INDICE

FC - Terminali Idronici

ART-U

Ventilconvettore di design profondo fino a soli 10 cm e motore EC 1-4 kW

ART-U Canvas

Ventilconvettore dal design personalizzabile, profondo fino a soli 10 cm e motore EC 1-4 kW

ESTRO

Ventilconvettori con ventilatore centrifugo
1-11 kW

ESTRO i

Ventilconvettori con ventilatore centrifugo e motore EC
1-9 kW

FLAT S
Ventilconvettore con mobile di design profondo 17 cm 1-3 kW

FLAT S i
Ventilconvettore con mobile di design profondo 17 cm e motore EC 1-3 kW

FLAT

Ventilconvettori di design con ventilatore centrifugo

2-5 kW

FLAT i

Ventilconvettore di design con ventilatore centrifugo e motore EC 2-5 kW

CFV
Ventilconvettori ad
incasso con cassaforma
1-4 kW
pag. 80
Fan coil a parete alta
2-4 kW

EFFETTO

Modulo di design per l'aspirazione e diffusione dell'aria ad effetto Coandă

EFFETTO AirClissi

pag. 86
Modulo luminoso
ad effetto Coandă

ACQVARIA

pag. 88
Ventilconvettori
a cassetta
3-10 kW
pag. 60
pag. 64

ACQVARIA i
pag. 94
Ventilconvettori a cassetta con motore EC 3-10 kW

DUCTIMAX

Unità canalizzabili a media prevalenza
2-8 kW

DUCTIMAX i

Unità canalizzabili
a media prevalenza
con motore EC
2-8 kW

UTN

pag. 112
Unità termoventilanti
ad alta prevalenza
3-23 kW

UTN i
Unità termoventilanti
ad alta prevalenza con motore EC
4-18 kW
pag. 120

FH - Aerotermi

AREO

pag. 128
DST
pag. 142

AREO i

pag. 138
Aerotermi per climatizzazione con motore EC 11-118 kW

Destratificatori d'aria
1700-9100 m³/h

CO - Controlli e Software per Terminali Idronici

MYCOMFORT
Controllo elettronico
a microprocessore
con display LCD

TED
pag. 158

Comando elettronico
semplificato

EVO LINK
pag. 159
Supervisore con
touchscreen da $5^{\prime \prime}$ per
la gestione del sistema
di climatizzazione

Ampiezza di gamma con oltre 1000 possibilità!

Èil 1961 e Galletti con la sua piastra radiante in rame Jolly entra nel mondo della climatizzazione! È passato più di mezzo secolo, cambiano le tipologie di impianto e le destinazioni d'uso, i mercati e le esigenze dei consumatori si ampliano e Galletti è ancora tra le aziende leader del settore.
L'obiettivo dell'azienda è quello di proporre la più vasta gamma di soluzioni per i terminali idronici d'impianto, con tecnologia e design che, di pari passo con le evoluzioni impiantistiche, si sono aggiornate con il preciso fine di coniugare affidabilità ed innovazione.
La proposta oggi è completa di ventilconvettori con ventilatore centrifugo o tangenziale, unità ibride specifiche per il residenziale, cassette con ventilatore assial-centrifugo, unità canalizzabili a media ed alta prevalenza e nel segno della tradizione, versioni convettive per riscaldamento.

Risparmio energetico con motori EC ad inverter

È sempre più consolidata nel settore della climatizzazione la tendenza a proporre delle soluzioni che coniughino prestazioni a consumi contenuti.
Galletti, in linea con l'obiettivo di una continua innovazione, propone soluzioni con motori brushless che garantiscono:
" comfort di utilizzo dovuto alla completa modulazione della portata d'aria
" risparmi di gestione prossimi al 50% rispetto ai tradizionali motori
" rapida messa a regime degli ambienti condizionati
" adeguamento costante della potenza erogata in base al carico effettivo
" eccezionale silenziosità ai bassi regimi di funzionamento come quello notturno

La silenziosità

Il progetto di tutti i particolari di ventilazione dei terminali Galletti nasce esclusivamente all'interno dello staff tecnico aziendale, forte di strutture di ricerca e sviluppo e di un know how specifico di oltre 50 anni. Più in particolare, gli ultimi studi su materiali e profili aerodinamici hanno portato allo sviluppo di particolari ventole e coclee concepite per garantire prestazioni sonore tra le migliori a livello europeo e certificate Eurovent, unite ad una corretta distribuzione dell'aria che assicura in qualsiasi fase di funzionamento il massimo comfort ambientale.

