynamique et accouplement direct au moteur électrique

Filtre à air

Filtre à air régénérable en fibre acrylique, classe de filtrage G2, G3 ou G4, logé sur l'aspiration de l'air, démontable à tiroir, par le bas.

CONFIGURATEUR Les modèles sont entièrement configurables en sélectionnant Version Champs 6 7 8 9 10 11 la version et les options. À côté, figure un exemple de DM44 D configuration.

7

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- Version
- D Version gainable
- Moteur
 - 0 Moteur à 3 vitesse
 - Moteur à 7 vitesse
 - Moteur BLDC Moteur à 6 vitesse
- Côté raccords batterie principale 3
 - Raccords a gauche
 - Raccords à droite
- Côté raccords batterie supplémentaire/résistance électrique
- Absent
- RE Résistance électrique
- Raccords a gauche Raccords à droite
- Vanne
- Absent
- VKS Vanne à 3 voies 230 V ON/OFF kit complet
- KV Vanne à 2 voies 230 V ON/OFF VKMS Vanne à 3 voies 24 V MODULANTE kit complet KVM Vanne à 2 voies 24 V MODULANTE
- VKS24 Vanne à 3 voies 24 V ON/OFF kit complet
- KV24 Vanne à 2 voies 24 V ON/OFF Panneau de commande

- 0 Absent
- EVOBOARD Carte de puissance
- Carte de puissance EVOBOARD + module Wireless NAVEL
- Sondes
- 0 Absent
- SA-Sonde air éloignée pour MYCOMFORT, LED503 et EVO SW Sonde eau pour MYCOMFORT, LED503 et EVO SU Sonde humidité pour MYCOMFORT et EVO

- SA + SW Sondes air + eau pour MYCOMFORT, LED503 et EVO SA + SU Sondes air + humidité pour MYCOMFORT et EVO
- SA + SU + SW Sondes air + humidité + eau pour MYCOMFORT et EVO
- SA Sonde air éloignée pour TED
- SW Sonde eau pour TED SA + SW Sondes air + eau pour TED D
- Accessoires
 - Absent
 - JONIX
- BH Bac auxiliaire
- 9 Filtre
 - Filtre G2 Filtre G3
- 10 Release
- Α Α

ACCESS	OIRES		
Panneaux de co	mmande électromécaniques	V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODUL
CD	Sélecteur de vitesse à installation murale encastrée	V2V31D	lique pour batterie principale
CDE	Sélecteur de vitesse à installation murale	V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODUL
TC	Thermostat de température minimum de l'eau en mode chauffage (42 °C)		lique pour batterie additionnelle
Panneaux de co	mmande électroniques à microprocesseur avec moniteur	V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODUL
COB	Plaque de finition pour commande LED 503 couleur noir RAL 9005		lique pour batterie principale
COG	Plaque de finition pour commande LED 503 couleur gris RAL 7031	VPIC	Vannes à 2 voies pressure independent, contacte
COW	Plaque de finition pour commande LED 503 couleur blanc RAL 9003	Dlanum mad	pour batterie principale et additionnelle ules d'aspiration et raccords d'aspiration et de s
DIST	Entretoise contrôleur MY COMFORT pour installation murale	MAF90	Module d'aspiration frontal avec filtre à air plat,
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO	MAFO	
EVOBOARD	Carte de puissance pour commande EVO	MAF090	Module d'aspiration avec filtre d'air ondulé, class
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO		Module d'aspiration frontal avec filtre à air plat,
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone	PAF	Plenum d'aspiration frontale non isolé, avec colli
LED503	Commande électronique à installation murale avec moniteur LED 503	PMA	Plenum de soufflage/aspiration non isolé, avec c
MCBE	Commande à microprocesseur avec moniteur MY COMFORT BASE	PMAC	Plenum de soufflage/aspiration isolé, avec collie
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE	R90	Raccord 90° de soufflage/aspiration non isolé
MCME	Commande à microprocesseur avec moniteur MY COMFORT MEDIUM	R90C	Raccord 90° de soufflage/aspiration isolé
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO	RD	Raccord droit de soufflage/aspiration non isolé
MCSWE	Sonde eau pour commandes MY COMFORT et EVO	RDC	Raccord droit de soufflage/aspiration isolé
Panneaux de co	mmande électroniques à microprocesseur		es de raccordement et bouchons de fermeture
TED 2T	Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V	TFA	Tuyau flexible non isolé, Ø 200 mm (6 m non div
TED 4T	Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V	TFM	Tuyau flexible isolé, Ø 200 mm (6 m non divisible
TED SWA	Sonde de température air ou eau pour commandes TED	TP	Bouchon en plastique 🛭 200 mm
	issance et commandes pour volets		piration et de soufflage d'air
	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une	CA	Cassette d'aspiration avec grille alvéolaire
KP	unique commande	CAF	Cassette d'aspiration avec grille alvéolaire 300 x
Résistances éle		CM	Cassette de soufflage isolée avec grille
RE	Résistance électrique avec kit de montage, boîtier relais et sécurités	Accessoires	
Grilles de souffl	age et reprise d'air	KSC	Kit pompe purge des condensats
GA	Grille d'aspiration reprise d'air en aluminium, avec cadre	VRC	Bac auxiliaire de collecte des condensats
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre	Système d'ass	
Vannes		JONIX - mic	Module d'assainissement JONIX™ (installation ca
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale et additionnelle	JONIX - pln	Module d'assainissement JONIX™ (installation su

V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie additionnelle
V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V , kit hydraulique pour batterie principale et additionnelle
Plenum, modul	es d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
MAF90	Module d'aspiration frontal avec filtre à air plat, classe G3
MAFO	Module d'aspiration avec filtre d'air ondulé, classe G4
MAF090	Module d'aspiration frontal avec filtre à air plat, classe G4
PAF	Plenum d'aspiration frontale non isolé, avec colliers Ø 200 mm
PMA	Plenum de soufflage/aspiration non isolé, avec colliers ø 200
PMAC	Plenum de soufflage/aspiration isolé, avec colliers ø 200
R90	Raccord 90° de soufflage/aspiration non isolé
R90C	Raccord 90° de soufflage/aspiration isolé
RD	Raccord droit de soufflage/aspiration non isolé
RDC	Raccord droit de soufflage/aspiration isolé
Tuyaux flexible	s de raccordement et bouchons de fermeture
TFA	Tuyau flexible non isolé, Ø 200 mm (6 m non divisibles)
TFM	Tuyau flexible isolé, Ø 200 mm (6 m non divisibles)
TP	Bouchon en plastique ⊠ 200 mm
Cassettes d'asp	iration et de soufflage d'air
CA	Cassette d'aspiration avec grille alvéolaire
CAF	Cassette d'aspiration avec grille alvéolaire 300 x 600 mm, avec filtre G2
CM	Cassette de soufflage isolée avec grille
Accessoires	
KSC	Kit pompe purge des condensats
VRC	Bac auxiliaire de collecte des condensats
Système d'assa	inissement
JONIX - mic	Module d'assainissement JONIX™ (installation canalisée)
JONIX - pln	Module d'assainissement JONIX™ (installation sur plénum)
JÓNIX - mic	Module d'assainissement JONIX™ (installation canalisée)

Unité gainable DUCTIMAX

DONNÉES TECHNIQUES NOMINALES 2 TUBES

DUCTIMAX	DUCTIMAX						14			23			24	
Vitesse			min	moy	max									
Vitesses certifiées				2,5,7			2,5,7			1,5,7			1,5,7	
Débit d'air nominal	(E)	m³/h	109	246	276	109	246	276	171	275	341	171	275	341
Pression statique utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Puissance absorbée	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Puissance frigorifique totale	(1)(E)	kW	0,92	1,72	1,90	0,95	1,91	2,11	1,27	1,90	2,27	1,36	2,11	2,53
Puissance frigorifique sensible	(1)(E)	kW	0,61	1,21	1,34	0,63	1,30	1,43	0,89	1,34	1,59	0,93	1,44	1,72
Classe FCEER	(E)								D					
Débit d'eau	(2)	l/h	160	306	340	167	337	375	222	339	408	239	374	453
Perte de charge	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Puissance calorifique	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Classe FCCOP	(E)								D					
Débit d'eau	(3)	I/h	153	315	346	158	345	384	231	345	408	244	382	466
Perte de charge	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Échangeur standard – nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	32	49	29	28	49	52	39	50	54	39	50	54
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	30	47	50	26	47	50	37	48	52	37	48	52
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	29	46	49	25	46	49	37	47	51	36	47	51

DUCTIMAX			33			34			43			44		
Vitesse			min	moy	max									
Vitesses certifiées				1,6,7			1,6,7	,		1,4,7			1,4,7	
Débit d'air nominal	(E)	m³/h	195	360	402	195	360	402	305	532	652	305	532	652
Pression statique utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Puissance absorbée	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Puissance frigorifique totale	(1)(E)	kW	1,44	2,28	2,51	1,57	2,69	2,96	1,92	3,17	3,68	2,29	3,78	4,45
Puissance frigorifique sensible	(1)(E)	kW	1,01	1,69	1,86	1,07	1,86	2,03	1,42	2,39	2,81	1,57	2,61	3,08
Classe FCEER	(E)			D			D			Е			D	
Débit d'eau	(2)	l/h	252	406	449	274	476	527	343	568	664	407	673	798
Perte de charge	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Puissance calorifique	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Classe FCCOP	(E))					
Débit d'eau	(3)	l/h	272	470	515	276	488	538	408	644	749	419	687	814
Perte de charge	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Échangeur standard – nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	39	50	54	39	50	54	38	52	58	38	52	58
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

DUCTIMAX				53			54			63			64	
Vitesse			min	moy	max									
Vitesses certifiées				1,6,7			1,6,7	,		5,6,7			5,6,7	
Débit d'air nominal	(E)	m³/h	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Pression statique utile	(E)	Pa	12	50	61	12	50	61	40	50	53	40	50	60
Puissance absorbée	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Puissance frigorifique totale	(1)(E)	kW	2,22	4,22	4,63	2,44	4,79	5,23	6,15	6,66	7,21	6,91	7,49	8,12
Puissance frigorifique sensible	(1)(E)	kW	1,60	3,09	3,39	1,70	3,33	3,64	4,51	4,88	5,29	4,83	5,23	5,67
Classe FCEER	(E)								D					
Débit d'eau	(2)	l/h	394	753	828	432	850	930	1095	1191	1295	1225	1333	1448
Perte de charge	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Puissance calorifique	(3)(E)	kW	2,54	4,76	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Classe FCCOP	(E)								D					
Débit d'eau	(3)	l/h	442	827	898	457	875	955	1162	1256	1357	1248	1356	1472
Perte de charge	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	20	23
Échangeur standard – nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	38	55	58	38	55	58	61	63	69	61	63	69
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	35	52	55	35	53	55	58	60	66	58	60	66

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT

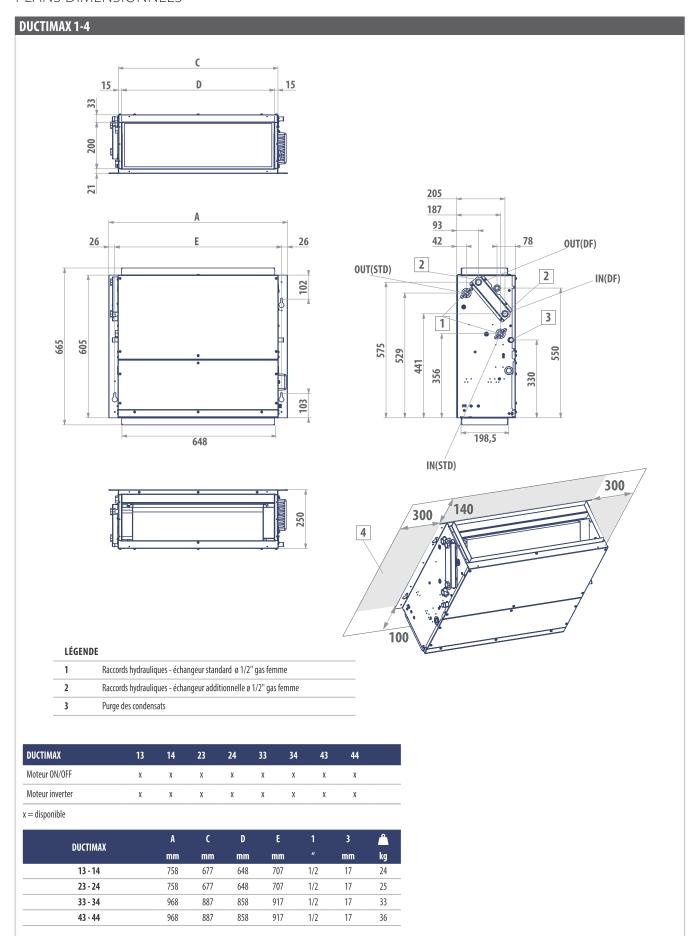
Alimentation électrique 320-1-50 (V ph. Hz)

Alimentation électrique 230-1-50 (V-ph-Hz)

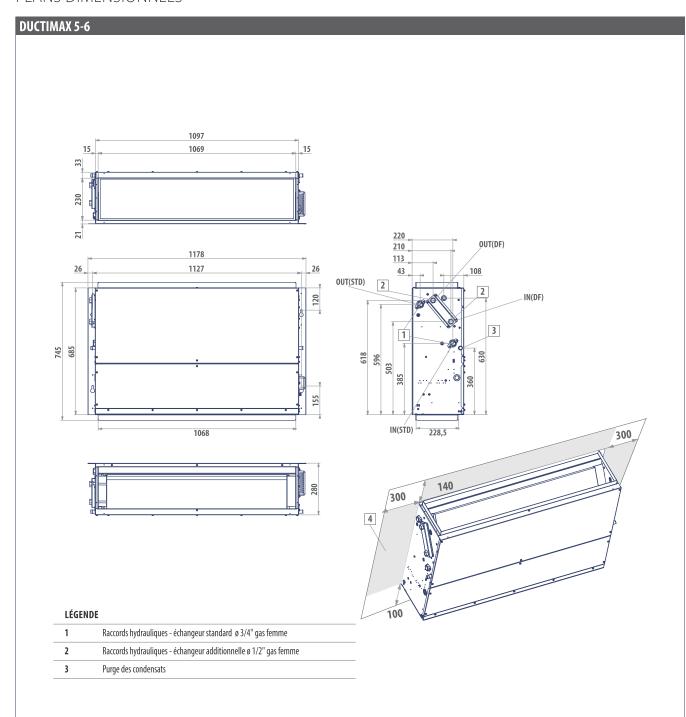
DONNÉES TECHNIQUES NOMINALES 4 TUBES

DUCTIMAX				13			14			23		24		
Vitesse			min	moy	max									
Vitesses certifiées				2,5,7			2,5,7			1,5,7			1,5,7	
Débit d'air nominal	(E)	m³/h	109	243	270	109	243	270	170	272	336	170	272	336
Pression statique utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Puissance absorbée	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Puissance frigorifique totale	(1)(E)	kW	0,92	1,70	1,86	0,95	1,88	2,06	1,26	1,88	2,24	1,35	2,09	2,49
Puissance frigorifique sensible	(1)(E)	kW	0,61	1,20	1,31	0,63	1,28	1,40	0,88	1,33	1,57	0,92	1,42	1,70
Classe FCEER	(E)								D					
Débit d'eau	(2)	l/h	160	302	333	167	334	368	221	335	404	238	370	447
Perte de charge	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Puissance calorifique	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Classe FCCOP	(E)								D					
Débit d'eau	(3)	l/h	100	169	180	100	169	180	136	181	204	136	181	204
Perte de charge	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Échangeur DF - nombre de rangs				1			1			1			1	
Puissance acoustique globale	(4)	dB(A)	32	49	52	28	49	52	39	50	54	39	50	54
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	30	47	50	26	47	50	37	48	52	37	48	52
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	29	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX			33				34			43		44		
Vitesse			min	moy	max									
Vitesses certifiées				1,6,7			1,6,7			1,4,7			1,4,7	
Débit d'air nominal	(E)	m³/h	195	357	398	195	357	398	302	524	642	302	524	642
Pression statique utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Puissance absorbée	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Puissance frigorifique totale	(1)(E)	kW	1,44	2,26	2,48	1,57	2,67	2,93	1,89	3,13	3,64	2,27	3,73	4,40
Puissance frigorifique sensible	(1)(E)	kW	1,01	1,68	1,84	1,07	1,84	2,01	1,41	2,35	2,78	1,56	2,57	3,04
Classe FCEER	(E)			D			D			E			D	
Débit d'eau	(2)	l/h	252	402	445	274	473	522	339	562	656	403	664	788
Perte de charge	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Puissance calorifique	(3)(E)	kW	2,09	3,09	3,29	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Classe FCCOP	(E)			C			C			D			D	
Débit d'eau	(3)	l/h	183	271	288	183	271	288	245	334	371	245	334	371
Perte de charge	(3)(E)	kPa	2	3	4	2	3	4	3	5	6	3	5	6
Échangeur DF - nombre de rangs				1			1			1			1	
Puissance acoustique globale	(4)	dB(A)	36	47	51	36	47	51	38	52	58	38	52	58
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55


DUCTIMAX				53			54			63			64	
Vitesse			min	moy	max									
Vitesses certifiées				1,6,7			1,6,7			5,6,7			5,6,7	
Débit d'air nominal	(E)	m³/h	333	683	755	333	683	755	1050	1163	1289	1050	1163	1289
Pression statique utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Puissance absorbée	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Puissance frigorifique totale	(1)(E)	kW	2,22	4,20	4,60	2,44	4,76	5,20	6,15	6,66	7,21	6,91	7,49	8,12
Puissance frigorifique sensible	(1)(E)	kW	1,60	3,07	3,36	1,70	3,31	3,62	4,51	4,88	5,29	4,83	5,23	5,67
Classe FCEER	(E)								D					
Débit d'eau	(2)	l/h	394	749	822	432	846	925	1095	1191	1295	1225	1333	1448
Perte de charge	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Puissance calorifique	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Classe FCCOP	(E)								D					
Débit d'eau	(3)	l/h	297	452	477	297	452	477	562	590	618	562	590	618
Perte de charge	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Échangeur DF - nombre de rangs				1			1			1			1	
Puissance acoustique globale	(4)	dB(A)	38	55	58	38	55	58	61	63	69	61	63	69
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	35	52	55	35	52	55	58	60	66	58	60	66

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 6°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 6°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)


Unité gainable DUCTIMAX

PLANS DIMENSIONNELS

PLANS DIMENSIONNELS

DUCTIMAX	53	54	63	64	
Moteur ON/OFF	Х	Х	Х	Х	
Moteur inverter	Х	Х	Х	Х	

x = disponible

DUCTIMAX	1	2	À	3
DUCTIMAX			kg	mm
53 - 54	3/4	1/2	45	17
63 - 64	3/4	1/2	51	17

Unité gainable DUCTIMA X i

Unités gainables à pression statique disponible moyenne avec moteur EC

DUCTIMAX i 2 - 8 kW

Installation

Installation

Ventilateur centrifuge

Modulation et efficacité- installation en plafonnier

DUCTIMAX i représente le complément de la gamme grâce à la technologie EC inverter des moteurs électriques. Aux spécificités de DUCTIMAX, s'ajoutent les avantages de la technologie brushless en termes de réduction des émissions de CO2, d'augmentation de la flexibilité de fonctionnement grâce à la modulation du débit d'air et en termes d'augmentation du niveau de confort hygrothermique et acoustique.