Design e materiali

Galletti utilizza sui propri terminali idronici mobili di copertura dal design esclusivo che si adattano sia nei contesti residenziali sia in quelli commerciali. La qualità dei materiali utilizzati per la loro costruzione assicura caratteristiche inalterabili nel tempo. Le parti in materiale plastico sono in ABS stabilizzato ai raggi UV per mantenere il colore inalterato nel tempo. Le parti in acciaio vedono l'utilizzo di lamiera di spessore $10 / 10 \mathrm{di} \mathrm{mm}$ con doppio strato di verniciatura con una classe di resistenza UV di RUV 3 a norma EN 10169-2.

Verniciatura di base,
approx. $5 \mu \mathrm{~m}$

Controllo efficiente del clima

Galletti offre una gamma di comandi a bordo o a parete composta da oltre 20 opzioni a seconda del grado di regolazione e comfort richiesti.
Design e tecnologia si trovano nei comandi a LED o LCD di ultima generazione: EVO, EVO-2-TOUCH e MYCOMFORT, che rappresentano lo stato dell'arte della gestione intelligente di un terminale di impianto abbinato ad un chiller o ad un pompa di calore.
Sistemi di gestione, opzioni master/slave, regolazione autoadattiva del chiller/pompa di calore, gestione dell'umidità ambiente sono alcuni dei principali plus di una proposta qualificata ed affidabile.

Valvole di regolazione pressure independent (richiedibili come optiona)

Abbinabili a servomotori di tipo ON/OFF o MODULANTE, garantiscono un'equilibratura dinamica dell'impianto e una regolazione già impostata (evitando qualsiasi calcolo richiesto dal bilanciamento tradizionale). Offrono inoltre molteplici vantaggi tra i quali:

- Trasferimento efficiente dell'energia e minimi costi di pompaggio grazie all'assenza di sovraportate in condizioni di carico parziale in ragione dell'esatto controllo delle portate indipendente dalla pressione.
- Minori investimenti nella scelta delle pompe e ridotto consumo di energia in quanto la prevalenza necessaria è inferiore rispetto alle configurazioni tradizionali. Grazie agli attacchi piezometrici integrati, la soluzione dei problemi e il processo di ottimizzazione del pompaggio può essere realizzato con maggior rapidità e facilità.
- non è più richiesta la onerosa messa in servizio dell'impianto per regolare la portata alle unità terminali alle condizioni nominali.
- I movimenti ridotti dell'attuatore modulante, grazie al regolatore della pressione differenziale integrato, garantiscono una vita operativa più lunga dell'attuatore stesso e impediscono che la temperatura ambiente sia influenzata dalle fluttuazioni di pressione dell'impianto
- La stabilità della temperatura ambiente consente di ottenere una temperatura media più bassa con lo stesso livello di comfort.
- Meno lamentele dai gestori dellimpianto, in quanto la portata, per via del corretto funzionamento della valvola, non si scosta mai dai valori di progetto.
- Non è più richiesta l'installazione di valvole di bilanciamento nella rete di distribuzione.

PLUS

" Alta efficienza: abbattimento di muffe, batteri, virus, VOC fino al 99\% rispetto alla loro concentrazione iniziale;
» Basso consumo energetico: 10 Watt circa;
" Forte azione deodorigena: elimina gli odori dall'aria in transito;
» Processo naturale: non usa o produce sostanze chimiche residue;
" Tecnologia scalabile e dimensionabile in funzione delle condizioni di lavoro ed utilizzo.

Terminali idronici con tecnologia NTP JONIX INSIDE e JONIX DUCT

Línquinamento dell'aría degli ambienti confinati è da sempre un importante problema di sanità pubblica, con grandi implicazioni sociali ed economiche e, nella criticità dell'attuale momento, il tema della sanificazione dell'aria indoor assume un ruolo di primaria importanza.
Tra le soluzioni presenti sul mercato, la tecnologia NTP (Non Thermal Plasma) è oggi considerata fra le piü efficaci e sicure per la capacità di ossidare e scomporre sostanze inquinanti. Ė una forma evoluta di ionizzazione dell'aria, con elevato potere di abbattimento degli agenti microbiologici e chimici. Il non thermal plasma è un fenomeno fisico generato a temperatura ambiente.
|| "plasma freddo" è un gas ionizzato, ossia costituito da varie particelle caricate elettricamente: elettroni, ioni, atomi e molecole di origine organica e chimica che scontrandosi tra loro producono specie ossidanti. Attraverso la collisione di elettroni altamente energetici con ossigeno, vapore d'acqua e azoto genera diverse specie attive (ioni o specie neutre e radicali) queste vengono trasportate dal flusso d'aria verso gli agenti inquinati.
Si tratta quindi di un sistema attivo di sanificazione dell'aria, che va a caccia degli inquinanti decomponendoli senza creare sostanze residue. Il non thermal plasma elimina batteri; virus, muffe, spore, odori, e tutti i composti organici volatili (VOC): formaldeide, benzene ecc...
Galletti da anni ha integrato nei propri terminali idronici la tecnologia NTP sviluppata da JONIX. Tutti i dispositivi JONIX utilizzano la tecnologia NTP (Non Thermal Plasma o Plasma Freddo) che produce specie ossidanti, e quindi sanificanti, attraverso i "generatori JONIX" (o"attuatori").