La gamme comprend 12 modèles qui couvrent une plage de débits d'air allant de 300 à 1200 m³/h.

La modulation constante du débit d'air et l'utilisation d'échangeurs de chaleur à haute efficacité permet le fonctionnement avec des différences de température air-eau réduites.

Les circuits des échangeurs de chaleur permettent leur utilisation pour les applications centralisées telles que les district cooling.

Le fonctionnement est régulé par des panneaux de commande à installation murale de type à microprocesseurs avec moniteur, comme les modèles MYCOMFORT LARGE et EVO.

L'effet du filtre à air G3 ou G4 peut être associé au système d'ionisation de l'air disponible en accessoire.

PLUS

- » Moteur EC à aimants permanents
- » Faible consommation électrique
- » Réglage aéraullique facile
- » Batterie jusqu'à 4 rangs
- » Dimensions compactes
- » Raccords hydrauliques réversibles
- » Vaste disponibilité d'accessoires
- » Système d'assainissement JONIX incorporable

Le moteur EC contrôlé par un inverter offre un grand avantage en termes de rendement énergétique, flexibilité d'installation et réduction des temps de réglage aéraulique, grâce à la modulation continue du débit d'air.

VERSIONS DISPONIBLES

DMXXDIL0...A Unités pour systèmes à 2 tubes

DMXXDILL...A Unité pour systèmes à 4 tubes dotée de batterie addi-

tionnelle à 1 rang pour circuit d'eau chaude

DMXXDILM...A Unité pour systèmes à 4 tubes dotée de batterie addi-

tionnelle à 2 rangs pour circuit d'eau chaude

(Sur demande)

Sur demande est disponible un système de décontamination de l'air monté sur le plenum prévu à cet effet.

COMPOSANTS PRINCIPAUX

Structure

En tôle d'acier zinguée, équipée de panneaux calorifugés et insonorisés en matériau autoextinguible (Classe 1). Modèle surbaissé pour faciliter l'installation en position horizontale, sous faux-plafonds; La structure comprend le bac auxiliaire de collecte et d'évacuation des condensats.

Le bac principal de collecte des condensats est situé à l'intérieur de la structure de l'unité et se trouve en état de pression positive par rapport à l'écoulement afin de faciliter le drainage des condensats.

Ventilateurs

Ventilateurs centrifuges à double aspiration réalisés en ABS ou en aluminium avec pales avancées, à équilibrage statique et dynamique et accouplement direct au moteur électrique

Moteur électrique EC

Moteur à aimants permanents. L'unité est équipée de carte inverter de contrôle du moteur, permettant un réglage précis de la vitesse de rotation du moteur (signal de contrôle 0-10 V).

Batterie d'échange thermique

À 3 ou 4 rangs, à haut rendement, en tubes de cuivre et ailettes en aluminium, bloquées aux tubes par expansion mécanique, équipée de collecteurs en laiton et vannes de purge d'air. La batterie, normalement livrée avec des raccords à gauche, peut être tournée de 180°. Sur demande, sont disponibles des batterieshaute efficacité optimisées pour les applications district cooling.

Filtre à air

Filtre à air régénérable en fibre acrylique, classe de filtrage G2 ou G3, logé sur l'aspiration de l'air, démontable à tiroir, par le bas.

	SOIRES
	ommande électroniques à microprocesseur avec moniteur
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de c	ommande électroniques à microprocesseur
TED 10	Commande électronique pour le contrôle du ventilateur inverter EC et d'une ou deux vannes ON/ OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED
Bacs auxiliaire	s de collecte des condensats, coques d'isolation, pompe purge des condensats
KSC	Kit pompe purge des condensats
Résistances éle	ectriques
RE	Résistance électrique avec kit de montage, boîtier relais et sécurités
Grilles de soufl	flage et reprise d'air
GA	Grille d'aspiration reprise d'air en aluminium, avec cadre
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre
Vannes	
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale et additionnelle
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie additionnelle

V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
Plenum, mod	lules d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
MAF90	Module d'aspiration frontal avec filtre à air plat, classe G3
MAFO	Module d'aspiration avec filtre d'air ondulé, classe G4
MAF090	Module d'aspiration frontal avec filtre à air plat, classe G4
PAF	Plenum d'aspiration frontale non isolé, avec colliers Ø 200 mm
PMA	Plenum de soufflage/aspiration non isolé, avec colliers ø 200
PMAC	Plenum de soufflage/aspiration isolé, avec colliers ø 200
R90	Raccord 90° de soufflage/aspiration non isolé
R90C	Raccord 90° de soufflage/aspiration isolé
RD	Raccord droit de soufflage/aspiration non isolé
RDC	Raccord droit de soufflage/aspiration isolé
Tuyaux flexib	les de raccordement et bouchons de fermeture
TFA	Tuyau flexible non isolé, Ø 200 mm (6 m non divisibles)
TFM	Tuyau flexible isolé, Ø 200 mm (6 m non divisibles)
TP	Bouchon en plastique ⊠ 200 mm
Cassettes d'a	spiration et de soufflage d'air
CA	Cassette d'aspiration avec grille alvéolaire
CAF	Cassette d'aspiration avec grille alvéolaire 300 x 600 mm, avec filtre G2
CM	Cassette de soufflage isolée avec grille
Accessoires	
VRC	Bac auxiliaire de collecte des condensats

Unité gainable DUCTIMA X i

DONNÉES TECHNIQUES NOMINALES 2 TUBES

DUCTIMAX i				13			14			23			24	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	٧	2,90	8,00	9,00	2,90	8,00	9,00	4,30	7,50	8,40	4,30	7,50	8,40
Débit d'air nominal	(E)	m³/h	109	246	276	109	246	276	171	275	341	171	275	341
Pression statique utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Puissance absorbée	(E)	W	6	25	33	6	25	33	10	24	39	10	24	39
Puissance frigorifique totale	(1)(E)	kW	0,93	1,76	1,95	0,96	1,92	2,16	1,29	1,95	2,34	1,38	2,16	2,60
Puissance frigorifique sensible	(1)(E)	kW	0,62	1,25	1,39	0,64	1,34	1,48	0,91	1,39	1,66	0,95	1,49	1,79
Classe FCEER	(E)								A					
Débit d'eau	(2)	I/h	161	306	340	167	337	375	222	339	408	239	374	453
Perte de charge	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Puissance calorifique	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Classe FCCOP	(E)								A					
Débit d'eau	(3)	I/h	153	315	346	158	345	384	231	345	408	244	382	466
Perte de charge	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Échangeur standard — nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	28	49	52	28	49	52	39	50	54	39	50	54
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	26	47	50	26	47	50	37	48	52	37	48	52
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i				33			34			43			44	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Débit d'air nominal	(E)	m³/h	195	360	402	195	360	402	305	532	652	305	532	652
Pression statique utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Puissance absorbée	(E)	W	10	26	35	10	26	35	22	51	77	22	51	77
Puissance frigorifique totale	(1)(E)	kW	1,46	2,33	2,59	1,59	2,74	3,04	1,98	3,26	3,79	2,35	3,87	4,56
Puissance frigorifique sensible	(1)(E)	kW	1,03	1,74	1,94	1,09	1,91	2,11	1,48	2,48	2,92	1,63	2,70	3,19
Classe FCEER	(E)			Α			Α			В			А	
Débit d'eau	(2)	I/h	252	406	449	274	476	527	343	568	664	407	673	798
Perte de charge	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Puissance calorifique	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Classe FCCOP	(E)							ŀ	4					
Débit d'eau	(3)	l/h	272	470	515	276	488	538	408	644	749	419	687	814
Perte de charge	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Échangeur standard – nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	39	50	54	39	50	54	38	52	58	38	52	58
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

NOTE: Les schémas dimensionnels de DUCTIMAX i inverter est le même de la version DUCTIMAX ON/OFF. Ils sont rapporté de la page 104

DONNÉES TECHNIQUES NOMINALES 2 TUBES

DUCTIMAX i				53			54			63			64	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	V	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Débit d'air nominal	(E)	m³/h	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Pression statique utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Puissance absorbée	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Puissance frigorifique totale	(1)(E)	kW	2,29	4,34	4,75	2,51	4,91	5,35	6,28	6,81	7,38	7,04	7,64	8,28
Puissance frigorifique sensible	(1)(E)	kW	1,67	3,21	3,51	1,77	3,45	3,76	4,64	5,03	5,46	4,96	5,38	5,84
Classe FCEER	(E)			Α			А			(В	
Débit d'eau	(2)	l/h	394	753	828	432	850	930	1094	1190	1295	1225	1332	1448
Perte de charge	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Puissance calorifique	(3)(E)	kW	2,54	4,74	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Classe FCCOP	(E)			А			А			В			В	
Débit d'eau	(3)	l/h	441	827	898	457	875	955	1162	1256	1356	1248	1355	1471
Perte de charge	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	19	22
Échangeur standard – nombre de rangs				3			4			3			4	
Puissance acoustique globale	(4)	dB(A)	38	55	58	38	55	58	61	63	69	61	63	69
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	35	52	55	35	52	55	58	60	66	58	60	66

Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021 Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) Température eau 45°C / 40°C, température air 20°C

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe se (2) Température eau 7°C / 12°C, température air 27°C bulbe se (3) Température eau 45°C / 40°C, température air 20°C (4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742 (E) Données certificats EUROVENT Alimentation électrique 230-1-50 (V-ph-Hz)

Unité gainable DUCTIMA X i

DONNÉES TECHNIQUES NOMINALES 4 TUBES

DUCTIMAX i				13			14			23			24	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	٧	2,90	7,90	8,90	2,90	7,90	8,90	4,50	7,30	8,90	4,50	7,30	8,90
Débit d'air nominal	(E)	m³/h	109	243	270	109	243	270	170	272	336	170	272	336
Pression statique utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Puissance absorbée	(E)	W	6	25	32	6	25	32	10	23	39	10	23	39
Puissance frigorifique totale	(1)(E)	kW	0,93	1,74	1,91	0,96	1,92	2,11	1,28	1,93	2,31	1,37	2,14	2,56
Puissance frigorifique sensible	(1)(E)	kW	0,62	1,24	1,36	0,64	1,32	1,45	0,90	1,38	1,64	0,94	1,47	1,77
Classe FCEER	(E)								A					
Débit d'eau	(2)	l/h	161	302	333	167	334	368	221	335	404	238	370	447
Perte de charge	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Puissance calorifique	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Classe FCCOP	(E)								A					
Débit d'eau	(3)	l/h	100	169	180	100	169	180	136	181	204	136	181	204
Perte de charge	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Échangeur DF - nombre de rangs				3+1			4+1			3+1			4+1	
Puissance acoustique globale	(4)	dB(A)	28	49	52	28	49	52	39	50	54	39	50	54
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	26	47	50	26	47	50	37	48	52	37	48	52
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i							34			43			44	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Débit d'air nominal	(E)	m³/h	195	357	398	195	357	398	302	524	642	302	524	642
Pression statique utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Puissance absorbée	(E)	W	10	26	35	10	26	35	21	50	77	21	50	77
Puissance frigorifique totale	(1)(E)	kW	1,46	2,31	2,56	1,59	2,72	3,01	1,95	3,22	3,75	2,33	3,82	4,51
Puissance frigorifique sensible	(1)(E)	kW	1,03	1,73	1,92	1,09	1,89	2,09	1,47	2,44	2,89	1,62	2,66	3,15
Classe FCEER	(E)			Α			Α			В			А	
Débit d'eau	(2)	I/h	252	402	445	274	473	522	339	562	656	403	664	788
Perte de charge	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Puissance calorifique	(3)(E)	kW	1,71	2,53	2,69	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Classe FCCOP	(E)							I	4					
Débit d'eau	(3)	l/h	183	271	288	183	271	288	245	334	371	245	334	371
Perte de charge	(3)(E)	kPa	3	4	5	2	3	4	3	5	6	3	5	6
Échangeur DF - nombre de rangs				3+1			4+1			3+1			4+1	
Puissance acoustique globale	(4)	dB(A)	39	50	54	39	50	54	38	52	58	38	52	58
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	37	48	52	37	48	52	36	50	56	36	50	56
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	36	47	51	36	47	51	35	49	55	35	49	55

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

NOTE: Les schémas dimensionnels de DUCTIMAX i inverter est le même de la version DUCTIMAX ON/OFF. Ils sont rapporté de la page 104

DONNÉES TECHNIQUES NOMINALES 4 TUBES

DUCTIMAX i				53			54			63			64	
Vitesse			min	moy	max									
Tension à l'entrée	(E)	٧	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Débit d'air nominal	(E)	m³/h	333	683	755	333	683	755	1050	1163	1289	1060	1163	1289
Pression statique utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Puissance absorbée	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Puissance frigorifique totale	(1)(E)	kW	2,29	4,32	4,72	2,51	4,88	5,32	6,28	6,81	7,38	7,04	7,64	8,28
Puissance frigorifique sensible	(1)(E)	kW	1,67	3,19	3,48	1,77	3,43	3,74	4,64	5,03	5,46	4,96	5,38	5,84
Classe FCEER	(E)			А			А			(В	
Débit d'eau	(2)	l/h	394	749	822	432	846	925	1094	1190	1295	1225	1332	1448
Perte de charge	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Puissance calorifique	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Classe FCCOP	(E)			А			А			(C	
Débit d'eau	(3)	l/h	297	452	477	297	452	477	562	589	618	562	589	618
Perte de charge	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Échangeur DF - nombre de rangs				3+1			4+1			3+1			4+1	
Puissance acoustique globale	(4)	dB(A)	38	55	58	38	55	58	61	63	69	61	63	69
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	36	53	56	36	53	56	59	61	67	59	61	67
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	35	52	55	35	52	55	58	60	66	58	60	66

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alignantation (flottricus 220 1 50 / 14 b. l.)

Alimentation électrique 230-1-50 (V-ph-Hz)

Unités de thermoventilation à grande pression statique disponible

UTN 3 - 23 kW

Flexibilité d'installation pour répondre à toutes les exigences

La gamme d'unités de thermo-ventilation UTN a été étudiée et conçue pour la climatisation de locaux exigeant l'installation d'unités hydroniques gainables assurant des pressions statiques disponibles jusqu'à 180 Pa et des puissance frigorifiques comprises entre 3 et 23 kW. Les unités sont caractérisées par une grande flexibilité d'installation. Elles peuvent être installées en position verticale ou horizontale et permettent d'orienter l'aspiration de l'air sur la partie postérieure ou frontale de l'unité, en déplaçant le panneau de visite. Toutes les unités sont fournies avec système d'admission d'air neuf et de lumières pour la fixation rapide au mur ou au plafond. La hauteur réduite (280 mm jusqu'à la grandeur 16 et 350 mm pour les grandeurs supérieures) permet l'installation dans des faux plafonds standard et la vaste gamme d'accessoires, aussi bien hydrauliques qu'aérauliques, facilite l'intégration aux installations de climatisation. Disponible dans les versions standard et hautes performances, en fonction de l'échangeur à ailettes utilisé, pour s'adapter aux caractéristiques de l'espace à climatiser.

Installation

Installation

Ventilateur centrifuge

PLUS

- » Dimensions compactes (hauteur 280 mm jusqu'à la taille 16 et 350 mm pour les tailles supérieures)
- » Installation verticale et horizontale
- » Ample gamme d'accessoires pour une simples intégration au système
- » Pression disponible jusqu'à 180 Pa
- » Grande flexibilité d'installation
- » Système d'assainissement JONIX incorporable

Confort et hygiène

Sur demande est disponible un système de décontamination de l'air monté sur le plenum prévu à cet effet.

VERSIONS DISPONIBLES

UTXXX0L0...0A Unité de thermo-ventilation prévue pour sys-

tèmes à 2 tubes

UTXXX0LL...0A Unité gainable prévue pour systèmes à 4 tubes

(2 échangeurs thermiques)

UTXXX0L0...02

La version à double panneautage est réalisée en tôle laqué et isolation ignifuge en laine de verre classe 0 (Sur demande)

COMPOSANTS PRINCIPAUX

Structure

En tôle d'acier galvanisée et insonorisée, dotée d'isolation thermique et autoextinguible à cellules fermées, afin de réduire les émissions sonores et prévenir la formation de condensats sur la surface extérieure.

Batterie d'échange thermique

Elle est formée de tubes en cuivre et ailettes en aluminium fixées par mandrinage.

Les raccords hydrauliques sont réversibles.

Est disponible une batterie additionnelle pour installation sur systèmes à 4 tubes.

Ventilateur

Les ventilateurs sont en aluminium de type centrifuge à double aspiration et pales décalées pour réduire les émission sonores. Ils sont de type à équilibrage statique et dynamique pour réduire les contraintes de l'arbre moteur.

Module filtre

Le filtre disponible en option dans les classes de filtrage G2 et G4, est réalisé en fibre acrylique régénérable.

Moteur électrique

Moteur électrique à 3 vitesses, monté sur supports antivibratoires, avec condensateur permanent équipé de protection thermique des enroulements, directement accouplé aux ventilateurs.

Système de récupération et d'évacuation des condensats

Il comprend deux bacs en tôle zinquée et isolée et est prévu pour installation horizontale et verticale.

CONFIGURATEUR

Les modèles sont entièrement configurables en sélectionnant la version et les options. À côté, figure un exemple de configuration.

Version	Champs	1	2	3	4	5	6	7	8	9	10	11	
UT08		D	0	L	0	0	0	0	0	N	0	Α	

Pour vérifier la compatibilité des options, utiliser le logiciel de sélection ou le tarif des prix.

CONFIGURATEUR

- Version
- Version gainable avec des performances élevées Version gainable standard
- Moteur
- Moteur à 3 vitesse
- Moteur BLDC
- 3 Côté raccords batterie principale
 - Raccords a gauche Raccords à droite
- Côté raccords batterie supplémentaire/résistance électrique
 - Absent
 - Raccords a gauche
 - Raccords à droite
- Vanne 0 Absent
- 6 Panneau de commande
- Absent
- EVOBOARD Carte de puissance
- Carte de puissance EVOBOARD + module Wireless NAVEL

7 Sondes

- 0 Absent
- SA Sonde air éloignée pour MYCOMFORT, LED503 et EVO
- SW Sonde eau pour MYCOMFORT, LED 503 et EVO
- SU Sonde humidité pour MYCOMFORT et EVO
- SA + SW Sonde air + eau pour MYCOMFORT, LED 503 et EVO
 SA + SU Sonde air + humidité pour MYCOMFORT et EVO
 SA + SU + SW Sonde air + humidité + eau pour MY COMFORT et EVO
 SA Sonde air éloignée pour TED
 SW Sonde eau pour TED

- SA + SW Sonde air + eau pour TED
- Accessoires
- Absent IONIX
- Filtre
- N Sans filtre
 - Release
 - Α

ACCESS	_
	mmande électromécaniques
CD	Sélecteur de vitesse à installation murale encastrée
IPM	Carte électronique de puissance pour le branchement UTN 30-30A-40-40A aux panneaux de commande
TA2	Thermostat d'ambiance avec sélecteur été/hiver à installation murale
TC	Thermostat de température minimum de l'eau en mode chauffage (42 °C)
TD	Panneau de commande avec sélecteur de vitesse, thermostat électromécanique et sélecteur été-hiver.
TDC	Panneau de commande à installation murale avec sélecteur de vitesse, thermostat
Panneaux de co	mmande électroniques à microprocesseur avec moniteur
COB	Plaque de finition pour commande LED 503 couleur noir RAL 9005
COG	Plaque de finition pour commande LED 503 couleur gris RAL 7031
COW	Plaque de finition pour commande LED 503 couleur blanc RAL 9003
DIST	Entretoise contrôleur MY COMFORT pour installation murale
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO
EVOBOARD	Carte de puissance pour commande EVO
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone
LED503	Commande électronique à installation murale avec moniteur LED 503
MCBE	Commande à microprocesseur avec moniteur MY COMFORT BASE
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE
MCME	Commande à microprocesseur avec moniteur MY COMFORT MEDIUM
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO
MCSWE	Sonde eau pour commandes MY COMFORT et EVO
Panneaux de co	mmande électroniques à microprocesseur
TED 2T	Commande électronique pour le contrôle du ventilateur AC et d'une vanne ON/OFF 230 V
TED 4T	Commande électronique pour le contrôle du ventilateur AC et de deux vannes ON/OFF 230 V
TED SWA	Sonde de température air ou eau pour commandes TED
Interface de pu	issance et commandes pour volets
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet motorisé SM
КР	Interface de puissance pour le branchement en parallèle d'un maximum de 4 unités à une unique commande
	de collecte des condensats, coques d'isolation, pompe purge des condensats
KSC	Kit pompe purge des condensats
Résistances éle	ctriques
RE	Résistance électrique avec kit de montage, boîtier relais et sécurités
Grilles de souffl	age et reprise d'air

GA	Grille d'aspiration reprise d'air en aluminium, avec cadre
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre
GR	Grille d'aspiration d'air avec cadre
GRF	Grille d'aspiration d'air avec filtre et cadre
Volets de prise	d'air externe
PA90	Volet motorisé de prise d'air externe
Vannes	
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale et additionnelle
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie additionnelle
V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale
VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique pour batterie principale et additionnelle
Plenum, modu	les d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
G90	Raccord à 90° d'aspiration et de soufflage
MAF	Module d'aspiration avec filtre à air plat, classe G2
MAFO	Module d'aspiration avec filtre d'air ondulé, classe G4
PCOC	Panneau de raccordement à gaine rectangulaire
PCOF	Panneau de raccordement à gaines flexibles Ø 200
	es de raccordement et bouchons de fermeture
TFA	Tuyau flexible non isolé, Ø 200 mm (6 m non divisibles)
TFM	Tuyau flexible isolé, Ø 200 mm (6 m non divisibles)
TP	Bouchon en plastique ⊠ 200 mm
	iration et de soufflage d'air
CA	Cassette d'aspiration avec grille alvéolaire
CAF	Cassette d'aspiration avec grille alvéolaire 300 x 600 mm, avec filtre G2
CM	Cassette de soufflage isolée avec grille
Accessoires	
UYBP	Kit batterie de post-chauffage à eau
VRCH	Bac auxiliaire de collecte des condensats pour modèles à installation horizontal
VRCV	Bac auxiliaire de collecte des condensats pour modèles à installation vertical
Système d'assa	
JONIX - mic	Module d'assainissement JONIX™ (installation canalisée)
JONIX - pln	Module d'assainissement JONIX™ (installation sur plénum)

Unités gainables UTN

DONNÉES TECHNIQUES NOMINALES 2 TUBES

UTN				6A			6D			8A			8D	
Vitesse			min	moy	max									
Débit d'air nominal	(E)	m³/h	343	458	561	348	465	572	532	692	791	534	700	802
Pression statique utile	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Puissance absorbée	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Puissance frigorifique totale	(1)(E)	kW	2,22	2,88	3,39	1,94	2,46	2,84	3,29	4,09	4,50	2,74	3,36	3,65
Puissance frigorifique sensible	(1)(E)	kW	1,63	2,13	2,52	1,47	1,87	2,16	2,45	3,08	3,41	2,10	2,59	2,83
Classe FCEER	(E)							,	E					
Débit d'eau	(2)	l/h	382	496	584	334	424	489	567	704	775	472	579	629
Perte de charge	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Puissance calorifique	(3)(E)	kW	2,47	3,14	3,70	2,19	2,75	3,20	3,55	4,36	4,83	3,04	3,69	4,05
Classe FCCOP	(E)			D			Е			E			E	
Débit d'eau	(3)	l/h	425	541	637	377	474	551	611	751	832	523	635	697
Perte de charge	(3)(E)	kPa	4	6	8	5	8	10	7	11	13	9	13	15
Échangeur standard – nombre de rangs				4			3			4			3	
Puissance acoustique globale	(4)	dB(A)	48	57	63	48	57	63	54	61	66	54	61	66
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	46	54	61	46	54	61	52	59	64	52	59	64
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	45	53	59	45	53	59	51	58	63	51	58	63

UTN				12A			12D			16A			16D	
Vitesse			min	moy	max									
Débit d'air nominal	(E)	m³/h	1000	1107	1203	1019	1134	1238	1198	1371	1581	1207	1384	1606
Pression statique utile	(E)	Pa	41	50	59	40	50	59	38	50	66	38	50	67
Puissance absorbée	(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
Puissance frigorifique totale	(1)(E)	kW	5,54	5,99	6,34	4,98	5,39	5,70	6,67	7,41	8,24	6,03	6,63	7,32
Puissance frigorifique sensible	(1)(E)	kW	4,11	4,47	4,73	3,66	3,94	4,16	5,23	5,86	6,58	4,84	5,39	6,04
Classe FCEER	(E)								E					
Débit d'eau	(2)	l/h	954	1031	1092	858	928	982	1149	1276	1419	1038	1142	1261
Perte de charge	(2)(E)	kPa	15	17	19	18	21	24	11	13	16	17	20	24
Puissance calorifique	(3)(E)	kW	6,29	6,80	7,26	5,59	6,03	6,42	7,28	8,04	8,93	6,47	7,11	7,88
Classe FCCOP	(E)								E					
Débit d'eau	(3)	l/h	1083	1171	1250	963	1038	1106	1254	1384	1538	1114	1224	1357
Perte de charge	(3)(E)	kPa	14	17	18	17	19	22	10	12	14	15	17	21
Échangeur standard – nombre de rangs				4			3			4			3	
Puissance acoustique globale	(4)	dB(A)	61	63	69	59	63	69	62	67	72	62	67	72
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	56	60	66	56	60	66	60	64	70	60	64	70
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	59	59	65	55	59	65	58	63	69	58	63	69

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

DONNÉES TECHNIQUES NOMINALES 2 TUBES

UTN				19A			22A			22D			30A	
Vitesse			min	moy	max									
Débit d'air nominal	(E)	m³/h	1166	1500	1577	1436	1819	2222	1483	1898	2376	2074	2604	3174
Pression statique utile	(E)	Pa	38	50	62	31	50	75	30	50	78	32	50	74
Puissance absorbée	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Puissance frigorifique totale	(1)(E)	kW	7,34	9,17	10,1	9,20	11,2	13,1	8,41	10,1	11,8	12,9	15,4	17,7
Puissance frigorifique sensible	(1)(E)	kW	5,43	6,81	8,83	6,76	8,32	9,85	6,35	7,75	9,22	9,38	11,4	13,5
Classe FCEER	(E)								E					
Débit d'eau	(2)	l/h	1266	1582	1749	1584	1927	2249	1448	1743	2039	2221	2652	3048
Perte de charge	(2)(E)	kPa	20	31	36	12	17	22	15	21	29	27	37	48
Puissance calorifique	(3)(E)	kW	7,94	9,96	11,0	9,73	11,7	13,7	9,06	10,8	12,7	13,7	16,4	19,1
Classe FCCOP	(E)			D			E			E			E	
Débit d'eau	(3)	l/h	1365	1715	1857	1676	2020	2354	1560	1867	2190	2359	2824	3289
Perte de charge	(3)(E)	kPa	22	29	34	10	14	19	14	19	25	23	32	41
Échangeur standard – nombre de rangs				4			4			3			5	
Puissance acoustique globale	(4)	dB(A)	61	67	71	60	67	74	60	67	74	69	73	78
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	59	65	69	58	65	72	58	65	72	67	71	76
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	57	63	68	57	64	71	57	64	71	66	70	75

UTN				30D			40A			40D	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Débit d'air nominal	(E)	m³/h	2092	2641	3207	3067	3622	4287	3129	3706	4422
Pression statique utile	(E)	Pa	31	50	74	36	50	71	35	50	71
Puissance absorbée	(E)	W	870	1090	1300	650	820	1150	650	820	1150
Puissance frigorifique totale	(1)(E)	kW	11,6	13,8	15,9	17,3	19,6	22,0	15,4	17,4	19,5
Puissance frigorifique sensible	(1)(E)	kW	8,61	10,4	12,2	13,3	15,3	17,5	12,1	13,8	15,6
Classe FCEER	(E)			E			D			E	
Débit d'eau	(2)	l/h	2003	2382	2741	3082	3505	3979	2761	3128	3551
Perte de charge	(2)(E)	kPa	21	29	37	16	20	25	17	21	26
Puissance calorifique	(3)(E)	kW	12,7	15,0	17,3	18,8	21,2	24,0	17,2	19,4	21,8
Classe FCCOP	(E)			Е			D			D	
Débit d'eau	(3)	l/h	2183	2592	2977	3263	3693	4177	2986	3364	3799
Perte de charge	(3)(E)	kPa	18	25	31	18	22	28	18	23	28
Échangeur standard — nombre de rangs				4			5			4	
Puissance acoustique globale	(4)	dB(A)	69	73	78	70	74	79	70	74	79
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	67	71	76	68	72	77	68	72	77
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	66	70	75	67	71	76	67	71	76

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

Unités gainables UTN

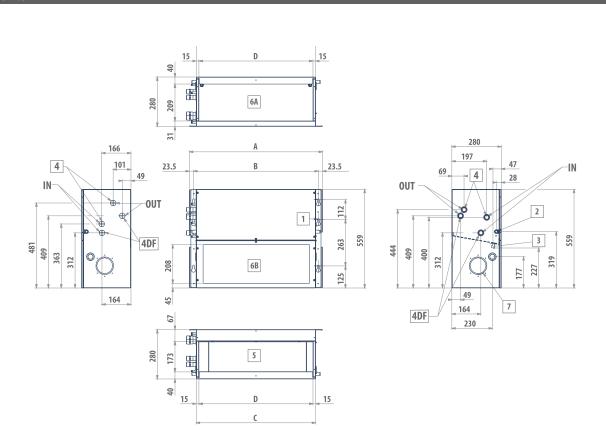
DONNÉES TECHNIQUES NOMINALES 4 TUBES

UTN				6A			6D			8A			8D	
Vitesse			min	moy	max									
Débit d'air nominal DF	(E)	m³/h	342	455	557	346	463	567	529	686	783	531	694	793
Pression statique utile DF	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Puissance absorbée DF	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Puissance frigorifique totale DF	(1)(E)	kW	2,21	2,86	3,37	1,93	2,44	2,82	3,27	4,06	4,46	2,73	3,33	3,61
Puissance frigorifique sensible DF	(1)(E)	kW	1,62	2,11	2,50	1,46	1,86	2,15	2,43	3,06	3,38	2,09	2,57	2,80
Classe FCEER DF	(E)								E					
Débit d'eau DF	(2)	I/h	381	492	580	332	420	486	563	699	768	470	573	622
Perte de charge DF	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Puissance calorifique DF	(3)(E)	kW	2,56	2,99	3,31	2,58	3,02	3,34	3,23	3,66	3,89	3,23	3,68	3,91
Classe FCCOP DF	(E)			D			D			E			E	
Débit d'eau DF	(3)	l/h	220	257	285	222	260	288	278	315	335	278	317	337
Perte de charge DF	(3)(E)	kPa	3	4	5	3	5	5	5	6	7	5	6	7
Échangeur DF - nombre de rangs				1			1			1			1	
Puissance acoustique globale DF	(4)	dB(A)	48	57	63	48	57	63	54	61	66	54	61	66
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	46	54	61	46	54	61	52	59	64	52	59	64
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	45	53	59	45	53	59	51	58	63	51	58	63

TN itesse			12A			12D			16A			16D	
		min	moy	max	min	moy	max	min	moy	max	min	moy	max
(E)	m³/h	985	1088	1182	1005	1115	1211	1184	1349	1550	1192	1362	1576
(E)	Pa	41	50	59	41	50	59	38	50	66	38	50	67
(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
(1)(E)	kW	5,47	5,91	6,24	4,93	5,32	5,60	6,60	7,31	8,10	5,97	6,54	7,21
(1)(E)	kW	4,06	4,40	4,66	3,60	3,89	4,08	5,17	5,77	6,46	4,79	5,31	5,94
(E)								E					
(2)	l/h	942	1018	1075	849	916	964	1137	1259	1395	1028	1126	1242
(2)(E)	kPa	15	17	19	18	21	23	10	13	15	16	19	23
(3)(E)	kW	5,21	5,45	5,65	5,25	5,51	5,72	6,99	7,44	7,94	7,02	7,47	7,99
(E)								E					
(3)	l/h	449	469	486	452	474	492	602	641	684	604	643	688
(3)(E)	kPa	10	11	12	12	13	14	20	22	25	8	9	10
			1			1			1			1	
(4)	dB(A)	61	64	69	59	63	69	62	67	72	62	67	72
(4)(E)	dB(A)	56	60	66	56	60	66	60	64	70	60	64	70
(4)(E)	dB(A)	55	59	65	59	62	65	58	63	69	58	63	69
	(E) (1)(E) (1)(E) (E) (2) (2)(E) (3)(E) (E) (3) (3)(E) (4) (4)(E)	(E) Pa (E) W (1)(E) kW (1)(E) kW (E) (2) I/h (2)(E) kPa (3)(E) kW (E) (3) I/h (3)(E) kPa (4) dB(A) (4)(E) dB(A)	(E) m³/h 985 (E) Pa 41 (E) W 345 (1)(E) kW 5,47 (1)(E) kW 4,06 (E) (2) I/h 942 (2)(E) kPa 15 (3)(E) kW 5,21 (E) (3) I/h 449 (3)(E) kPa 10 (4) dB(A) 61 (4)(E) dB(A) 56	min moy min moy min moy (E) m³/h 985 1088 (E) Pa 41 50 (E) W 345 385 (1)(E) kW 5,47 5,91 (1)(E) kW 4,06 4,40 (E) (2) 1/h 942 1018 (2)(E) kPa 15 17 (3)(E) kW 5,21 5,45 (E) (3) 1/h 449 469 (3)(E) kPa 10 11 1 (4) dB(A) 61 64 (4)(E) dB(A) 56 60 (1088 10	min moy max (E) m³/h 985 1088 1182 (E) Pa 41 50 59 (E) W 345 385 460 (1)(E) kW 5,47 5,91 6,24 (1)(E) kW 4,06 4,40 4,66 (E) (2) I/h 942 1018 1075 (2)(E) kPa 15 17 19 (3)(E) kW 5,21 5,45 5,65 (E) (3) I/h 449 469 486 (3)(E) kPa 10 11 12 (4) dB(A) 61 64 69 (4)(E) dB(A) 56 60 66	min moy max min (E) m³/h 985 1088 1182 1005 (E) Pa 41 50 59 41 (E) W 345 385 460 345 (1)(E) kW 5,47 5,91 6,24 4,93 (1)(E) kW 4,06 4,40 4,66 3,60 (E) (2) I/h 942 1018 1075 849 (2)(E) kPa 15 17 19 18 (3)(E) kW 5,21 5,45 5,65 5,25 (E) (3) I/h 449 469 486 452 (3)(E) kPa 10 11 12 12 (4) dB(A) 61 64 69 59 (4)(E) dB(A) 56 60 66 56	min moy max min moy (E) m³/h 985 1088 1182 1005 1115 (E) Pa 41 50 59 41 50 (E) W 345 385 460 345 385 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 (E) (2) I/h 942 1018 1075 849 916 (2)(E) kPa 15 17 19 18 21 (3)(E) kW 5,21 5,45 5,65 5,25 5,51 (E) (3) I/h 449 469 486 452 474 (3)(E) kPa 10 11 12 12 13 (4) dB(A) 61 64 69 59 63 (4)(E)	min moy max min moy max (E) m³/h 985 1088 1182 1005 1115 1211 (E) Pa 41 50 59 41 50 59 (E) W 345 385 460 345 385 460 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 (E) (2) I/h 942 1018 1075 849 916 964 (2)(E) kPa 15 17 19 18 21 23 (3)(E) kW 5,21 5,45 5,65 5,25 5,51 5,72 (E) (B) 449 469 486 452 474 492 (3) I/h 449 469 486 452 474	min moy max min moy max min (E) m³/h 985 1088 1182 1005 1115 1211 1184 (E) Pa 41 50 59 41 50 59 38 (E) W 345 385 460 345 385 460 290 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 (E) E (2) I/h 942 1018 1075 849 916 964 1137 (2)(E) kPa 15 17 19 18 21 23 10 (3)(E) kW 5,21 5,45 5,65 5,25 5,51 5,72 6,99 (E) E (3) I/h <td>min moy max min moy max min moy (E) m³/h 985 1088 1182 1005 1115 1211 1184 1349 (E) Pa 41 50 59 41 50 59 38 50 (E) W 345 385 460 345 385 460 290 380 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 (E) E (2) I/h 942 1018 1075 849 916 964 1137 1259 (2)(E) kPa 15 17 19 18 21 23 10 13 (3)(E) kW 5,21 5,45 5,65 5,25 5,51</td> <td>min moy max min moy max min moy max (E) m³/h 985 1088 1182 1005 1115 1211 1184 1349 1550 (E) Pa 41 50 59 41 50 59 38 50 66 (E) W 345 385 460 345 385 460 290 380 505 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 8,10 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 6,46 (E) E (2) I/h 942 1018 1075 849 916 964 1137 1259 1395 (2)(E) kPa 15 17 19 18 21 23 10 13 15 <td>min moy max min (E) Pa 41 50 59 41 50 59 38 50 66 38 (E) W 345 385 460 345 385 460 290 380 505 290 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 8,10 5,97 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 6,46 4,79 (E)<td> min moy max min moy min moy max min moy min moy</td></td></td>	min moy max min moy max min moy (E) m³/h 985 1088 1182 1005 1115 1211 1184 1349 (E) Pa 41 50 59 41 50 59 38 50 (E) W 345 385 460 345 385 460 290 380 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 (E) E (2) I/h 942 1018 1075 849 916 964 1137 1259 (2)(E) kPa 15 17 19 18 21 23 10 13 (3)(E) kW 5,21 5,45 5,65 5,25 5,51	min moy max min moy max min moy max (E) m³/h 985 1088 1182 1005 1115 1211 1184 1349 1550 (E) Pa 41 50 59 41 50 59 38 50 66 (E) W 345 385 460 345 385 460 290 380 505 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 8,10 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 6,46 (E) E (2) I/h 942 1018 1075 849 916 964 1137 1259 1395 (2)(E) kPa 15 17 19 18 21 23 10 13 15 <td>min moy max min (E) Pa 41 50 59 41 50 59 38 50 66 38 (E) W 345 385 460 345 385 460 290 380 505 290 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 8,10 5,97 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 6,46 4,79 (E)<td> min moy max min moy min moy max min moy min moy</td></td>	min moy max min (E) Pa 41 50 59 41 50 59 38 50 66 38 (E) W 345 385 460 345 385 460 290 380 505 290 (1)(E) kW 5,47 5,91 6,24 4,93 5,32 5,60 6,60 7,31 8,10 5,97 (1)(E) kW 4,06 4,40 4,66 3,60 3,89 4,08 5,17 5,77 6,46 4,79 (E) <td> min moy max min moy min moy max min moy min moy</td>	min moy max min moy min moy max min moy min moy