Dipartimento di Medicina Molecolare - Università degli studi di Padova
II Dipartimento di Medicina Molecolare ha sottoposto la tecnologia Non Thermal Plasma presente nei dispositivi Jonix a test di laboratorio per verificarne l'attività virucida.
I risultati ottenuti mostrano che il dispositivo utilizzato (Jonix CUBE - tecnologia Non Thermal Plasma) presenta una efficace attività antivirale nei confronti di SARS-CoV-2 (il cosiddetto Covid-19), con un abbattimento della carica virale pari al 99,9999\%.
Per garantire la massima precisione e accuratezza il test è stato eseguito in conformità alla norma UNI EN 14476:2019 "Prova quantitativa in sospensione per la valutazione dell'attività virucida in campo medico - Metodo di prova e requisiti (fase 2, stadio 1)" e alla norma UNI EN 17272:2020 "Metodo per la disinfezione dell'aria indoor mediante processi automatizzati - Determinazione dell'attività battericida, micobattericida, sporicida, fungicida, lieviticida, virucida e fagocita". L'attività virucida è stata testata impiegando il ceppo SARS - CoV-2 (Covid-19), Tutti gli esperimenti sono stati condotti in Laboratorio di Biosicurezza livello 3 (BSL3).
II Dossier scientifico è disponibile su richiesta.

FAN COIL CON JONIX INSIDE

II dispositivo JONIX INSIDE, novità installata a bordo dei ventilconvettori ESTRO, FLAT , FLAT S e ACQVARIA, impedisce la formazione di contaminanti chimici e biologici, (muffe, batteri e legionella) sulle superfici interne e dall'aria in transito. La sanificazione avviene in modo continuativo impedendo cosi che i depositi di polveri divengano il substrato ideale per lo sviluppo di muffe e batteri. La posizione del dispositivo JONIX INSIDE all'interno del fan coil è stata determinata dopo test e sperimentazioni effettuati da laboratori ARCHA, con cicli di funzionamento del dispositivo rivolti alla maggiore sanificazione del terminale in particolare dello scambiatore di calore, vasca di raccolta condensa, ventilatore centrifugo e superfici interne.

Regolazione UNITÀ con JONIX INSIDE

I controllori EVO, EVO-2-TOUCH e MYCOMFORT gestiscono il funzionamento combinato di ventilconvettore e dispositivi per massimizzare l'effetto di sanificazione dell'unità fan coil nei componenti principali quali batteria, bacinella di raccolta condensa e filtro aria.

UNITÀ CANALIZZABILI CON JONIX DUCT

Le unità canalizzabili Gallettiserie DUCTIMAX ed UTN utilizzano la tecnologia NTP JONIX per effettuare la sanificazione dell'aria in transito, la decontaminazione microbica delle superfici interne delle unità stesse, dei filtri, delle batterie e la prevenzione dello sviluppo di legionella nella vasca di raccolta condensa. I dispositivi sono dimensionati in funzione della destinazione d'uso, della portata aria e della categoria di inquinanti da trattare.

Regolazione JONIX INSIDE

Sono installati all'interno di appositi plenum inseriti sulla mandata o sull'aspirazione dell'aria e gestiti dal controllore EVO per massimizzarne gli effetti sull'unità, sulle canalizzazioni e sull'aria in transito. L'elettronica presente comunica lo stato di funzionamento alla scheda di potenza EVO BOARD segnalando eventuali malfunzionamenti e necessità di manutenzione programmata.

Ventilconvettore di design profondo fino a soli 10 cm e motore EC

ART-U 1-4 kW

PLUS

» Mobile dal design innovativo con profondità fino a soli 10 cm
» Motore EC controllato da inverter
» Ridotti consumi energetici

Innovazione guidata dal design

Dalla grandissima esperienza di Galletti nello sviluppo e progettazione di ventilconvettori ed a conferma della sua continua ricerca di innovazione, è nato ART-U, risultato di una perfetta combinazione tra performance e design. ART-U è un prodotto unico che, da una parte è in grado di rispondere alle sempre più stringenti richieste in termini di efficienza energetica, dall'altra incontra per la prima volta le recenti tendenze di arredamento ed interior design.
Con la sua profondità, che in alcuni punti raggiunge i soli 10 cm , e forte delle sue linee uniche, è stato concepito per essere un prodotto assolutamente trasversale, che si adatta perfettamente sia ad ambienti rigorosi ed essenziali sia a spazi più caldi e sofisticati. II raggiungimento di elevatissimi standard estetici non ha indebolito l'usuale virtuosismo costruttivo dei prodotti Galletti: la ricerca d'innovazione si è infatti concentrata anche sui componenti e sull'utilizzo di nuovi materiali. Con ART-U si è ridefinito lo stato dell'arte anche in termini di performance tecniche, grazie all'utilizzo di simulazioni fluidodinamiche computazionali per l'ottimizzazione dello scambio termico all'interno del terminale abbinato all'utilizzo di motori elettrici a magneti permanenti. E l'unico prodotto innovativo che unisce design, profondità ridotta ed efficienza energetica.

Concorsi di design

La sua evoluzione è appena iniziata ma ha già raccolto importanti riconoscimenti, conquistando la giuria dei più prestigiosi premi internazionali di design del prodotto industriale.

VERSIONI DISPONIBILI
Le versioni di ART-U con finitura metallica del pannello frontale sono riassunte secondo la tavola CMF (Colori, Materiali, Finiture),
CMF è un vero e proprio strumento progettuale del disegno industriale che lavora sull lidentità cromatica, tattile e decorativa dei prodotti e degli ambienti.

COMPONENTI PRINCIPALI

Mobile di design

L'elegante pannello frontale è costituito da due lamine di alluminio con anima in polietilene ed eventuale verniciatura superficiale a base di poliestere. È un materiale leggero ma molto resistente, nato per i rivestimenti di facciata in ambito edilizio. Le fiancate laterali sono in ABS stabilizzato agli UV per mantenere il colore inalterato nel tempo.
L'anima in polietilene funge da riempimento flessibile e isolante termico mentre l'alluminio conferisce strutturalità ed estetica.

Convogliatori

In PVC. Sono progettati per ottimizzare il flusso aeraulico all'interno del terminale idronico consentendo una distribuzione ottimale del flusso d'aria in batteria e silenziosità ad ogni regime di funzionamento.

Griglia superiore

Costituita da alette orientabili in alluminio anodizzato, compatibile per l'installazione del comando a bordo. I pettini in ABS, a supporto delle griglie, evitano la flessione delle stesse, garantendo sempre la sicurezza dell'utilizzatore

Griglia frontale

In acciaio. È concepita per stabilizzare il funzionamento del ventilatore tangenziale.

Motore elettrico

Motore EC a magneti permanenti con inverter integrato nel gruppo di ventilazione. È garantito il grado di protezione IP44, quindi è scongiurato l'accesso di polvere al suo interno ed è garantita la resistenza a spruzzi di acqua.

Ventilatori tangenziali

Ventilatore tangenziale bilanciato staticamente e dinamicamente per ridurre la rumorosità in funzionamento
Il materiale plastico utilizzato per le pale garantisce, rispetto alle ventole metalliche, una riduzione delle vibrazioni ed assenza di flessione lungo l'asse di rotazione.
Le pale sono intervallate da dischi intermedi di rinforzo al fine di aumentarne la robustezza.

Batterie di scambio termico

Turbolenziata ad alta efficienza in tubo di rame ed alette in alluminio, e corredata di collettori in ottone e valvola di sfiato.
Sulle alette è applicato di serie il trattamento idrofilico, per aumentarne l'efficacia in raffrescamento ed insieme una maggior resistenza alle atmosfere aggressive.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

VERSIONI DISPONIBILI

ART-U Grey
L'utilizzo di un pannello frontale in alluminio naturale spazzolato abbinato a fiancate laterali nere per esaltare l'assoluta eleganza di questo fan coil unico e la sua ridottissima profondità. Il prodotto, dalle semplici linee pulite ed essenziali, si adatta perfettamente all'interno di ambienti nei quali l'arredamento segue le nuove tendenze di stile e dove ad ogni elemento è richiesto un elevato contenuto di design.

ART-U White
La neutralità del bianco garantisce la massima integrazione con lo spazio in ottica adattiva, permettendo di far quasi scomparire il ventilconvettore nella parete.

VERSIONI DISPONIBILI

ART-U Red

Grazie alle linee ricercate ed eleganti del prodotto, anche un colore forte e deciso come il rosso in realtà esalta ancora di più la personalità unica di ART-U e lo trasforma in una vera e propria icona di arredamento.

ART-U Black
L'inedita soluzione cromatica nera permette al fan coil di integrarsi nell'ambiente circostante fornendo un tocco di assoluta eleganza.