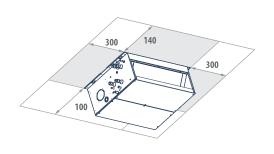
⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

DONNÉES TECHNIQUES NOMINALES 4 TUBES


UTN				19A			22A			22D			30A	
Vitesse			min	moy	max									
Débit d'air nominal DF	(E)	m³/h	1143	1470	1545	1423	1795	2184	1468	1871	2332	2065	2590	3154
Pression statique utile DF	(E)	Pa	38	50	62	31	50	74	23	50	78	32	50	74
Puissance absorbée DF	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Puissance frigorifique totale DF	(1)(E)	kW	7,17	8,98	10,0	9,12	11,0	12,9	8,34	10,0	11,7	12,9	15,3	17,7
Puissance frigorifique sensible DF	(1)(E)	kW	5,30	6,67	8,59	6,71	8,22	9,68	6,29	7,66	9,07	9,34	11,3	13,4
Classe FCEER DF	(E)								E					
Débit d'eau DF	(2)	l/h	1237	1549	1732	1570	1903	2216	1436	1722	2010	2216	2633	3041
Perte de charge DF	(2)(E)	kPa	20	30	35	12	16	22	15	21	28	27	37	48
Puissance calorifique DF	(3)(E)	kW	7,80	9,80	10,8	10,6	12,3	13,9	10,9	12,6	14,4	14,8	17,0	19,2
Classe FCCOP DF	(E)			D			D			D			E	
Débit d'eau DF	(3)	l/h	1338	1679	1854	916	1059	1194	935	1087	1242	1273	1466	1652
Perte de charge DF	(3)(E)	kPa	22	29	34	6	8	10	6	8	10	12	16	20
Échangeur DF - nombre de rangs				1			2			2			2	
Puissance acoustique globale DF	(4)	dB(A)	61	67	71	60	67	74	60	67	74	69	73	78
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	59	65	69	58	65	72	58	65	72	67	71	76
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	57	63	68	57	64	71	57	64	71	66	70	75

UTN				30D			40A			40D	
Vitesse			min	moy	max	min	moy	max	min	moy	max
Débit d'air nominal DF	(E)	m³/h	2083	2626	3187	3345	4002	4837	3073	3637	4321
Pression statique utile DF	(E)	Pa	31	50	74	35	50	73	36	50	70
Puissance absorbée DF	(E)	W	870	1090	1300	650	820	1150	650	820	1150
Puissance frigorifique totale DF	(1)(E)	kW	11,6	13,8	15,8	18,6	21,2	24,2	15,2	17,2	19,2
Puissance frigorifique sensible DF	(1)(E)	kW	8,58	10,4	12,2	14,4	16,8	19,5	11,9	13,5	15,3
Classe FCEER DF	(E)			Е			D			E	
Débit d'eau DF	(2)	l/h	1996	2371	2728	3297	3779	4347	2722	3085	3493
Perte de charge DF	(2)(E)	kPa	24	32	41	16	21	26	17	23	29
Puissance calorifique DF	(3)(E)	kW	14,9	17,2	19,3	18,3	20,2	22,2	18,5	20,4	22,6
Classe FCCOP DF	(E)			E			D			D	
Débit d'eau DF	(3)	l/h	1281	1478	1662	1601	1766	1948	1620	1790	1983
Perte de charge DF	(3)(E)	kPa	13	17	21	9	11	13	9	11	13
Échangeur DF - nombre de rangs				2			2			2	
Puissance acoustique globale DF	(4)	dB(A)	69	73	78	70	74	79	70	74	79
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	67	71	76	68	72	77	68	72	77
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	66	70	75	67	71	76	67	71	76

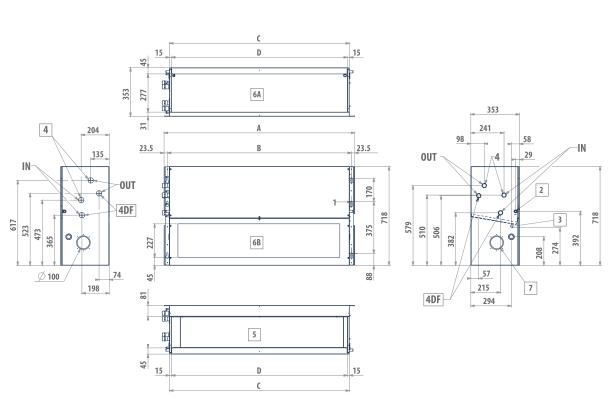
⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)


PLANS DIMENSIONNELS

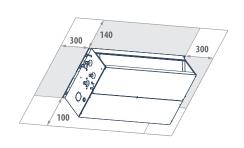
UTN 06 - 19

LÉGENDE

1	N° 6 lumières à accrochement rapide
2	Écoulement des condensats, installation horizontale
3	Écoulement des condensats, installation verticale
4	Raccords hydrauliques à droite
4DF	Raccords hydrauliques batterie additionnelle
5	Soufflage d'air
6	Aspiration air
6-A	conditions de fourniture
6-B	modifications possibles en cours d'installation
7	Élément prédécoupé circulaire (Ø 100 mm) pour entrée d'air neuf


UTN	A	В	C	D	4	4DF	2	3	Å
UIN	mm	mm	mm	mm			mm	mm	kg
6D - 6A - 8D - 8A	754	707	676	646	3/4	3/4	17	17	33
12D - 12A	964	917	886	856	3/4	3/4	17	17	42
16D - 16A - 19A	1174	1127	1096	1066	3/4	3/4	17	17	49

Modéles 6 et 6A disponibles seulement en la version ON/OFF


PLANS DIMENSIONNELS

UTN 22 - 40

LÉGENDE

1	N° 6 lumières à accrochement rapide
2	Écoulement des condensats, installation horizontale
3	Écoulement des condensats, installation verticale
4	Raccords hydrauliques à droite
4DF	Raccords hydrauliques batterie additionnelle
5	Soufflage d'air
6	Aspiration air
6-A	conditions de fourniture
6-B	modifications possibles en cours d'installation
7	Élément prédécoupé circulaire (Ø 100 mm) pour entrée d'air neuf

UTN	A	В	C	D	4	4DF	2	3	Å
OIN	mm	mm	mm	mm			mm	mm	kg
22D - 22A	1174	1127	1096	1066	1	1	17	17	67
30D - 30A	1384	1337	1306	1276	1	1	17	17	80
40D - 40A	1594	1547	1516	1486	1	1	17	17	90

Unités de thermoventilation à grande pression statique disponible avec moteur EC

UTNi4-18kW

Installation

Ventilateur

centrifuge

Installation

à 4 tubes

Haute efficacité et basses émissions sonores pour les applications gainées

Les unités de thermo-ventilation de la gamme UTN i dotées de moteurs à inverter, de 4 à 18 kW de puissance frigorifique, représentent l'évolution de la série UTN: en respectant scrupuleusement les normes en matière d'économies d'énergie et d'efficacité des installations et en mettant à profit les plus récentes avancées technologiques dans le domaine des moteurs électriques, Galletti propose des unités gainables dotées de moteurs EC à aimants permanents commandés par des inverters. Cette solution permet de réduire la puissance électrique de 70% par rapport à celle d'un moteur asynchrone traditionnel et offre dans le même temps la possibilité d'assurer un réglage précis du débit d'air, grâce à la possibilité de réguler constamment et efficacement la vitesse du ventilateur. Les caractéristiques propres à la gamme UTN, à savoir une pression statique disponible de 280 mm qui garantit une installation dans les faux plafonds, la flexibilité d'installation et de raccordement aux gaines d'air, et le vaste choix d'accessoires, sont conservées pour garantir les mêmes standards de qualité. La disponibilité d'échangeurs de chaleur ayant un nombre élevé de rangs permet d'utiliser, dans les phases de chauffage, un fluide caloporteur à basse température, comportant une économie d'énergie supplémentaire.

PLUS

- » Moteur EC à aimants permanents
- » Faible consommation électrique
- » Réglage aéraullique facile
- » Hauteur réduite sur toute la gamme (280 mm)
- » Installation verticale et horizontale
- » Vaste disponibilité d'accessoires
- » Grande flexibilité d'installation
- » Système d'assainissement JONIX incorporable

Confort et bas niveau sonore

Grâce à la possibilité de régler avec précision la vitesse de rotation du moteur, la gamme UTN i s'adapte aux environnements qui imposent les émissions sonores les plus basses possibles.

Sur demande est disponible un système de décontamination de l'air monté sur le plenum prévu à cet effet.

VERSIONS DISPONIBLES

UTXXXIL0...0A Unité de thermo-ventilation prévue pour systèmes à 2

UTXXXILL...0A Unité gainable prévue pour systèmes à 4 tubes (2 échan-

geurs thermiques)

UTXXXIL0...02

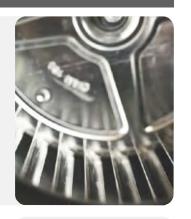
La version à double panneautage est réalisée en tôle laqué et isolation ignifuge en laine de verre classe 0 (Sur demande)

COMPOSANTS PRINCIPAUX

Structure

En tôle d'acier galvanisée et insonorisée, dotée d'isolation thermique et autoextinguible à cellules fermées, afin de réduire les émissions sonores et prévenir la formation de condensats sur la surface extérieure.

Batterie d'échange thermique


Elle est formée de tubes en cuivre et ailettes en aluminium fixées par mandrinage.

Les raccords hydrauliques sont réversibles.

Est disponible une batterie additionnelle pour installation sur systèmes à 4 tubes.

Ventilateur

Les ventilateurs sont en aluminium de type centrifuge à double aspiration et pales décalées pour réduire les émission sonores. Ils sont de type à équilibrage statique et dynamique pour réduire les contraintes de l'arbre moteur.

Moteur electrique EC

Moteur à aimants permanents. L'unité est équipée de carte inverter de contrôle du moteur, permettant un réglage précis de la vitesse de rotation du moteur (signal de contrôle 0-10 V).

Système de récupération et d'évacuation des condensats

Il comprend deux bacs en tôle zinguée et isolée et est prévu pour installation horizontale et verticale.

Module filtre

Le filtre disponible en option dans les classes de filtrage G2 et G4, est réalisé en fibre acrylique régénérable.

ACCESS	OIRES		
Panneaux de co	mmande électroniques à microprocesseur avec moniteur	V3VDF	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
DIST	Entretoise contrôleur MY COMFORT pour installation murale	VOVDE	lique pour batterie additionnelle
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO	V3VSTD	Vannes à 3 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-
EVOBOARD	Carte de puissance pour commande EVO	131310	lique pour batterie principale
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO	VPIC	Vannes à 2 voies pressure independent, contacteurs ON/OFF, alimentation 230 V, kit hydraulique
EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone		pour batterie principale et additionnelle
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE		les d'aspiration et raccords d'aspiration et de soufflage d'air et habillage
MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO	G90	Raccord à 90° d'aspiration et de soufflage
MCSWE	Sonde eau pour commandes MY COMFORT et EVO	MAF	Module d'aspiration avec filtre à air plat, classe G2
Panneaux de co	mmande électroniques à microprocesseur	MAFO	Module d'aspiration avec filtre d'air ondulé, classe G4
TED 10	Commande électronique pour le contrôle du ventilateur inverter BLDC et d'une ou deux vannes	PCOC	Panneau de raccordement à gaine rectangulaire
ובט וט	ON/OFF 230 V	PCOF	Panneau de raccordement à gaines flexibles Ø 200
TED SWA	Sonde de température air ou eau pour commandes TED		es de raccordement et bouchons de fermeture
Interface de pui	issance et commandes pour volets	TFA	Tuyau flexible non isolé, Ø 200 mm (6 m non divisibles)
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet	TFM	Tuyau flexible isolé, Ø 200 mm (6 m non divisibles)
	motorisé SM	TP	Bouchon en plastique ⊠ 200 mm
	de collecte des condensats, coques d'isolation, pompe purge des condensats		oiration et de soufflage d'air
KSC	Kit pompe purge des condensats	CA	Cassette d'aspiration avec grille alvéolaire
Résistances élec		CAF	Cassette d'aspiration avec grille alvéolaire 300 x 600 mm, avec filtre G2
RE	Résistance électrique avec kit de montage, boîtier relais et sécurités	CM	Cassette de soufflage isolée avec grille
Grilles de souffla	age et reprise d'air	Accessoires	
GM	Grille de soufflage d'air à double rang d'ailettes, avec contre-cadre	UYBP	Kit batterie de post-chauffage à eau
GR	Grille d'aspiration d'air avec cadre	VRCH	Bac auxiliaire de collecte des condensats pour modèles à installation horizontal
GRF	Grille d'aspiration d'air avec filtre et cadre	VRCV	Bac auxiliaire de collecte des condensats pour modèles à installation vertical
Volets de prise o	d'air externe	Joints anti-vib	
PA90	Volet motorisé de prise d'air externe	GA	Joint antivibratoire
Vannes		GAT	Joint antivibratoire thermorésistant
V2VDF+STD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau-	Système d'assa	
47ANL+31A	lique pour batterie principale et additionnelle	JONIX - mic	Module d'assainissement JONIX™ (installation canalisée)
V2VSTD	Vannes à 2 voies, contacteurs ON/OFF ou MODULANTS, alimentation 230 V ou 24 V, kit hydrau- lique pour batterie principale	JONIX - pln	Module d'assainissement JONIX™ (installation sur plénum)

Unités gainables UTN i

DONNÉES TECHNIQUES NOMINALES 2 TUBES

UTNi	ITN i			8A			8D			12A			12D		
Vitesse			min	moy	max										
Tension à l'entrée	(E)	٧	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80	
Débit d'air nominal	(E)	m³/h	532	692	791	534	700	802	1000	1107	1203	1019	1134	1238	
Pression statique utile	(E)	Pa	30	50	65	29	50	65	41	50	59	40	50	59	
Puissance absorbée	(E)	W	40	73	112	40	73	112	102	125	152	102	125	170	
Puissance frigorifique totale	(1)(E)	kW	3,38	4,20	4,65	2,83	3,47	3,80	5,78	6,25	6,65	5,22	5,65	6,01	
Puissance frigorifique sensible	(1)(E)	kW	2,54	3,19	3,56	2,19	2,70	2,98	4,35	4,73	5,04	3,90	4,20	4,47	
Classe FCEER	(E)			В		C			C			С			
Débit d'eau	(2)	l/h	582	723	801	487	598	654	995	1076	1145	899	973	1035	
Perte de charge	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	24	
Puissance calorifique	(3)(E)	kW	3,55	4,36	4,83	3,04	3,69	4,05	6,29	6,80	7,26	5,59	6,03	6,42	
Classe FCCOP				В			В			C			C		
Débit d'eau	(3)	l/h	611	751	832	523	635	697	1083	1171	1250	963	1038	1106	
Perte de charge	(3)(E)	kPa	7	11	13	9	13	15	14	17	18	17	19	22	
Échangeur standard – nombre de rangs				4			3			4			3		
Puissance acoustique globale	(4)	dB(A)	54	61	66	54	61	66	61	63	69	59	63	69	
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	52	59	64	52	59	64	56	60	66	56	60	66	
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	51	58	63	51	58	63	59	59	65	55	59	65	

UTNi			16A			16D			19A			22A		
Vitesse			min	med	max									
Tension à l'entrée	(E)	٧	6,70	7,70	8,90	6,70	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Débit d'air nominal	(E)	m³/h	1198	1371	1581	1207	1384	1606	1166	1500	1577	1436	1819	2222
Pression statique utile	(E)	Pa	38	50	66	38	50	67	38	50	62	31	50	75
Puissance absorbée	(E)	W	124	170	248	124	170	248	109	190	247	135	210	285
Puissance frigorifique totale	(1)(E)	kW	6,84	7,62	8,49	6,20	6,84	7,57	7,50	9,36	10,4	9,43	11,5	13,6
Puissance frigorifique sensible	(1)(E)	kW	5,40	6,07	6,83	5,01	5,60	6,29	7,35	9,17	10,3	6,99	8,65	10,3
Classe FCEER	(E)			C			C			C			В	
Débit d'eau	(2)	l/h	1178	1312	1462	1068	1178	1304	1289	1663	1789	1644	2010	2366
Perte de charge	(2)(E)	kPa	11	13	16	17	20	24	20	31	36	12	17	22
Puissance calorifique	(3)(E)	kW	7,28	8,04	8,93	6,47	7,11	7,88	7,94	9,96	11,0	9,73	11,7	13,7
Classe FCCOP				C			C			В			В	
Débit d'eau	(3)	l/h	1254	1384	1538	1114	1224	1357	1365	1715	1857	1676	2020	2354
Perte de charge	(3)(E)	kPa	10	12	14	15	17	21	22	29	34	10	14	19
Échangeur standard – nombre de rangs				4			3			4			4	
Puissance acoustique globale	(4)	dB(A)	62	67	72	62	67	72	61	67	71	60	67	74
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	60	64	70	60	64	70	59	65	69	58	65	72
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	58	63	69	58	63	69	57	63	68	57	64	71

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

NOTE: Les schémas dimensionnels de UTN i inverter est le même de la version UTN ON/OFF. Ils sont rapporté de la page 104

DONNÉES TECHNIQUES NOMINALES 2 TUBES

UTNi				22D			30A		30D		
Vitesse			min	med	max	min	med	max	min	med	max
Tension à l'entrée	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Débit d'air nominal	(E)	m³/h	1483	1898	2376	2074	2604	3174	2092	2641	3207
Pression statique utile	(E)	Pa	30	50	78	32	50	74	31	50	74
Puissance absorbée	(E)	W	140	220	320	195	310	445	200	320	445
Puissance frigorifique totale	(1)(E)	kW	8,64	10,4	12,2	13,6	16,2	18,6	12,3	14,6	16,8
Puissance frigorifique sensible	(1)(E)	kW	6,58	8,07	9,66	10,1	12,2	14,3	9,29	11,2	13,0
Classe FCEER	(E)			C			В		С		
Débit d'eau	(2)	I/h	1509	1827	2163	2365	2823	3270	2145	2561	2953
Perte de charge	(2)(E)	kPa	15	21	29	27	37	48	21	29	37
Puissance calorifique	(3)(E)	kW	9,06	10,8	12,7	13,7	16,4	19,1	12,7	15,0	17,3
Classe FCCOP				C			В			C	
Débit d'eau	(3)	l/h	1560	1867	2190	2359	2824	3289	2183	2592	2977
Perte de charge	(3)(E)	kPa	14	19	25	23	32	41	18	25	31
Échangeur standard — nombre de rangs			3				5			4	
Puissance acoustique globale	(4)	dB(A)	60	67	74	69	73	78	69	73	78
Puissance acoustique produite + aspiration air	(4)(E)	dB(A)	58	65	72	67	71	76	67	71	76
Puissance acoustique soufflage d'air	(4)(E)	dB(A)	57	64	71	66	70	75	66	70	75