ACCESSORI

EVO-2-TOUCH

Il nuovo comando EVO-2-TOUCH è installabile anche a bordo macchina e garantisce il massimo comfort termo-igrometrico unito all'ergonomia del suo schermo touch screen. Grazie alle funzioni di 'tap'e'swipe' I'esperienza di utilizzo del comando è resa simile a quella del proprio smartphone.
Le diverse schermate sono state ideate per rendere intuitiva la comunicazione uomo-macchina. Ogni pagina contiene poche informazioni essenziali che permettono la consultazione dei principali parametri operativi dell'unità e consentono la configurazione iniziale del comando a seconda delle esigenze impiantistiche.
La cornice esterna dellinterfaccia è disponibile in quattro diverse cromature ed è realizzata con materiale a doppia lamina di alluminio e anima in polietilene.

DISC-COVER

Lo stile minimale del piedino di copertura DISC-COVER dialoga con le linee eleganti ed essenziali di ART-U. Disponibile in tre differenti colori: bianco RAL9010, nero RAL9005, rosso RAL3020. Si adegua perfettamente al carattere stilistico dell'ambiente da climatizzare, sia esso rigoroso e formale oppure ironico. La forma è stata appositamente studiata in modo da rendere l'installazione semplice e rapida anche durante le operazioni di pulizia e manutenzione. II sistema di aggancio con magnete consente di regolarne la posizione in funzione dell'altezza di montaggio e della posizione delle tubazioni.

ACCESSORI

Pannelli di comando elettronicia microprocessore con display

| Pannelli ir comando elettronicia microprocessore con display |
| :--- | :--- |
| DIST Distanziale per comandi MY COMFORT per installazione a parete | nero RAL9005

$\left.\begin{array}{ll}\text { E2TK } & \begin{array}{l}\text { Interfaccia utente touch screen 2.8" } \\ \text { nero } \\ \text { nero RAL }\end{array} \text {-2-TOUCH per comando EVO, cornice in alluminio }\end{array}\right]$

Pannelli di comando elettronici a microprocessore	
TED SWA	Sonda temperatura aria o a cqua per comandi TED
TED10	Comando elettronico per il controllo del ventilatore inverter BLDC e di una o due valvole ON/OFF 230V
TEDKB-W	Kit installazione comando TED a bordo ART-U per versione White
TEDKB-Y	Kit installazione comando TED a bordo ART-U per versione Grey, Red e Black
Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa	
GIVK-2	Guscio isolante per valvola tipo KV - 2 vie
GIVK-3	Guscio isolante per valvola tipo VKS - 3 vie
Zoccoli di sostegno e copertura	
DISC-K	Piedino di copertura per ventilconvettore ART-U - colore nero RAL 9005
DISC-R	Piedino di copertura per venticonvettore ART-U - colore rosso RAL 3020
DISC-W	Piedino di copertura per ventilconvettore ART-U - colore bianco RAL 9010
Valvole	
V2VSTD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale

DATI TECNICI NOMINALI

ART-U			10				20				30			
Velocità			1	2	3	4	1	2	3	4	1	2	3	4
Tensione in ingresso	(E)	V	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Resa raffreddamento totale	(1)(E)	kW	0,31	0,71	0,84	1,08	0,58	1,15	1,41	1,76	0,66	1,63	1,97	2,44
Resa raffreddamento sensibile	(1)(E)	kW	0,21	0,56	0,69	0,91	0,41	0,89	1,08	1,36	0,46	1,18	1,44	1,78
Classe FCEER	(E)		C				C				B			
Portata acqua	(1)	I/h	53	122	145	185	100	198	242	303	113	280	339	418
Perdita di carico	(1)(E)	kPa	1	4	5	8	2	6	9	13	2	12	17	24
Resa riscaldamento	(2)(E)	kW	0,29	0,82	1,05	1,40	0,59	1,09	1,31	1,62	0,67	1,78	2,15	2,65
Classe FCCOP	(E)		C											
Portata acqua	(2)	1/h	51	143	183	243	103	231	278	345	117	310	374	461
Perdita di carico	(2)(E)	kPa	1	4	6	11	2	7	10	14	2	12	17	24
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	40	148	207	312	82	224	287	389	91	302	392	529
Potenza assorbita	(E)	W	4	7	9	14	4	10	12	17	5	11	15	24
Potenza sonora globale	(3)(E)	$d B(A)$	28	41	46	54	28	41	47	54	28	42	47	54