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 45°C / 40°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

Unités gainables UTN i

DONNÉES TECHNIQUES NOMINALES 4 TUBES

UTNi	TNi				8A			8D			12A			12D		
Vitesse			min	med	max											
Tension à l'entrée	(E)	٧	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80		
Débit d'air nominal DF	(E)	m³/h	529	686	783	531	694	793	985	1088	1182	1005	1115	1211		
Pression statique utile DF	(E)	Pa	30	50	65	29	50	65	41	50	59	41	50	59		
Puissance absorbée DF	(E)	W	40	73	112	45	73	112	102	125	152	102	125	152		
Puissance frigorifique totale DF	(1)(E)	kW	3,36	4,17	4,61	2,82	3,44	3,76	5,71	6,17	6,55	5,17	5,58	5,91		
Puissance frigorifique sensible DF	(1)(E)	kW	2,52	3,17	3,53	2,18	2,68	2,95	4,30	4,66	4,97	3,84	4,15	4,39		
Classe FCEER DF	(E)			В		С			C			C				
Débit d'eau DF	(2)	l/h	579	718	794	486	592	647	983	1062	1128	890	961	1018		
Perte de charge DF	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	23		
Puissance calorifique DF	(3)(E)	kW	3,23	3,66	3,89	3,23	3,68	3,91	5,21	5,45	5,65	5,25	5,51	5,72		
Classe FCCOP DF	(E)			В			В			В			C			
Débit d'eau DF	(3)	l/h	278	315	355	278	317	337	449	469	486	452	474	492		
Perte de charge DF	(3)(E)	kPa	5	6	7	5	6	7	10	11	12	12	13	14		
Échangeur DF - nombre de rangs				1			1			1			1			
Puissance acoustique globale DF	(4)	dB(A)	54	61	66	54	61	66	61	64	69	59	63	69		
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	52	59	64	52	59	64	56	60	66	56	60	66		
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	51	58	63	51	58	63	55	59	65	55	59	65		

UTNi			16A			16D			19A			22A		
Vitesse			min	med	max									
Tension à l'entrée	(E)	٧	6,70	7,70	8,90	7,00	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Débit d'air nominal DF	(E)	m³/h	1184	1349	1550	991	1094	1212	1143	1470	1545	1423	1795	2184
Pression statique utile DF	(E)	Pa	38	50	66	38	50	61	38	50	62	31	50	74
Puissance absorbée DF	(E)	W	124	170	248	124	170	248	109	190	247	138	210	305
Puissance frigorifique totale DF	(1)(E)	kW	6,77	7,52	8,35	6,14	6,75	7,46	5,62	7,00	9,10	9,35	11,3	13,3
Puissance frigorifique sensible DF	(1)(E)	kW	5,34	5,98	6,71	4,96	5,52	6,19	5,44	6,86	8,85	6,94	8,55	10,1
Classe FCEER DF	(E)		C			C			C			В		
Débit d'eau DF	(2)	l/h	1166	1295	1438	1057	1162	1285	1268	1582	1777	1631	1987	2336
Perte de charge DF	(2)(E)	kPa	10	13	15	16	19	23	20	31	36	12	16	22
Puissance calorifique DF	(3)(E)	kW	6,99	7,44	7,94	7,02	7,47	7,99	7,80	9,80	10,8	10,6	12,3	13,9
Classe FCCOP DF	(E)			C			C			В			В	
Débit d'eau DF	(3)	l/h	602	641	684	604	643	688	1338	1679	1854	916	1059	1194
Perte de charge DF	(3)(E)	kPa	20	22	25	22	24	27	22	29	34	6	8	10
Échangeur DF - nombre de rangs				1			1			1			2	
Puissance acoustique globale DF	(4)	dB(A)	62	67	72	62	67	72	61	67	71	60	67	74
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	60	64	70	60	64	70	59	65	69	58	65	72
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	58	63	69	58	63	69	57	63	68	57	64	71

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

NOTE: Les schémas dimensionnels de UTN i inverter est le même de la version UTN ON/OFF. Ils sont rapporté de la page 118

DONNÉES TECHNIQUES NOMINALES 4 TUBES

UTNi				22D		30A			30D		
Vitesse			min	med	max	min	moy	max	min	moy	max
Tension à l'entrée	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Débit d'air nominal DF	(E)	m³/h	1468	1871	2332	2065	2590	3154	2083	2626	3187
Pression statique utile DF	(E)	Pa	30	50	78	32	50	74	31	50	74
Puissance absorbée DF	(E)	W	144	220	317	221	345	441	223	350	452
Puissance frigorifique totale DF	(1)(E)	kW	8,56	10,3	12,1	13,6	16,0	18,6	12,2	14,5	16,6
Puissance frigorifique sensible DF	(1)(E)	kW	6,51	7,98	9,50	9,99	12,0	14,3	9,23	11,1	13,0
Classe FCEER DF	(E)			C					C		
Débit d'eau DF	(2)	I/h	1493	1808	2130	2358	2811	3254	2138	2550	2940
Perte de charge DF	(2)(E)	kPa	15	21	28	27	37	48	21	28	36
Puissance calorifique DF	(3)(E)	kW	10,9	12,6	14,4	14,8	17,0	19,2	14,9	17,2	19,3
Classe FCCOP DF	(E)			В					C		
Débit d'eau DF	(3)	l/h	935	1087	1242	1273	1466	1652	1281	1478	1662
Perte de charge DF	(3)(E)	kPa	6	8	10	13	16	20	13	17	21
Échangeur DF - nombre de rangs				2			2			2	
Puissance acoustique globale DF	(4)	dB(A)	60	67	74	69	73	78	69	73	78
Puissance acoustique produite + aspiration air DF	(4)(E)	dB(A)	58	65	72	67	71	76	67	71	76
Puissance acoustique soufflage d'air DF	(4)(E)	dB(A)	57	64	71	66	70	75	66	70	75

⁽¹⁾ Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) conforme à EN1397:2021
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative)
(3) Température eau 65°C / 55°C, température air 20°C
(4) Puissance acoustique mesurée selon ISO 3741 et ISO 3742
(E) Données certificats EUROVENT
Alimentation électrique 230-1-50 (V-ph-Hz)

FH - AÉROTHERMES

AREO p.128

AREOi p.138

DST p.142

Aérothermes avec moteur ON/OFF

AREO 8 - 101 kW

Installation horizontale

Refroidissement (seulement

*

Confort thermo-hygrométrique dans les secteurs industriels et commerciaux

Sur la base des récentes évolutions des normes en matière d'efficacité énergétique, Galletti a décidé d'adapter sa gamme d'aérothermes pour installations de chauffage et de refroidissement, destinés aux environnements industriels et commerciaux de toutes dimensions.

Le nouveau modèle de la gamme AREO, conçu pour répondre aux rigoureux standards imposés par la Directive ErP, conserve toutes les caractéristiques du projet d'origine, à savoir extrême fiabilité et robustesse.

L'habillage de AREO, en tôle d'acier laquée, est caractérisé par un design original aux lignes arrondies qui soulignent l'esthétique de l'appareil.

La gamme AREO comprend 16 modèles, dans le cas de la version pour le chauffage seulement, pour installation murale (projection d'air horizontale) ou en plafonnier (projection d'air verticale). La version adaptée à la climatisation est équipée d'un système de récupération de condensation innovant et d'une isolation supplémentaire à l'intérieur de l'habillage.

6 grandeurs sont prévues pour cet appareil, équipé de batteries à 2, 3 ou 4 rangs pour permettre le fonctionnement correct au moyen d'eau chaude produite par une chaudière ou une pompe à chaleur (modèles à 4 rangs).

PLUS

- » Émissions sonores limitées
- » Ample plage de températures (température d'air aspiré jusqu'à 60 °C)
- » Ventilateur axial avec pales à profil aérodynamique (technologie HyBlade®)
- » Moteur électrique de Classe F homologué pour fonctionnement continu
- » RVM contrôle du vitesse du ventilateur de moteurs électriques monophasés

VERSIONS DISPONIBLES

Alimentation électrique monophasée et triphasée.

Aérothermes pour chauffage à eau Aérothermes pour chauffage à eau Aérothermes pour chauffage et relatéraux.

latéraux, pour les remplacements installation en plafonnier. d'unités installées dans des systèmes existants.

AREO L

chaude, avec raccords hydrauliques chaude, avec raccords hydrauliques chaude, avec diffuseurs à rideau d'air, froidissement avec alimentation

ARFO C

électrique monophasée, moteur asynchrone et raccords hydrauliques lateraux, installation verticale.

COMPOSANTS PRINCIPAUX

Groupe moto-ventilateur

Le moteur et le ventilateur sont un groupe intégré et optimisé visant à maximiser le rendement aéraulique. Il s'agit d'une solution qui garantit la conformité à ERP pour les versions avec alimentation monophasée également.

Moteur électrique

Moteur tropicalisé directement accouplé au rotor externe, d'origine, ayant les caractéristiques suivantes:

- doté de protection thermique interne
- enroulements de classe F
- · degré de protection IP54
- roulements à billes sans entretien

Ventilateur axial

Avec pales à profil aérodynamique optimisé (technologie HyBlade®), à équilibrage statique, emboîtées dans un collier spécialement conçu qui optimise les performances aérauliques et réduit le bruit.

Habillage

Habillage en tôle d'acier laquée, complet de protections angulaires en ABS et d'ailettes de diffusion en aluminium orientables manuellement, sur le soufflage de l'air pour une répartition optimale de l'air dans le local.

Grille de protection contre les accidents

En fil d'acier électrozingué supporte le moteur, elle est fixée à l'habillage au moyen de supports antivibratoires.

Batterie d'échange thermique

En tube de cuivre et ailettes en aluminium à haute conductivité thermique optimisant l'échange.

Contrôle du vitesse du ventilateur de moteurs électriques monophasés

Le régulateur de vitesse RVM contrôle la valeur efficace sur la charge grâce au système de réglage de la forme d'onde produite par un TRIAC. L'accessoire utilisé uniquement sur les modèles avec alimentation monophasée, est en mesure de modifier manuellement la vitesse du ventilateur en adaptant la puissance de l'aérotherme en fonction des différents besoins. Le système est en outre doté de filtres spéciaux pour éliminer les perturbations sur la ligne d'alimentation ou les rayonnements dus à l'appareillage et d'un trimmer pour le réglage manuel de la petite vitesse de ventilation. Cet accessoire est fourni d'origine dans la version pour rffafraîchissement AREO C.

ACCE:	SSOIRES
Panneaux d	e commande électromécaniques
CST	Sélecteur étoile/triangle pour installation sur tableaux électriques
CSTP	Sélecteur étoile/triangle avec boîtier pour installation murale
RVM	Contrôle manuel de puissance por AÉROTHERMES avec alimentation électrique monophasés
TA2	Thermostat d'ambiance avec sélecteur été/hiver à installation murale
Interface de	puissance et commandes pour volets
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet motorisé SM
Accessoires	
VA	Bac auxiliaire de récolte de la buée
Gabarits de	fixation
DFC	Gabarit pour fixation sur colonne
DF0	Gabarit orientable pour fixation murale/sur colonne

DFP	Gabarit pour fixation murale
Filet de protection	on pour gymnases (contre les ballons)
R	Filet de protection pour gymnases
Diffuseurs	
D0	Diffuseur à double rang d'ailettes orientables
LA	Diffuseur à rideau d'air
Prise d'air frais	
PAE	Prise d'air frais
PAEM	Volet mélangeur manuel
PAEMM	Volet mélangeur motorisé, alimentation 24 V, avec rappel à ressort
rille de protectio	n contre la pluie pour prise d'air frais
GR	Grille d'aspiration d'air avec cadre

DONNÉES TECHNIQUES NOMINALES AREO P - CHAUFFAGE

AREO P			12	12	13	13	14	14
Alimentation électrique		V-ph-Hz		·-		1 - 50		
nb de pôles		7 pii 112	4	6	4	6	4	6
Raccordement moteur			Mono	Mono	Mono	Mono	Mono	Mono
Débit d'air nominal		m³/h	1280	1000	1140	900	1040	800
Puissance calorifique	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9
Débit d'eau	(1)	I/h	863	749	1097	946	1252	1047
Perte de charge	(1)	kPa	29	23	22	17	17	12
	(2)	dB(A)	64	59	64	59	65	60
Niveau de puissance acoustique Puissance absorbée	(2)	W W	69	49	69	50	70	51
ruissance absorbee		VV	09	49	09	30	70	31
AREO P			22	22	23	23	24	24
Alimentation électrique		V-ph-Hz			230 -	1 - 50		
nb de pôles			4	6	4	6	4	6
Raccordement moteur			Mono	Mono	Mono	Mono	Mono	Mono
Débit d'air nominal		m³/h	3020	2100	2630	1850	2600	1800
Puissance calorifique	(1)	kW	19,9	16,2	25,6	20,6	28,9	22,9
Débit d'eau	(1)	l/h	1754	1432	2256	1820	2555	2022
Perte de charge	(1)	kPa	23	16	29	20	19	13
Niveau de puissance acoustique	(2)	dB(A)	76	64	76	65	77	65
Puissance absorbée		W	198	110	210	114	212	120
AREO P			32	32	32	33	33	33
Alimentation électrique		V-ph-Hz	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50
nb de pôles			4	4	6	4	4	6
Raccordement moteur			Mono	Delta	Star	Mono	Delta	Star
Débit d'air nominal		m³/h	4500	4300	3200	4150	4000	2900
Puissance calorifique	(1)	kW	35,6	34,7	29,2	39,5	38,6	31,8
Débit d'eau	(1)	I/h	3143	3060	2579	3486	3411	2806
Perte de charge	(1)	kPa	20	19	14	18	17	12
Niveau de puissance acoustique	(2)	dB(A)	76	76	69	76	76	69
Puissance absorbée		W	320	315	175	340	330	180
AREO P			34	34	34	42	42	42
Alimentation électrique		V-ph-Hz	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50
nb de pôles		Y PIT II.	4	4	6	4	4	6
Raccordement moteur			Mono	 Delta	Star	Mono	Delta	Star
Débit d'air nominal		m³/h	4050	3900	2800	6900	7100	5600
Puissance calorifique	(1)	kW	45,1	44,0	35,6	53,4	54,3	47,4
Débit d'eau	(1)	I/h	3980	3886	3145	4718	4793	4185
Perte de charge	(1)	kPa	29	28	19	37	38	30
Niveau de puissance acoustique	(2)	dB(A)	77	77	70	75	73	67
Puissance absorbée	(2)	W	345	340	182	623	650	450
AREO P		V ph Hz	43 230 - 1 - 50	43	43	220 1 50	44 400 - 3 - 50	44 400 - 3 - 50
Alimentation électrique		V-ph-Hz		400 - 3 - 50	400 - 3 - 50	230 - 1 - 50		-
nb de pôles			4 Mana	4 Dolta	6	4 Mono	4 Dolta	6 Ctar
Raccordement moteur		3 n.	Mono	Delta	Star	Mono	Delta	Star
Débit d'air nominal	(1)	m³/h	6400	6550	5300	6200	6400	5150
Puissance calorifique	(1)	kW	59,6	60,4	53,2	66,8	68,1	59,5
Débit d'eau	(1)	l/h	5259	5329	4695	5894	6009	5250
Perte de charge	(1)	kPa	36	37	30	23	24	19
Niveau de puissance acoustique	(2)	dB(A)	74	74	68	75	75	69
Puissance absorbée		W	635	690	465	655	700	470

⁽¹⁾ Température eau 85°C / 75°C, température air 15°C - 100% de la vitesse maximum (2) Puissance acoustique mesurée selon ISO 3741 - 100% de la vitesse maximum

DONNÉES TECHNIQUES NOMINALES AREO P - CHAUFFAGE

AREO P			53	53	53	54	54	54	
Alimentation électrique		V-ph-Hz	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	
nb de pôles			6	4	6	6	4	6	
Raccordement moteur			Mono	Delta	Star	Mono	Delta	Star	
Débit d'air nominal		m³/h	6200	7900	6450	5900	7600	6200	
Puissance calorifique	(1)	kW	60,8	70,2	62,3	66,2	77,4	68,3	
Débit d'eau	(1)	l/h	5373	6202	5497	5852	6834	6033	
Perte de charge	(1)	kPa	19	25	20	21	27	22	
Niveau de puissance acoustique	(2)	dB(A)	69	76	72	71	77	73	
Puissance absorbée		W	374	732	775	380	755	780	

AREO P			63	63	63	64	64	64	
Alimentation électrique		V-ph-Hz	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	230 - 1 - 50	400 - 3 - 50	400 - 3 - 50	
nb de pôles			6	6	8	6	6	8	
Raccordement moteur			Mono	Delta	Star	Mono	Delta	Star	
Débit d'air nominal		m³/h	8100	8300	6500	7500	7650	6000	
Puissance calorifique	(1)	kW	99,7	101	86,4	99,6	101	85,8	
Débit d'eau	(1)	I/h	8802	8943	7626	8795	8913	7571	
Perte de charge	(1)	kPa	29	30	23	29	29	22	
Niveau de puissance acoustique	(2)	dB(A)	65	72	67	71	72	67	
Puissance absorbée		W	560	575	380	582	590	390	

⁽¹⁾ Température eau 85°C / 75°C, température air 15°C - 100% de la vitesse maximum (2) Puissance acoustique mesurée selon ISO 3741 - 100% de la vitesse maximum

Aérothermes AREO

DONNÉES TECHNIQUES NOMINALES AREO C - CHAUFFAGE

AREO C	REO C				13	13	14	14	22	22
Alimentation électrique		V-ph-Hz				230	- 1 - 50			
nb de pôles			4	6	4	6	4	6	4	6
Débit d'air max chauffage		m³/h	1280	1000	1140	900	1040	800	3020	2100
Puissance calorifique	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9	19,9	16,2
Débit d'eau	(1)	l/h	863	749	1097	946	1252	1047	1754	1432
Perte de charge	(1)	kPa	29	23	22	17	17	12	23	16
Niveau de puissance acoustique	(2)	dB(A)	64	59	64	59	65	60	76	64
Puissance absorbée	(3)	W	67	49	69	50	70	51	198	110
AREO C			23	23	24	24	32	33	34	42
Alimentation électrique		V-ph-Hz			•	230	- 1 - 50			
nb de pôles			4	6	4	6	4	4	4	4
Débit d'air max chauffage		m³/h	2630	1850	2600	1800	4500	4150	4050	6900