ART-U			40				50			
Velocità			1	2	3	4	1	2	3	4
Tensione in ingresso	(E)	V	2,00	5,50	7,00	10,0	2,00	5,50	7,00	10,0
Resa raffreddamento totale	(1)(E)	kW	0,76	1,84	2,37	3,12	0,92	2,32	2,89	3,69
Resa raffreddamento sensibile	(1)(E)	kW	0,53	1,38	1,77	2,33	0,65	1,72	2,15	2,77
Classe FCEER	(E)		B							
Portata acqua	(1)	1/h	131	315	406	535	157	398	496	634
Perdita di carico	(1)(E)	kPa	2	12	18	29	3	13	19	29
Resa riscaldamento	(2)(E)	kW	0,74	1,99	2,49	3,21	0,95	2,56	3,16	4,02
Classe FCCOP	(E)									
Portata acqua	(2)	1/h	128	347	433	559	165	446	550	698
Perdita di carico	(2)(E)	kPa	2	11	17	26	2	13	19	28
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	104	363	496	724	129	439	587	831
Potenza assorbita	(E)	W	5	12	17	27	5	12	18	30
Potenza sonora globale	(3)(E)	dB(A)	31	42	47	54	32	42	47	54

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco / $19^{\circ} \mathrm{C}$ bulbo umido (47% u unidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(3) Potenza sonora rilevata secondo IS0 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Ventilconvettore dal design personalizzabile, profondo fino a soli 10 cm e motore EC

ART-U Canvas 1-4 kW

Now it's up to you

Grazie ad ART-U Canvas viene raggiunta una nuova frontiera della climatizzazione di ambienti interni. Un prodotto che era già un unicum del suo settore viene oggi valorizzato ulteriormente infatti ART-U si configura come una piattaforma innovativa e versatile. Grazie alla possibilità di completa personalizzazione, il pannello frontale è come una tela da pittore pronta per essere per essere caratterizzata dall'architetto dinterni. Su ART-U Canvas è possibile riprodurre qualsiasi colore a tinta unita, immagine e fotografia ad alta risoluzione. Non sono richiesti quantitativi minimi per la customizzazione del fan coil, per garantire la massima libertà all'architetto dinterni, qualsiasi sia la taglia del progetto.

Con ART-U Canvas non ci sono limiti alla creatività, ora tocca a te scegliere la versione perfetta per integrarsi stilisticamente all'ambiente da climatizzare.

VERSIONI DISPONIBILI

Canvas è disponibile in due versioni: Total Graphic Skin e Graphic Skin.

Total Graphic Skin prevede la personalizzazione dellintera superficie del pannello frontale attraverso la riproduzione di grafiche, fotografie e colori a tinta unita.

La versione Graphic Skin consente la riproduzione di immagini lasciando visibile parzialmente il pannello in alluminio naturale spazzolato o bianco RAL9010.

Queste due versioni di ART-U Canvas sono riassunte secondo la tavola CMF (Colori, Materiali, Finiture). CMF è un vero e proprio strumento progettuale del disegno industriale che lavora sullidentità cromatica, tattile e decorativa dei prodotti e degli ambienti.

VERSIONI DISPONIBILI

ART-U CANVAS

ART-U diventa una piattaforma personalizzabile secondo le suggestioni dell'architetto d'interni.
Ė possibile selezionare il colore del pannello frontale tra le oltre 3000 varianti cromatiche offerte dalle scale RAL e PANTONE.

Qualunque texture geometrica o effetto materico può dare vita ad un design unico che esprime la tua personalità in ogni dettaglio.

L'innovazione accompagna l'immaginazione con ART-U Canvas. Questo fan coil intelligente e dalle sorprendenti prestazioni è nato per riscrivere le regole del design e ispirare personalizzazioni che vanno ben oltre la sua superficie del fan coil.

CONFIGURATORE ONLINE ART-U CREATOR

Attraverso il software online ART-U Creator è possibile dare forma alla tua idea di design applicata alla climatizzazione. Grazie a questo strumento è possibile configurare rapidamente il tuo ART-U Canvas, scegliendo la grafica del pannello frontale e il colore degli altri componenti del prodotto. C'è un prodotto per ogni soluzione, configurare lo stile dei tuoi ambienti non è mai stato così semplice.

Contatta art-u@galletti.it per richiedere l'accesso al primo configuratore estetico dedicato ai fan coil.

DISEGNI DIMENSIONALI

Ventilconvettori con ventilatore centrifugo

ESTRO 1-11 kW

JONIX
 pure living

PLUS

» Motore a 306 velocità
» Ventilatori centrifughi in ABS
" Batteria fino a 4 ranghi
» Attacchi idraulici reversibili
» Mobile in acciaio / ABS
» Sistema di sanificazione JONIX incorporabile

> La più vasta gamma di ventilconvettori presente sul mercato unita alla tecnologia, qualità e affidabilità Galletti