	V-ph-Hz				230 -	1 - 50			
		4	6	4	6	4	4	4	4
	m³/h	2630	1850	2600	1800	4500	4150	4050	6900
(1)	kW	25,6	20,6	28,9	22,9	35,6	39,5	45,1	53,4
(1)	I/h	2256	1820	2555	2022	3143	3486	3980	4718
(1)	kPa	29	20	19	13	20	18	29	37
(2)	dB(A)	76	65	77	65	76	76	77	75
(3)	W	210	114	212	120	320	340	345	623
	(1) (1) (2)	m³/h (1) kW (1) l/h (1) kPa (2) dB(A)	Head Head	4 6 m³/h 2630 1850 (1) kW 25,6 20,6 (1) l/h 2256 1820 (1) kPa 29 20 (2) dB(A) 76 65	4 6 4 m³/h 2630 1850 2600 (1) kW 25,6 20,6 28,9 (1) I/h 2256 1820 2555 (1) kPa 29 20 19 (2) dB(A) 76 65 77	Heat of the control of the c	4 6 4 6 4 m³/h 2630 1850 2600 1800 4500 (1) kW 25,6 20,6 28,9 22,9 35,6 (1) I/h 2256 1820 2555 2022 3143 (1) kPa 29 20 19 13 20 (2) dB(A) 76 65 77 65 76	4 6 4 6 4 4 m³/h 2630 1850 2600 1800 4500 4150 (1) kW 25,6 20,6 28,9 22,9 35,6 39,5 (1) l/h 2256 1820 2555 2022 3143 3486 (1) kPa 29 20 19 13 20 18 (2) dB(A) 76 65 77 65 76 76	Heat of the control of the c

AREO C			43	44	53	54	63	64		
Alimentation électrique		V-ph-Hz	230 - 1 - 50							
nb de pôles			4	4	6	6	6	6		
Débit d'air max chauffage		m³/h	6400	6200	6200	5900	7695	7500		
Puissance calorifique	(1)	kW	59,6	66,8	60,8	66,3	79,3	99,6		
Débit d'eau	(1)	l/h	5259	5894	5373	5852	8802	8795		
Perte de charge	(1)	kPa	36	23	19	21	29	29		
Niveau de puissance acoustique	(2)	dB(A)	74	75	69	71	69	71		
Puissance absorbée	(3)	W	635	655	374	380	560	582		

Température eau 85°C / 75°C, température air 15°C - 100% de la vitesse maximum
 Puissance acoustique mesurée selon ISO 3741 - 100% de la vitesse maximum
 Mesurée à la vitesse maximale

DONNÉES TECHNIQUES NOMINALES AREO C - RAFRAÎCHISSEMENT

AREO C			12	12	13	13	14	14	22	22
Alimentation électrique		V-ph-Hz		•	•	230	- 1 - 50		•	•
nb de pôles			4	6	4	6	4	6	4	6
Débit d'air max refroidissement		m³/h	898	898	808	808	718	718	1602	1602
Puissance calorifique	(1)	kW	7,87	7,87	10,0	10,0	11,2	11,2	13,4	13,4
Débit d'eau	(1)	l/h	695	695	884	884	988	988	1184	1184
Perte de charge	(1)	kPa	18	18	13	13	10	10	9	9
Puissance frigorifique totale	(2)	kW	2,30	2,30	2,82	2,82	3,15	3,15	3,61	3,61
Puissance frigorifique sensible	(2)	kW	1,81	1,81	2,23	2,23	2,45	2,45	3,08	3,08
Débit d'eau	(2)	I/h	395	395	482	482	541	541	620	620
Perte de charge	(2)	kPa	9	9	6	6	5	5	4	4
Niveau de puissance acoustique	(3)	dB(A)	53	54	53	54	54	55	58	59
Puissance absorbée	(4)	W	33	34	33	34	33	34	95	81
AREO C			23	23	24	24	32	33	34	42
Alimentation électrique		V-ph-Hz	230 - 1 - 50							
nb de pôles			4	6	4	6	4	4	4	4
Déhit d'air may refroidissement		m³/h	1411	1411	1373	1373	2485	2292	2237	3738

AREO C			23	23	24	24	32	33	34	42
Alimentation électrique		V-ph-Hz				230 -	1 - 50			
nb de pôles			4	6	4	6	4	4	4	4
Débit d'air max refroidissement		m³/h	1411	1411	1373	1373	2485	2292	2237	3738
Puissance calorifique	(1)	kW	17,3	17,3	19,1	19,1	22,9	25,4	29,1	35,1
Débit d'eau	(1)	l/h	1527	1527	1686	1686	2024	2242	2569	3098
Perte de charge	(1)	kPa	15	15	5	5	5	5	8	7
Puissance frigorifique totale	(2)	kW	5,00	5,00	5,23	5,23	5,72	7,22	9,65	9,72
Puissance frigorifique sensible	(2)	kW	3,91	3,91	4,20	4,20	5,23	6,12	7,50	7,85
Débit d'eau	(2)	l/h	860	860	898	898	982	1239	1656	1668
Perte de charge	(2)	kPa	7	7	2	2	1	1	4	2
Niveau de puissance acoustique	(3)	dB(A)	63	60	59	60	63	63	64	62
Puissance absorbée	(4)	W	95	81	95	81	153	153	153	400

AREO C			43	44	53	54	63	64
Alimentation électrique		V-ph-Hz			230 -	1 - 50		
nb de pôles			4	4	6	6	6	6
Débit d'air max refroidissement		m³/h	3467	3359	3001	2832	4232	4125
Puissance calorifique	(1)	kW	39,2	43,9	38,6	42,4	48,0	64,7
Débit d'eau	(1)	l/h	3460	3875	3406	3743	4240	5715
Perte de charge	(1)	kPa	7	3	11	11	8	8
Puissance frigorifique totale	(2)	kW	12,4	13,1	10,5	14,8	18,9	22,4
Puissance frigorifique sensible	(2)	kW	8,69	10,3	8,50	11,4	14,3	16,8
Débit d'eau	(2)	l/h	2123	2255	1800	2022	3237	3853
Perte de charge	(2)	kPa	3	1	5	6	4	4
Niveau de puissance acoustique	(3)	dB(A)	61	62	53	55	56	58
Puissance absorbée	(4)	W	400	400	272	272	335	335

⁽¹⁾ Température eau 85°C / 75°C, température air 15°C - vitesse maximum admise pour le froid
(2) Température eau 7°C / 12°C, température air 27°C bulbe sec / 19°C bulbe humide (47% humidité relative) - vitesse maximum admise pour le froid
(3) Puissance acoustique mesurée selon ISO 3741 - vitesse maximale admise pour le froid
(4) Mesurée à la vitesse maximale admise dans le froid

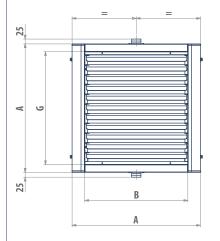
Les données figurant dans cette documentation font référence à la vitesse maximum admise dans la modalité rafraîchissement, pour empêcher l'entraînement des gouttelettes de condensation produites dans l'échangeur.

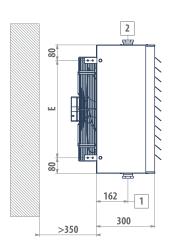
Aérothermes AREO

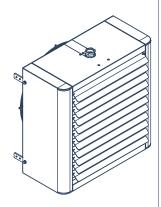
DONNÉES TECHNIQUES NOMINALES AREO H - CHAUFFAGE

AREO H			13	13	23	23	33	33	33	43
Alimentation électrique		V-ph-Hz	230 - 1 - 50	230 - 1 - 50	230 - 1 - 50	230 - 1 - 50	230 - 1 - 50	400 - 3 - 500	400 - 3 - 500	230 - 1 - 50
nb de pôles			4	6	4	6	4	4	6	4
Raccordement moteur			Mono	Mono	Mono	Mono	Mono	Delta	Star	Mono
Débit d'air nominal		m³/h	1083	855	2499	1758	3943	3800	2755	6080
Puissance calorifique	(1)	kW	10,2	8,89	21,3	17,3	33,2	32,5	26,9	50,4
Débit d'eau	(1)	l/h	905	785	1882	1529	2935	2871	2376	4454
Perte de charge	(1)	kPa	13	10	19	13	12	11	8	25
Niveau de puissance acoustique	(2)	dB(A)	64	59	76	65	74	76	69	75
Puissance absorbée		W	69	50	210	114	340	330	180	635

⁽¹⁾ Température eau 85°C / 75°C, température air 15°C - 100% de la vitesse maximum (2) Puissance acoustique mesurée selon ISO 3741 - 100% de la vitesse maximum

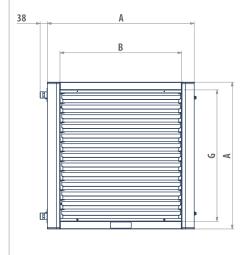

AREO H			43	43	53	53	53	63	63	63
Alimentation électrique		V-ph-Hz	400 - 3 - 500	400 - 3 - 500	230 - 1 - 50	400 - 3 - 500	400 - 3 - 500	230 - 1 - 50	400 - 3 - 500	400 - 3 - 500
nb de pôles			4	6	6	4	6	6	6	8
Raccordement moteur			Delta	Star	Mono	Delta	Star	Mono	Delta	Star
Débit d'air nominal		m³/h	6223	5035	5890	7505	6128	8100	7885	6175
Puissance calorifique	(1)	kW	51,1	45,2	56,2	64,8	57,5	99,7	80,5	69,2
Débit d'eau	(1)	l/h	4512	3991	4960	5720	5079	8802	7106	6112
Perte de charge	(1)	kPa	25	20	16	20	16	29	19	15
Niveau de puissance acoustique	(2)	dB(A)	77	70	69	76	72	70	71	66
Puissance absorbée		W	690	465	375	732	775	560	575	380

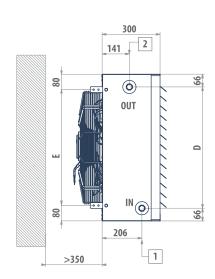

⁽¹⁾ Température eau 85°C / 75°C, température air 15°C - 100% de la vitesse maximum (2) Puissance acoustique mesurée selon ISO 3741 - 100% de la vitesse maximum

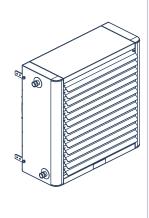


PLANS DIMENSIONNELS

AREO H


1	Raccord d'entrée d'eau, femme gaz
2	Raccord de sortie d'eau, femme gaz

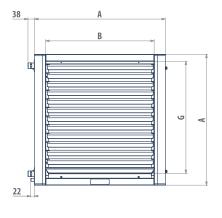

AREO H	A	В	E	G	1	2	<u> </u>
ANEU II	mm	mm	mm	mm			kg
13	460	330	300	380	1 1/4	1 1/4	20
23	560	430	400	480	1 1/4	1 1/4	26
33	660	530	500	580	1 1/4	1 1/4	35
43	760	630	600	680	1 1/4	1 1/4	41
53	860	730	700	780	1 1/4	1 1/4	52
63	960	830	800	880	1 1/4	1 1/4	61

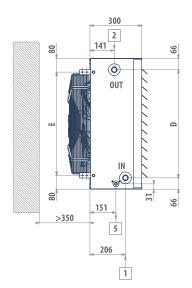


PLANS DIMENSIONNELS

AREO P - AREO L

1	Raccord d'entrée d'eau, mâle gaz
2	Raccord de sortie d'eau, mâle gaz


AREO P	A	В	D	E	G	1	2	Å
ANEU P	mm	mm	mm	mm	mm			kg
12	460	330	328	300	380	3/4	3/4	20-20-21
13 - 14	460	330	329	300	380	3/4	3/4	20-20-21
22 - 23 - 24	560	430	428	400	480	3/4	3/4	26-26-27
32 - 33 - 34	660	530	528	500	580	1	1	34-35-37
42 - 43 - 44	760	630	628	600	680	1	1	40-41-44
53 - 54	860	730	728	700	780	1 1/4	1 1/4	52-55
63 - 64	960	830	828	800	880	1 1/4	1 1/4	61-64


AREO L	A	В	D	E	G	1	2	À
	mm	mm	mm	mm	mm			kg
32 - 33	660	530	528	500	580	1	1	34-35
42 - 43	760	630	628	600	680	1	1	40-41
53	860	730	728	700	780	1 1/4	1 1/4	52
63	960	830	828	800	880	1 1/4	1 1/4	61

PLANS DIMENSIONNELS

AREO C

1	Raccord d'entrée d'eau, mâle gaz
2	Raccord de sortie d'eau, mâle gaz
5	Purge des condensats ø 17 mm

AREO C	A	В	D	E	G	1	2	Å
ANEUC	mm	mm	mm	mm	mm			kg
12 - 13 - 14	460	330	328	300	380	3/4	3/4	20-20-21
22 - 23 - 24	560	430	428	400	480	3/4	3/4	26-26-27
32 - 33 - 34	660	530	528	500	580	1	1	34-35-37
42 - 43 - 44	760	630	628	600	680	1	1	40-41-44
53 - 54	860	730	728	700	780	1 1/4	1 1/4	52-55
63 - 64	960	830	828	800	880	1 1/4	1 1/4	61-64

Aérothermes pour climatisation avec moteur EC

AREO i 11 - 118 kW

Fiabilité et rendement énergétique au sommet de la catégorie

Le nouveau AREO i associe la fiabilité et la robustesse de la version ON/OFF, et offre l'innovation de la technologie Inverter. La série AREO i est dotée d'inverter brushless (EC) intégré au moteur qui assure un réglage soigné de la vitesse de rotation et une adaptation optimale à la charge thermique instantanée. La technologie innovante inverter assure une efficacité aéraulique exceptionnelle et une réduction des consommations électriques saisonnières jusqu'à 50%, par rapport à la version traditionnelle dotée de moteur AC.

Les lignes arrondies de l'habillage donnent à l'appareil une esthétique attrayante.

La gamme AREO i comprend 22 modèles pour installation murale. AREO i est prévu pour les fonctions de chauffage et de rafraîchissement grâce à un système innovant de récupération des condensats et à l'isolation supplémentaire à l'intérieur de

La gamme comprend 6 grandeurs, équipées de batteries à 4 rangs pour permettre un fonctionnement correct avec eau chaude produite par une pompe à chaleur.

Installation à 2 tubes

Installation

Refroidissement

PLUS

- » Émissions sonores limitées
- » Ample plage de températures (température d'air aspiré jusqu'à 65 °C)
- » Ventilateur axial avec pales à profil aérodynamique (technologie HyBlade®)
- » Moteur électrique de Classe F homologué pour fonctionnement continu
- » Ventilateur et moteur intégrés, gage d'une fiabilité augmentée

ACCE	SSOIRES		
	de commande électroniques à microprocesseur avec moniteur	DFP	Gabarit pour fixation murale
DIST	Entretoise contrôleur MY COMFORT pour installation murale	Filet de prote	ection pour gymnases (contre les ballons)
MCLE	Commande à microprocesseur avec moniteur MY COMFORT LARGE	R	Filet de protection pour gymnases
MCSWE	Sonde eau pour commandes MY COMFORT et EVO	Diffuseurs	
Interface d	e puissance et commandes pour volets	DO	Diffuseur à double rang d'ailettes orientables
CSD	Commande à installation murale encastrée pour ouverture/fermeture proportionnelle du volet	Prise d'air fra	ais
	motorisé SM	PAE	Prise d'air frais
Accessoires		PAEM	Volet mélangeur manuel
VA	Bac auxiliaire de récolte de la buée	PAEMM	Volet mélangeur motorisé, alimentation 24 V, avec rappel à ressort
Gabarits de	fixation	rille de prote	ection contre la pluie pour prise d'air frais
DFC	Gabarit pour fixation sur colonne	GR	Grille d'aspiration d'air avec cadre
DF0	Gabarit orientable pour fixation murale/sur colonne		

COMPOSANTS PRINCIPAUX

Groupe moto-ventilateur

L'électro-ventilateur et le moteur EC sont un groupe intégré et optimisé visant à maximiser le rendement aéraulique. Il s'agit d'une solution qui garantit la conformité à ERP pour les versions avec alimentation monophasée également.

Moteur électrique

Moteur tropicalisé directement accouplé au rotor externe, d'origine, ayant les caractéristiques suivantes:

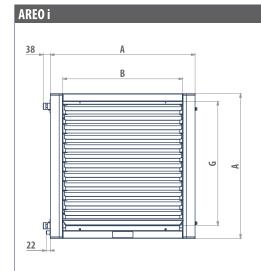
- doté de protection thermique interne
- enroulements de classe F
- · degré de protection IP54
- roulements à billes sans entretien

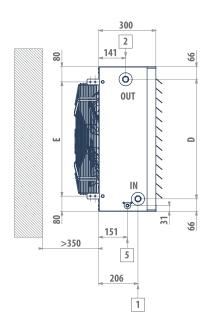
Ventilateur axial

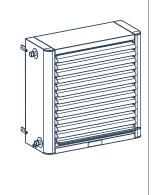
Avec pales à profil aérodynamique optimisé (technologie HyBlade®), à équilibrage statique, emboîtées dans un collier spécialement conçu qui optimise les performances aérauliques et réduit le bruit.

Commande à microprocesseur (accessoire)

Le contrôleur à microprocesseur avancé régule la vitesse de ventilation du moteur brushless entre 0 et 100%, de telle sorte que dans toutes les conditions de charge partielle, l'unité fonctionne à vitesse réduite, avec des émissions sonores et des consommations électriques très inférieures.


Habillage


Habillage en tôle d'acier laquée, complet de protections angulaires en ABS et d'ailettes de diffusion en aluminium orientables manuellement, sur le soufflage de l'air pour une répartition optimale de l'air dans le local.


Batterie d'échange thermique

En tube de cuivre et ailettes en aluminium à haute conductivité thermique assurant un meilleur échange par rapport aux batteries traditionnelles avec tube en fer.