La serie ESTRO è in assoluto la linea di ventilconvettori sul mercato con la più vasta gamma di modelli ed accessori in grado di soddisfare tutte le esigenze dei professionisti del settore.
La gamma è composta da 20 modelli realizzati in 9 versioni costruttive.
Per la realizzazione del progetto ESTRO sono stati scelti materiali di alta qualità che, unitamente alla grande cura e attenzione riservata all'assemblaggio dei principali componenti, lo qualificano nel campo dell'affidabilità prestazionale e comfort acustico.
La linea ESTRO ha una concezione costruttiva che permette di unificare i modelli per installazione verticale a quelli per installazione orizzontale: vengono realizzate versioni per montaggio in vista a parete, a pavimento/soffitto, ad incasso a parete/soffitto, e pavimento ribassato.
Nella versione ad incasso canalizzabile ESTRO dispone di una serie di accessori che consentono una installazione rapida ed economica con canali flessibili direttamente accoppiati a griglie di diffusione aria.
Ad ESTRO si possono associare una gamma di pannelli di comando a bordo o a parete composta da oltre 20 opzioni a seconda del livello di regolazione e comfort richiesti.
Un innovativo sistema di ionizzazione dell'aria garantisce la sanificazione del terminale e la deodorizzazione dell'aria ambiente.

VERSIONI DISPONIBILI

ESTRO FL

Versione con mobile di copertura idonea all'installazione in vista a parete. Uscita aria verticale, filtro aria sull'aspirazione bloccato al mobile con viti ad $1 / 4$ di giro.
ESTRO FL è disponibile in $\mathbf{2 0}$ modelli.

ESTRO FA
Installazione in vista a parete con mobile di copertura. L'uscita dell'aria inclinata sul fronte rende la versione ESTRO FA particolarmente idonea all'inserimento in nicchia di profondità fino a 150 mm .
ESTRO FA è disponibile in 19 modelli.

ESTRO CL

Installazione in vista a parete con mobile di copertura, uscita aria verticale. Studiata con toni declinati e pastellati si integra in arredamenti di tipo tradizionale e in tutte quelle architetture dove i colori caldi e le forme eleganti rendono ESTRO CL un vero e proprio complemento d'arredo. Colore pannello in lamiera: RAL 9001. Colore parti in ABS: pantone "warm gray 2 U".
ESTRO CL è disponibile in 20 modelli.

ESTRO FU

Versione con mobile di copertura idonea all'installazione in vista a pavimento ed a soffitto. Sul mobile di copertura sono presenti sia le griglia di uscita aria sia le griglie di aspirazione con filtro incorporato.

ESTRO FU è disponibile in $\mathbf{2 0}$ modelli.

ESTRO FP

Versione con mobile di copertura idonea all'installazione in vista a soffitto. L'aspirazione aria avviene posteriormen-
 te alle griglie di uscita. Questa versione è particolarmente utile in caso di abbinamento con serrande di presa aria esterna.

ESTRO FP è disponibile in 20 modelli.

ESTRO FB

Versione ribassata con mobile di copertura idonea all'installazione in vista a pavimento ed a soffitto. Sul mobile di copertura sono presenti sia le griglia di uscita aria sia le griglie di aspirazione con filtro incorporato. Il riposizionamento dei componenti interni ha consentito la riduzione dell'altezza a soli 438 mm .
ESTRO FB è disponibile in 9 modelli.

ESTRO FC

Installazione ad incasso verticale e orizzontale, aspirazione aria in linea con la mandata, scocca in lamiera di acciaio zincata isolata termicamente. Raccordi e plenum consentono il completamento dell'aspirazione e dell'immissione aria in ambiente.
ESTRO FC è disponibile in $\mathbf{2 0}$ modelli.

ESTRO FF

Installazione ad incasso verticale e orizzontale, aspirazione aria frontale, scocca in lamiera di acciaio zincata isolata termicamente. L'aspirazione frontale consente l'utilizzo ad incasso a pavimento oppure orizzontale con aspirazione diretta dal controsoffitto.

ESTRO FF è disponibile in $\mathbf{2 0}$ modelli.

ESTRO FBC

Ribassato ad incasso verticale e orizzontale, aspirazione aria frontale con filtro aria, scocca in lamiera di acciaio zincata isolata termicamente. II riposizionamento dei componenti strategici ha consentito la riduzione dell'altezza a soli 412 mm .
ESTRO FBC è disponibile in 9 modelli.

Terminali idronici ESTRO

COMPONENTI PRINCIPALI

Mobile di copertura

Composto da un pannello in lamiera di acciaio verniciata; fiancate laterali, griglia di mandata (orientabile di 180°) e griglia di ripresa sono realizzate in ABS.
Le forme arrotondate e i colori si integrano perfettamente con gli attuali criteri di arredamento, nel rispetto delle esigenze architettoniche.

Motore elettrico

Montato su supporti antivibranti, con condensatore permanentemente inserito e protezione termica degli avvolgimenti è direttamente accoppiato ai ventilatori. È disponibile sia a 3 sia a 6 velocità di rotazione per rispondere a tutte le richieste specifiche di prestazioni, silenziosità, consumi elettrici.