PLANS DIMENSIONNELS

1	Raccord d'entrée d'eau, mâle gaz
2	Raccord de sortie d'eau, mâle gaz
3	Purge des condensats ø 17 mm

AREO i	A	В	D	E	G	1	2	<u> </u>
ANEUT	mm	mm	mm	mm	mm			kg
12MEC - 13MEC - 14MEC	460	330	328	300	380	3/4	3/4	19-19-20
22MEC - 23MEC - 24MEC	560	430	428	400	480	3/4	3/4	25-26-27
32MEC - 33MEC - 34MEC - 33MDF - 34MDF	660	530	528	500	580	1	1	33-34-36
42MEC - 43MEC - 44MEC - 43MDF - 43TDC	760	630	628	600	680	1	1	39-41-42
52MEC - 53MEC - 54MEC	860	730	728	700	780	1 1/4	1 1/4	50-53-54
62MEC - 63MEC - 64MEC - 63MDF - 63TDF - 63MDC - 63TDC	960	830	828	800	880	1 1/4	1 1/4	58-61-63

Aérothermes AREO i

DONNÉES TECHNIQUES NOMINALES - MODALITÉ CHAUFFAGE

AREO i			12MEC	13MEC	14MEC	22MEC	23MEC	24MEC	32MEC	33MEC	34MEC
Alimentation électrique		V-ph-Hz					230-1-50				
Débit d'air max chauffage		m³/h	1427	1240	1152	2700	2350	2300	3100	2850	2770
Puissance calorifique	(1)	kW	6,99	8,83	10,3	12,5	16,1	18,1	19,1	21,2	24,1
Débit d'eau	(1)	l/h	612	773	901	1094	1411	1585	1674	1852	2107
Perte de charge	(1)	kPa	17	13	10	11	14	9	7	6	10
Niveau de puissance acoustique	(2)	dB(A)	65	66	67	71	69	69	64	64	64
Puissance absorbée	(3)	W	67	66	68	139	132	146	105	108	108

- (1) Température eau 65°C / 55°C, température air 15°C 100% de la vitesse maximum
 (2) Puissance acoustique mesurée selon ISO 3741 100% de la vitesse maximum
 (3) Mesurée à la vitesse maximale

AREO i			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC	52MEC	52TEC	53MEC	53TEC
Alimentation électrique		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Débit d'air max chauffage		m³/h	5800	7248	5400	7800	5350	6663	8800	9500	8450	9150
Puissance calorifique	(1)	kW	32,4	36,8	36,4	41,5	41,2	47,2	38,9	40,6	49,3	51,6
Débit d'eau	(1)	l/h	2839	3220	3184	3633	3611	4129	3405	3550	4315	4515
Perte de charge	(1)	kPa	16	20	16	20	11	13	12	13	14	15
Niveau de puissance acoustique	(2)	dB(A)	71	78	72	78	72	79	80	80	82	80
Puissance absorbée	(3)	W	318	563	334	566	344	576	715	859	766	876

- Température eau 65°C / 55°C, température air 15°C 100% de la vitesse maximum
 Puissance acoustique mesurée selon ISO 3741 100% de la vitesse maximum
 Mesurée à la vitesse maximale

AREO i			54MEC	54TEC	62MEC	62TEC	63MEC	63TEC	64MEC	64TEC
Alimentation électrique		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Débit d'air max chauffage		m³/h	8100	8850	7200	11200	6700	10500	6200	9750
Puissance calorifique	(1)	kW	54,6	57,6	51,5	66,8	59,8	79,4	59,9	80,3
Débit d'eau	(1)	I/h	4781	5040	4506	5852	5234	6951	5241	7035
Perte de charge	(1)	kPa	15	17	9	14	13	21	12	21
Niveau de puissance acoustique	(2)	dB(A)	82	81	69	78	70	79	71	79
Puissance absorbée	(3)	W	776	875	248	845	259	864	266	875

- (1) Température eau 65°C / 55°C, température air 15°C 100% de la vitesse maximum
- (2) Puissance acoustique mesurée selon ISO 3741 100% de la vitesse maximum (3) Mesurée à la vitesse maximale

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63TDC	63TDF
Alimentation électrique		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
Débit d'air max chauffage		m³/h	3400	3255	5575	7606	9006	7449	10734	8282
Puissance calorifique	(1)	kW	19,0	22,3	31,0	36,4	59,9	56,2	68,6	62,2
Débit d'eau	(1)	l/h	1664	1954	2719	3183	5249	4921	6005	5448
Perte de charge	(1)	kPa	5	9	12	16	13	11	16	13
Niveau de puissance acoustique	(2)	dB(A)	80	79	76	80	78	75	87	83
Puissance absorbée	(3)	W	189	193	388	918	693	414	1001	655

- Température eau 65°C / 55°C, température air 15°C 100% de la vitesse maximum
 Puissance acoustique mesurée selon ISO 3741 100% de la vitesse maximum
 Mesurée à la vitesse maximale

DONNÉES TECHNIQUES NOMINALES- MODALITÉ RAFRAÎCHISSEMENT

AREO i			12MEC	13MEC	14MEC	22MEC	23MEC	24MEC	32MEC	33MEC	34MEC
Alimentation électrique		V-ph-Hz					230-1-50				
Débit d'air max refroidissement		m³/h	865	936	899	1538	1616	1570	2409	2362	2412
Puissance calorifique	(1)	kW	5,26	7,43	8,73	9,10	12,8	14,2	16,5	18,8	22,0
Débit d'eau	(1)	I/h	460	651	764	797	1122	1243	1443	1649	1926
Perte de charge	(1)	kPa	10	9	7	6	9	6	5	7	9
Puissance frigorifique totale	(2)	kW	2,90	4,11	4,83	4,75	7,15	7,71	8,00	9,75	12,7
Puissance frigorifique sensible	(2)	kW	1,79	2,53	2,97	3,06	4,40	4,79	5,36	6,25	7,65
Débit d'eau	(2)	I/h	505	714	834	819	1237	1333	1381	1684	1381
Perte de charge	(2)	kPa	16	14	11	8	14	8	6	7	6
Niveau de puissance acoustique	(3)	dB(A)	47	54	55	57	59	64	58	59	60
Puissance absorbée	(4)	W	36	44	45	25	46	63	47	57	68

AREO i			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC	52MEC	52TEC	53MEC	53TEC
Alimentation électrique		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Débit d'air max refroidissement		m³/h	3346	3399	3492	3278	3421	3282	4644	4536	4492	4365
Puissance calorifique	(1)	kW	23,5	23,7	27,9	26,8	31,0	30,2	27,2	26,8	33,9	33,3
Débit d'eau	(1)	I/h	2058	2077	2440	2346	2716	2644	2382	2351	2965	2912
Perte de charge	(1)	kPa	9	9	10	9	6	6	7	6	7	7
Puissance frigorifique totale	(2)	kW	12,7	12,9	15,9	15,3	17,2	16,8	14,4	14,2	19,0	18,6
Puissance frigorifique sensible	(2)	kW	7,99	8,09	9,65	9,31	10,6	10,3	9,20	9,00	11,6	11,4
Débit d'eau	(2)	I/h	2200	2221	2748	2637	2980	2892	2487	2452	3268	3206
Perte de charge	(2)	kPa	13	14	16	15	10	9	9	9	11	11
Niveau de puissance acoustique	(3)	dB(A)	61	64	63	64	63	63	64	63	64	64
Puissance absorbée	(4)	W	91	69	118	73	120	76	97	92	105	96

AREO i			54MEC	54TEC	62MEC	62TEC	63MEC	63TEC	64MEC	64TEC
Alimentation électrique		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Débit d'air max refroidissement		m³/h	4706	4653	6011	5888	6005	5605	5861	5779
Puissance calorifique	(1)	kW	39,1	38,8	46,1	45,5	55,6	53,1	57,6	57,1
Débit d'eau	(1)	l/h	3427	3401	4036	3982	4870	4651	5047	4999
Perte de charge	(1)	kPa	9	8	8	7	11	10	12	11
Puissance frigorifique totale	(2)	kW	22,8	22,6	23,5	23,2	31,7	30,2	34,1	33,8
Puissance frigorifique sensible	(2)	kW	13,7	13,6	15,3	15,1	19,3	18,4	20,3	20,2
Débit d'eau	(2)	l/h	3936	3910	4064	4005	5465	5216	5900	5841
Perte de charge	(2)	kPa	14	14	10	10	17	16	20	19
Niveau de puissance acoustique	(3)	dB(A)	66	66	64	62	67	62	70	65
Puissance absorbée	(4)	W	141	134	157	150	195	152	232	205

- (1) Température eau 65°C / 55°C, température air 15°C vitesse maximum admise pour le froid
 (2) Température eau 7°C / 12°C, température air 28°C bulbe sec / 19°C bulbe humide (53% humidité relative) vitesse maximum admise pour le froid
 (3) Puissance acoustique mesurée selon ISO 3741 vitesse maximale admise pour le froid
 (4) Mesurée à la vitesse maximale admise dans le froid

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63TDC	63TDF
Alimentation électrique		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
Débit d'air max refroidissement		m³/h	2601	2414	3848	4164	5746	4107	6173	4471
Puissance calorifique	(1)	kW	16,3	18,9	25,0	25,8	45,6	38,5	49,1	42,0
Débit d'eau	(1)	l/h	1426	1653	2192	2261	3992	3367	4295	3675
Perte de charge	(1)	kPa	4	7	8	9	8	6	9	7
Puissance frigorifique totale	(2)	kW	5,83	9,65	12,2	13,4	21,1	19,4	25,9	23,9
Puissance frigorifique sensible	(2)	kW	4,63	6,66	8,32	9,14	13,7	12,7	17,1	15,7
Débit d'eau	(2)	l/h	1016	1672	2120	2332	3661	3367	4509	4124
Perte de charge	(2)	kPa	3	9	8	9	9	6	9	11
Niveau de puissance acoustique	(3)	dB(A)	73	72	68	70	71	68	78	72
Puissance absorbée	(4)	W	86	92	139	177	219	103	363	131

- (1) Température eau 65°C / 55°C, température air 15°C vitesse maximum admise pour le froid
 (2) Température eau 7°C / 12°C, température air 28°C bulbe sec / 19°C bulbe humide (53% humidité relative) vitesse maximum admise pour le froid
 (3) Puissance acoustique mesurée selon ISO 3741 vitesse maximale admise pour le froid
 (4) Mesurée à la vitesse maximale admise dans le froid

Destratificateurs d'air

DST 1700 - 9100 m³/h

Ventilateur axia

La solution pour éliminer la stratification de l'air chaud dans les espaces à usage industriel

Dans les espaces industriels caractérisés par des hauteurs d'installation élevées, réchauffés au moyen de systèmes à air chaud, il faut faire face au problème de maintenir, au niveau du sol, une température confortable pour les personnes, alors que dans la partie haute du local une quantité d'air à haute température reste inutilisée. La chaleur reste ainsi confinée et inutilisée à proximité du toit et elle est évacuée à l'extérieur, ce qui a pour effet d'augmenter les déperditions thermiques ambiantes.

Les destratificateurs de la série DST permettent d'éliminer cet inconvénient en générant un flux d'air vertical descendant qui permet de ramener l'écart de température entre le sol et le plafond à environ 3°C maximum. En été, les destratificateurs DST peuvent être utilisés pour assurer une ventilation efficace. Ils sont dotés d'un groupe de motoventilation constitué de ventilateurs axiaux et de moteurs asynchrones, monophasés ou triphasés en fonction des dimensions, à rotor externe, qui assurent la compatibilité avec les plus récentes normes en matière de réduction des consommations d'énergie.

Le thermostat d'activation, la protection magnétothermique du moteur à réarmement manuel, de série sur la machine, ainsi que des brides de fixation très pratiques et des ailettes de diffusion orientables qui permettent de diriger le flux d'air, facilitent énormément l'installation puisqu'aucun autre accessoire n'est nécessaire.

PLUS

- » Simplicité d'installation
- » Télédisjoncteur et thermostat d'activation fournis avec l'appareil
- » Ailettes de diffusion orientables
- » Ventilateurs axiaux HyBlade®

COMPOSANTS PRINCIPAUX

Groupe moto-ventilateur

Le ventilateur axial est doté de pales de type HyBlade® à profil alaire; ces pales, réalisées en aluminium et revêtues de matériau plastique, ont les caractéristiques propres aux deux matériaux : robustesse et fonctionnement silencieux, conjointement à un moteur électrique asynchrone à rotor externe gage de hautes performances.

Thermostat d'activation

Installé sur l'appareil, il permet de régler la température d'intervention du destratificateur.

Structure

Structure en tôle d'acier laquée complète de protections angulaires en ABS et ailettes orientables en aluminium.

DONNÉES TECHNIQUES NOMINALES

DST			14	26	36	46	56	66
Vitesse ventilateur		rpm	1400	900	900	900	900	750
Débit d'air nominal		m³/h	1710	3083	4199	7220	8142	9139
Hauteur minimum d'installation		m	3,00	3,50	4,50	5,00	7,00	6,50
Hauteur maximum d'installation		m	5,00	5,50	7,00	7,50	9,00	10,0
Alimentation électrique		V-ph-Hz	230 - 1 - 50	230 - 1 - 50	400 - 3 -50	400 - 3 - 50	400 - 3 - 50	400 - 3 - 50
Puissance absorbée		W	62	110	160	390	418	320
Courant absorbé		Α	0,30	0,50	0,30	0,70	0,70	0,60
Niveau de puissance acoustique	(1)	dB(A)	65	68	72	76	78	70

⁽¹⁾ Puissance acoustique mesurée selon ISO 3741

PLANS DIMENSIONNELS

CO - CONTRÔLEURS ET LOGICIEL POUR UNITÉS HYDRONIQUES

Introduction p.146 **EVO-2-TOUCH** p.150 **EVO** p.152 **EVO DISP** p.153 **GALLETTI APP** p.154 **MYCOMFORT** p.156 TED p.158 **EVO LINK** p.159

Quand le contrôle de la climatisation devient simple et immédiat: le confort ambiant effectif peut être obtenu de manière à la fois simple, immédiate et intuitive grâce aux panneaux de commande Galletti, depuis le modèle électromécanique le plus simple pour le contrôle de la vitesse de ventilation, aux commandes à microprocesseur pour le contrôle hygrothermique complet.

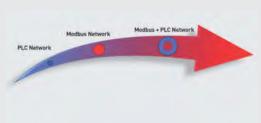
Le contrôle des vannes à 2 et à 3 voies, de type ON/OFF ou modulantes, a lieu sur la base des paramètres de température et d'humidité mesurés.

Commandes intégrables dans tout type de système

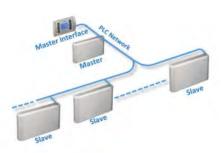
La large gamme de contrôles Galletti offre de multiples possibilités d'installation.

Une gamme de 7 contrôleurs conçus pour être installés sur l'appareil offre plusieurs solutions simples et élégantes. Des kits d'installation spécialement conçus permettent le montage sur les unités hydroniques ESTRO, FLAT. De la sorte l'utilisateur a le contrôle de la température à portée de main et en même temps la possibilité d'intégration à n'importe quel type de situation.

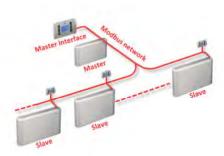
La gamme de systèmes de contrôle pour installation murale est encore plus ample: 9 contrôleurs pouvant contrôler, à partir d'un seul point, plusieurs unités de la même pièce.


Est également disponible une télécommande spécifique à infrarouges pour les unités à installation murale haute et les ventilo-convecteurs à cassette.

Contrôle à chaque niveau pour n'importe quel besoin

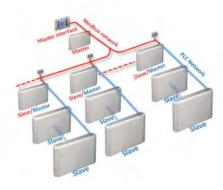

La solution proposée par Galletti répond à toutes les exigences d'économie et de fonctionnalité. Grâce aux 9 systèmes de commande électromécaniques et aux 5 contrôleurs à microprocesseur Galletti se situe au sommet du marché en termes d'ampleur de l'offre. Les dispositifs figurant sur le catalogue sont en mesure d'interagir avec les unités multi-vitesses ou à ventilation modulée grâce au contrôle des différentes dynamiques de thermostatisation et de communication sérielle, le cas échéant.

Communication en série: une possibilité pour chaque besoin


La gamme Galletti de commandes à microprocesseurs équipées de port série RS485 assure le contrôle de chaque unité interne, offrant de la sorte la réponse à toute exigence de réglage du système. La circulation des informations sur réseau bus au moyen du protocole de communication Modbus, standard de catégorie, est complétée et associée à la communication CPL, pour créer les possibilités d'interaction simplifiées et personnalisées entre utilisateur et installation.

Réseau de communication CPL

» Solution facile à installer


- » Interface unique pour contrôler plusieurs unités
- » Réduction du câblage électrique
- » Les unités esclaves répliquent exactement l'unité maître
- » Solution adaptée aux unités soumises à la même charge thermique
- » Disponible avec commande EVO

Réseau Modbus

» Solution adaptée aux unités soumises à différentes charges thermiques

- » Chaque terminal est équipé de ses propres capteurs de réglage
- » L'unité maître impose les paramètres principaux
- » Plusieurs degrés de liberté peuvent être définis pour les unités esclaves
- » Disponible avec commande MYCOMFORT ou EVO

Réseau mixte

» Solution idéale pour les hôtels ou les environnements avec de nombreuses zones climatisées

- » Locaux clé contrôlés par Modbus avec copie des instructions au moyen de CPL
- » Le maître peut consister en une simple commande ou un système de supervision
- » Surveillance avec une autonomie décroissante
- » Exploitation des avantages du réseau Modbus et du réseau CPL
- » Disponible avec commande EVO

Contrôleurs et Logiciel pour Unités hydroniques

Panneaux synoptiques pour unités hydroniques

Le tableau suivant peut être utilisé pour identifier rapidement le panneau de commande qui mieux répond aux fonctions demandées.

COMMANDES ÉLECTROMÉCANIQUES CONTRÔLEURS À MICROPROCESSEUR TIB 00 00 0 Sur l'appareil Installation Murale 2 tubes Installation 4 tubes Thermostat air 3 vitesses 4 vitesses Réglage Vitesses automatiques Vitesse variable Déshumidification/lecture UR Sonde eau Sondes extérieures Sonde air éloignée Sonde UR éloignée Thermostat d'activation eau Contrôle vanne ON/OFF Gestion dispositifs externes Contrôle vanne modulante Contrôle résistance électrique Sorties numériques Été/Hiver local Été/Hiver eau Fonctions accessoires Été/Hiver air (4 tubes) Economy Entrées numériques Communication Modbus

* options non compatibles ensemble

Panneaux synoptiques pour unités hydroniques

Le tableau suivant peut être utilisé pour identifier rapidement le panneau de commande qui mieux répond aux fonctions demandées.

CONTRÔLEURS À MICROPROCESSEUR AVEC MONITEUR

MYCOMFORT	MYCOMFORT	MYCOMFORT	EV02T0UCH	EV0	LED503		
BASE	MEDIUM	LARGE	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		7149: ••••		
~	~	~	✓ **	✓ **	~	Sur l'appareil	Instal
~	•	~	~	~	~	Murale	Installation
~	•	~	~	•	~	2 tubes	Installation
~	~	* *	~	~	✓ *	4 tubes	lation
~	•	~	•	•	~	Thermostat air	
~	•	~	~	•	~	3 vitesses	
~	•	~	~	~	✓ *	4 vitesses	Réglage
~	•	~	~	~	~	Vitesses automatiques	age
_	_	~ *	•	~	_	Vitesse variable	
_	~	~	~	~	_	Déshumidification/lecture UR	
~	~	~	*	*	~	Sonde eau	
~	~	~	*	~	~	Sonde air éloignée	Sondes extérieures
-	~	~	*	~	_	Sonde UR éloignée	xtérieure
_	_	_	_	_	_	Thermostat d'activation eau	0,
~	~	*	*	~	~	Contrôle vanne ON/OFF	Gest
_	_	* *	~	~	_	Contrôle vanne modulante	Gestion dispositifs externes
~	~	~	~	~	✓ *	Contrôle résistance électrique	sitifs exte
_	_	~	~	~	_	Sorties numériques	rnes
~	~	*	~	~	~	Été/Hiver local	
~	~	~	~	~	~	Été/Hiver eau	
~	~	~	~	~	~	Été/Hiver air (4 tubes)	Foncti
~	~	~	~	~	_	Economy	Fonctions accessoires
~	~	~	~	~	~	Entrées numériques	soires
_	~	~	~	~	_	Communication Modbus	

ART-U

Gestion JONIX

Contrôleurs et Logiciel pour Unités hydroniques EVO

Interface utilisateur touch screen

à combiner avec EVOBOARD

EVO-2-TOUCH

PLUS

- » Écran tactile capacitif de 2,8"
- » Sonde temperature et humidité intégrée
- » Alimentation à basse tension fournie par l'élément de puissance
- » Installation murale ou intégrée ART-U
- » Prévue pour les principaux boîtiers de branchement électrique
- » Utilisation facilitée
- » Cadre en feuille d'aluminium et polyéthylène à chromages distincts

Caractéristiques

Interface intelligente

Les différentes pages sont conçues de telle sorte que la communication homme - machine soit intuitive. Chaque page contient quelques informations essentielles qui permettent de consulter les principaux paramètres de fonctionnement de l'unité et qui permettent également de procéder à la configuration initiale de la commande en fonction des besoins de l'installation.

Smart touch

La technologie tactile représente un atout supplémentaire de simplification pour l'utilisateur. Grâce aux fonctions « tap » et « swipe », l'utilisation de la commande est semblable à celle d'un smartphone.

INSTALLATION

Modalités d'installation

L'interface tactile peut être installée sur les modèles de la série ART-U, associée à la carte de puissance EVO BOARD, pour intégrer toutes les fonctions avancées de EVO à un produit fortement axé sur le design. Les différentes combinaisons chromatiques du cadre, alliées aux différentes versions du panneau de couverture de la série ART-U offrent une grande liberté de personnalisation. Si l'installation doit s'effectuer avec d'autres séries de ventilo-convecteurs, la prédisposition pour les principaux standard de boîtiers électriques en facilite l'installation murale. Dans ce cas, les ouvertures situées aux deux extrémités du boîtier permettent de garantir la bonne lecture de la température ambiante par le capteur intégré à l'électronique de la commande

OFFRE CHROMATIQUE

Cadre personnalisable

Le cadre externe de l'interface est disponible dans quatre chromages différents et est réalisé dans un matériau à double feuille d'aluminium et àme en polyéthylène. Les couleurs disponibles sont le blanc, le noir, le gris et le rouge; elles permettent l'accouplement idéal aux versions de la série ART-U. En cas d'installation murale, les différentes solutions offrent un bon éventail de choix pour trouver le meilleur coordonné avec le style de la structure et de l'espace à climatiser.

FONCTIONS

"Economy"

Un besoin propre aux chambres d'hôtel et autres espaces non occupés de manière constante est celui de la gestion de la climatisation en mode atténué quand l'espace n'est pas occupé. Cette solution, souvent obtenue par le biais de capteurs de présence ou de lecteurs magnétiques, garantit d'importantes économies d'énergie mais suppose la possibilité de forcer le ventilo-convecteur en fonctionnement « Economy » de manière à la fois simple et efficace. EVO répond à ces exigences puisqu'il dispose de 3 entrées numériques préconfigurées, assurant les fonctions ON/OFF, « Economy » et commutation été / hiver à distance.

Fonction de blocage

Sur toutes les interfaces qui peuvent être associées à la carte de puissance EVO BOARD, il est possible de forcer le blocage des fonctions de la commande pour éviter la modification indésirable des paramètres de fonctionnement et de configuration du venti-lo-convecteur. Selon l'interface choisie, cette fonction est activée, ou bien par une combinaison de touches ou bien en saisissant un mot de passe.

Sortie numérique configurable

EVO II est doté d'une sortie numérique entièrement configurable qui permet à la commande de fournir d'importantes informations aux dispositifs externes, par exemple la demande de rafraîchissement et/ou de chauffage, la modalité de fonctionnement et l'éventuelle présence d'une alarme.

Activation déshumidificateur/humidificateur extérieur

Le système de commande active la fonction de contrôle de l'humidité relative sur la base du set point programmable. En branchant la sonde prévue à cet effet au système de commande, il est non seulement possible de modifier les dynamiques de réglage du ventilo-convecteur mais également de gérer les appels aux dispositifs externes tels que humidificateurs et déshumidificateurs.

Contrôleurs et Logiciel pour Unités hydroniques EVO

Contrôleur électronique à microprocesseur

EVO

Communication BUS

Gestion de

dispositifs

Gestion de

Dispositif touch screen

Régulateur multifonction facile et simple à utiliser

EVO bénéficie du top Galletti en termes de réglage des unités hydroniques.

Le logiciel d' EVO, entièrement conçu par le service technique Galletti, est constitué de deux éléments différents dans deux microprocesseurs. Le premier est situé dans la carte de puissance, et assure le monitorage des paramètres et des logiques de réglage. Le deuxième élément du logiciel chargé dans le microprocesseur de l'interface utilisateur assure une véritable communication grâce à laquelle l'installateur et l'utilisateur sont guidés dans la configuration et l'utilisation du système de commande.

Dans le cas où le montage de la carte de puissance sur la machine serait nécessaire, option disponible sur la plupart des unités hydroniques Galletti, il suffit, en phase de câblage, de brancher l'interface utilisateur avec un câble bipolaire blindé. Cette exceptionnelle simplicité réduit de moitié les temps et les coûts d'installation.

Le contrôleur EVO est conçu pour commander toutes les unités terminales de la gamme Galletti à moteur asynchrone monophasé à plusieurs vitesses ou accouplé à un moteur EC à modulation de la vitesse. Notamment, la technologie avancée dont il dispose permet de structurer des réseaux de commandes adaptées à tout type d'exigence de contrôle automatique et intelligent des unités terminales.

PLUS

- » Économie importante dans la phase d'installation
- » Interface orientés utilisateur
- » Communication en série RS485 et OC
- » Contrôle avancé de l'humidité
- » Contrôle contemporain de 3 dispositifs modulants
- » Contrôle avancé des plages horaires
- » Moniteur LCD ou touch screen

Une commande multi-interface

EVO sa caractéristique réside dans la possibilité d'associer le module de puissance à différents types d'interface, en adoptant dans chaque cas la solution la mieux adaptée aux différents besoins de l'installation. Dans le cas où l'interface ne serait pas nécessaire, il est possible d'associer directement l'unité au smartphone en utilisant l'application Galletti (après avoir préalablement configuré à cet effet la carte de puissance).

Solution fractionée

La séparation des éléments de puissance et de l'interface graphique est une solution très pratique au niveau de l'installation puisqu'elle offre l'avantage d'alimenter à basse tension l'interface au contact de l'utilisateur et d'utiliser un unique câble pour l'alimentation et pour l'échange d'informations entre les deux dispositifs. De la sorte, la longueur et le coût des câbles à poser, qui ne constitue plus un coût supplémentaire pour l'utilisateur final, sont considérablement réduits.

ACCESSOIRES

anneaux de commande électromécaniques

IPM Carte électronique de puissance pour le branchement UTN 30-30A-40-40A aux panneaux de commande Panneaux de commande électroniques à microprocesseur avec moniteur
MCSUE Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO

Sonde eau pour commandes MY COMFORT et EVO

MCSWE

Interface utilisateur avec moniteur LCD

EVO DISP

à combiner avec EVOBOARD

PLUS

Écran LCD avec sonde de température intégrée Alimentation à basse tension fournie par l'élément de puissance Installation murale ou intégrée ART-U Prévu pour boîtier 503 Modalité de stand-by personnalisable Fonction de blocage clavier

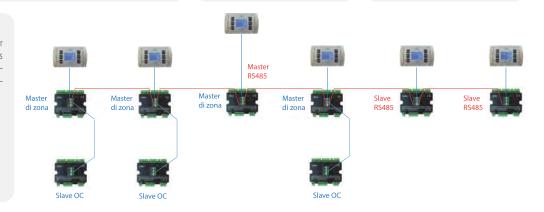
Moniteur LCD

Le panneau de commande est directement branché à la carte de puissance installée sur le ventilo-convecteur qui lui fournit directement l'alimentation électrique à basse tension. L'interface est prévue pour être installée sur boîtiers électriques standard ainsi que pour le logement d'une sonde de lecture de l'humidité relative. L'horloge RTC dont il est doté permet enfin la gestion du ventilo-convecteur à travers le réglage de plages horaires.

Contrôle automatique des plages horaires

L'interface utilisateur permet de programmer l'état ON/OFF du système de commande et le set point souhaité par heure et pour chaque jour de la semaine. Lorsqu'ils sont programmés sur l'unité « master » les paramètres de fonctionnement ci-dessus peuvent être reproduits sur toutes les unités « slave » reliées.

Contrôle de dispositifs modulants


EVO est en mesure d'actionner simultanément deux vannes modulantes et un ventilateur BLDC, permettant de modifier le débit d'air et d'eau dans l'échangeur et de s'adapter à la charge thermique.

Contrôle de l'humidité

EVO permet d'activer automatiquementune procédure de déshumidification en fonction de l'humidité relative ambiante et du set point programmable. Pour cette fonction il faut prévoir une sonde humidité disponible comme accessoire.

Communication en série

Le système prévoit des ports série pour communication RS485 et à fréquences porteuses permettant le développement de réseaux de commande adaptés à toutes les exigences.

Application de contrôle d'unités terminales pour smartphone

GALLETTI APP

PLUS

- » Communication Wi-Fi ou Bluetooth
- » Informations toujours consultables sur Cloud
- » Accès à distance
- » Application compatible avec iOS et Android
- » Utilisable avec tous les terminaux commandés par EVO

FONCTIONS ET CARACTÉRISTIQUES

Navel

Dispositif utilisé pour permettre la communication Wi-Fi ou Bluetooth entre EVO BOARD et le smartphone sur lequel l'application Galletti est présente. Il doit être positionné sur le côté du ventilo-convecteur et il est directement alimenté par EVO.

Communication

Deux options de communication sont utilisables : Wi-Fi ou Bluetooth. Dans le premier cas, les informations sont envoyées sur le cloud et chaque dispositif qui utilise l'application peut consulter ou modifier les réglages de quelque endroit que ce soit à condition qu'une connexion à Internet soit disponible. La deuxième modalité est en revanche de type stand alone et elle permet de transformer le smartphone en une télécommande en mesure de commander le ventilo-convecteur.

Contrôle à distance total

Toutes les fonctions avancées de la commande EVO sont présentes dans l'application qui est par conséquent en mesure d'activer/désactiver les cycles de déshumidification, d'activer la fonction de température minimum et d'activer ou de désactiver les plages horaires d'allumage et d'extinction des dispositifs.

Informations diagnostiques

L'application fournit des informations relatives à l'état du ventilo-convecteur et de certains accessoires qui lui sont raccordés. Il est également possible d'évaluer l'état d'ouverture/fermeture de la vanne, la température de l'eau d'alimentation et l'éventuelle présence d'alarme de lecture de la sonde de température de l'air.

Compatibilité

La possibilité d'associer l'accessoire Navel à la carte de puissance EVOBOARD permet à l'application de contrôler tous les terminaux du catalogue qui ne seraient pas dotés de série de la fonction de contrôle avec télécommande à infrarouges. À l'intérieur de l'application, il est possible de créer une liste personnalisée d'unités terminales de telle sorte que la consultation soit immédiate.

ACCESS	OIRES		
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO	EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO
EVOBOARD	Carte de puissance pour commande EVO	EYNAVEL	Dispositif de communication Wi-Fi ou Bluetooth entre EVOBOARD et smartphone

EVO-LUTION

EVO BOARD

EVO DISP

EVO-2-TOUCH

Contrôleurs et Logiciel pour Unités hydroniques MYCOMFORT

Commande électronique à microprocesseur avec moniteur LCD

MYCOMFORT

Trois modèles différents pour un niveau de confort personnalisé

Quand le contrôle de la climatisation devient simple et immédiat: le confort ambiant est obtenu grâce aux panneaux de commande MYCOMFORT, points de jonction des systèmes in-

Le tout nouveau panneau de commande à microprocesseur permet le réglage du fonctionnement des unités hydroniques de façon à obtenir les conditions de bien-être ambiant tout en assurant le contrôle total de l'installation de climatisation.

Le panneau de commande est doté d'un moniteur à cristaux liquides de grandes dimensions avec clavier intégré, pour la programmation et la lecture des paramètres ambiants et de fonctionnement de l'unité hydronique reliée.

Une vaste gamme d'accessoires disponible permet l'installation murale ou sur l'appareil.

cation BUS

PLUS

- » Trois versions en fonction de la demande du client
- » Moniteur de grandes dimensions
- » Interface orientés utilisateur
- » Installation murale ou intégrée
- » Facilité de branchement et de mise en service

VERSIONS DISPONIBLES

tion de la température.

MEDIUM

modalité slave.

LARGE

Contrôle de l'unité et vannes de réglage en fonc- Contrôle de l'unité (4 vitesses de ventilation) et Contrôle de l'unité (4 vitesses de ventilation) et vannes de réglage en fonction de la température vannes de réglage en fonction de la température et de l'humidité, connexion aux systèmes GARDA, et de l'humidité, timer hebdomadaire, connexion réalisations de réseaux de petites dimensions en aux systèmes GARDA, réalisation de réseaux de petites dimensions en modalité master, moniteur à rétro-éclairage et contrôle de dispositifs à modulation (vannes, moteurs EC).

PRINCIPAUX COMPOSANTS ET FONCTIONS

Coque

La coque extérieure est en ABS stabilisé UV, pour maintenir la couleur inchangée dans le temps. Grâce à son design attrayant il est adapté à tout type d'environnement et pour un contexte raffiné

Moniteur

3" disponibles pour l'utilisateur, permettant de visualiser clairement toutes les données voulues et effectuer un réglage efficace. Afin d'assurer une utilisation fluide toutes les fonctions sont représentées au moyen de pictogrammes intuitifs.

Bornier

MYCOMFORT est équipé d'un bornier à connexions rapides qui permet de réaliser des câblages sans entraves. La programmation de fonctions et adresses est simplifiée puisqu'elle s'effectue directement depuis le clavier et le moniteur.

Contrôle et économies

Contrôle automatique du fonctionnement en rafraîchissement et chauffage de l'unité, en fonction de la température de l'air et de la température de l'eau.

Confort effectif

MYCOMFORT est en mesure de contrôler et de maintenir le bien-être hygrothermique grâce à la présence d'une sonde qui assure la mesure de l'humidité ambiante et de réaliser des cycles de déshumidification (en intervenant sur des vannes, ventilation et réglage de la température de l'eau).

Contrôle accessoires et dispositifs externes

Le système de commande permet de contrôler les vannes à 2 et à 3 voies, de type ON/ OFF ou modulantes, ainsi que les dispositifs externes (groupes d'eau glacée, chaudières. vannes de zone). Le contrôle des paramètres est effectué par le biais de contacts libres ON/OFF.

Supervision

Le contrôleur peut être intégré au système de supervision par l'intermédiaire du bus de connexion RS485, permettant d'afficher toutes les fonctions et l'accès au menu de programmation de MYCOMFORT.

FONCTIONS MYCOMFORT

Base	Medium	Large
٠	•	•
٠	•	•
•	•	•
		•
•	•	•
•	•	•
	•	•
	•	•
		•
		•
		•
		•
	•	· · · · · · · · · · · · · · · · · · ·

ACCESSOIRES					
Panneaux de commande électroniques à microprocesseur avec moniteur		KBFLAE	Kit d'installation du contrôleur MY COMFORT sur l'unité FLAT		
DIST	Entretoise contrôleur MY COMFORT pour installation murale	MCSUE	Sonde d'humidité pour commandes MY COMFORT (medium et large), EVO		
KB2X1E	Kit d'installation du contrôleur MY COMFORT sur l'unité 2X1	MCSWE	Sonde eau pour commandes MY COMFORT et EVO		
KRESTE	Kit d'installation du contrôleur MY COMFORT sur l'unité ESTRO				

Contrôleurs et Logiciel pour Unités hydroniques TED

Contrôleur électronique simplifié

TED

Installation

Installation

utiliser et efficaces

Une série de trois contrôleurs faciles à

Les trois différentes version du nouveau contrôleur électronique TED sont la réponse idéale Galletti aux exigences de disposer d'un contrôleur simple et à la fois adaptable aux exigences techniques.

L'attribution des modes de fonctionnement est à la fois simple et intuitive, et les accessoires fournis, outre la traditionnelle installation murale de la commande, permettent également son installation sur l'appareil.

La commande est par ailleurs dotée, sur toutes les versions, de contacts dédiés pour sondes à air ou eau à distance. Dans ce dernier cas, il est par conséquent possible de fournir le signal de validation de ventilation uniquement si la température de l'eau est adaptée au fonctionnement normal.

PLUS

- » Trois versions selon le type d'installation et d'unité terminale
- » Facilité d'utilisation
- » Installation murale ou intégrée
- » Contrôle des unités terminales par moteur EC (version 0-10 V seulement)

VERSIONS DISPONIBLES

- Contrôle des unités terminales au moyen d'un Contrôle des unités terminales au moyen d'un Contrôle des unités terminales par moteur EC moteur asynchrone dans le cas de systèmes à
- Contrôle de la vanne de réglage

- moteur asynchrone dans le cas de systèmes à
- Contrôle de deux vannes de réglage
- Contrôle du signal eau basé sur la température Sélection de la modalité été/hiver manuelle ou automatique (basée sur l'air)
 - Contrôle du signal eau basé sur la température

- grâce au générateur interne de signal 0-10 V
- Adapté aux installations à 2 ou à 4 tubes
- Sélection manuelle ou automatique de variation de la vitesse
- Contrôle du signal eau basé sur la température

ACCESSOIRES					
Panneaux de commande électroniques à microprocesseur		KB L SX	Kit d'installation à gauche du commande TED sur l'unité ESTRO FL/FU/FB		
KB A	Kit d'installation des commandes TED sur l'unité ESTRO FA	TED SWA	Sonde de température air ou eau pour commandes TED		
KB F	Kit d'installation du contrôleur TED sur l'unité FLAT/FLAT S	KB-ART	Kit d'installation du contrôleur TED sur l'unité ART-U		
KB L DX	Kit d'installation à droite du commande TED sur l'unité ESTRO FL/FU/FB				

Contrôleurs et Logiciel pour Unités hydroniques EVO LINK

Superviseur à écran tactile de 5" pour la gestion du système de climatisation

EVO LINK

EVO LINK, la supervision simplifiée.

Pour fournir un système de supervision à la fois intuitif et puissant, on a mis au point EVO LINK

La supervision Galletti au format ultra fonctionnel all-in-one. EVO LINK est une élégante et discrète tablette de 5" à installer au mur qui contient tout le nécessaire pour la supervision d'une installation de petites dimensions. Grâce à EVO LINK, il est possible de contrôler jusqu'à un maximum de 30 unités avec commandes EVO et une pompe à chaleur, le tout à travers un graphisme à la fois clair et intuitif.

Avec EVO LINK, la supervision n'a jamais été aussi facile : la programmation de plages horaires, les allumages et les arrêts programmés ainsi que la modification des valeurs de consigne des unités deviennent des opérations simples et rapides.

PLUS

- » Gestion avancée par zones logiques
- » Monitorage pompes à chaleur et polyvalentes
- » Programmation de plages horaires
- » Procédure de scansion automatique des unités
- » Simplicité extrême d'installation et d'utilisation

Tableau de bord simple et intuitif qui permet de contrôler tous les dispositifs de l'installation en un clic! Grâce à la page dédiée, la gestion des groupes d'eau glacée et des pompes à chaleur n'a jamais été aussi simple!

ACCESSOIRES					
Panneaux de co	mmande électroniques à microprocesseur avec moniteur	MCSWE	Sonde eau pour commandes MY COMFORT et EVO		
EVO-2-TOUCH	Interface utilisateur à écran tactile 2,8" pour commande EVO				
EVOBOARD	Carte de puissance pour commande EVO				
EVODISP	Interface utilisateur avec moniteur pour contrôleur EVO				