Struttura

Realizzata in lamiera di acciaio zincato di elevato spessore, isolata termicamente ed acusticamente con pannelli autoestinguenti di classe 1 . Le versioni FU - FB - FC - FF ed FBC sono dotate di doppia bacinella per la raccolta della condensa.

Ventilatori

Centrifughi a doppia aspirazione, bilanciati staticamente e dinamicamente, sono realizzati in ABS antistatico con pale a profilo alare e moduli sfalsati. I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza.

Batteria di scambio termico

Ad alta efficienza in tubo di rame ed alette in alluminio, è corredata di collettori in ottone e valvola di sfiato. Gli attacchi idraulici sono reversibili in fase di installazione. Su richiesta è possibile montare una batteria addizionale, per impianti a 4 tubi.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione. Nelle versioni FU ed FB i filtri aria sono inseriti nella griglia di aspirazione.

CONFIGURATORE

I modelli sono completamente configurabili selezionando la versione e le opzioni. A fianco è riportato un esempio di configurazione.

CONFIGURATORE

A A-
B B-Installazione a parete con mobile ribassato
C (- Installazione ad incasso
F F-Installazione ad incasso
G BC - Installazione ad incasso ribassato
$\llcorner\quad$ L - Installazione a parete con mobile
CLASSIC-Installazione a parete con mobile
P P-Installazione a soffitto con mobile
U U - Installazione a parete / soffitto con mobile

Motore

0 Motore a 3 velocità
G Gruppo motoventilante Greentech
Motore BLDC
P Motore 6 velocità
3 Lato attacchi batteria principale
Attacchi a sinistra
M Attacchi a sinistra a 4 ranghi
R Attacchi a destra
5 Attacchi a destra a 4 ranghi

Lato attacchi batteria addizionale/resistenza elettrica

Assente

E RE-Resistenza elettrica
L Attacchi a sinistra
R Attacchia destra
5 Valvola
0 Assente
VKS - Valvola 3 vie - 230V - ON/OFF - kit completo
KV - Valvola 2 vie - 230V - 0N/OFF
VKMS - Valvola 3 vie - 24V MODULANTE - kit completo
4 KVM - Valvola 2 vie - 24 V -MODULANTE
VKS24 - Valvola 3 vie - 24 V - ON/OFF - kit completo
KV24-Valvola 2 vie - 24 V - ON/OFF
VKSND - Valvola 3 vie - 230 V - ON/OFF - kit lato batteria
VKMSND - Valvola 3 vie-24V - MODULANTE - kit lato batteria
VKS24ND -Valvola 3 vie - 24 V - ON/OFF - kit lato batteria
H VPIK - Valvola 2 vie - pressure independent - 230 V - ON/OFF
I VPIKM - Valvola 2 vie - pressure independent - 24 V - MODULANTE
$6 \quad$ Pannello di comando
0 Assente
1 CB-Commutatore di velocità
2 TB - Termostato e commutatore
3 TIB - Termostato, commutatore e selettore E/I
4 TED 2T - Comando elettronico 2 tubi
5 TED 4T - Comando elettronico 4 tubi
6 TED 10-Comando elettronico BLDC
A MCBE - My comfort base
B MCME-My comfort medium
C MCLE-My comfort large
D LED 503
E EVOBOARD - Scheda di potenza
F EVOBOARD + EVODISP - (Scheda di potenza + display)
G Scheda di potenza EVOBOARD + modulo Wireless Navel
7 Sonde
0 Assente
1 SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
2 SW - Sonda acqua per MYCOMFORT, LED503 e EVO
3 SU - Sonda umidità per MYCOMFORT e EVO
4 SA + SW - Sonde aria + acqua per MYCOMFORT, LED503 e EVO
5 SA + SU - Sonde aria + umidità per MY COMFORT e EVO
6 SA + SU + SW - Sonda aria + umidità + acqua per MYCOMFORT e EVO
A TC-Termostato di consenso
B SA-Sonda aria remota per TED
C SW - Sonda acqua per TED
D SA + SW - Sonde aria + acqua per TED
8 Accessori vari
Assente
2 JONIX
4 BV - Bacinella ausiliaria
5 BH-Bacinella ausiliaria
6 GIVK - Guscio valvola
Filtro
0 Filtro aria standard
10 Release
00
A A

Terminali idronici ESTRO

DATI TECNICI NOMINALI-2 TUBI

ESTRO			1			2			3			4		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	0,75	0,90	1,12	1,02	1,21	1,50	1,24	1,48	1,69	1,34	1,66	1,91
Resa raffreddamento sensibile	(1)(E)	kW	0,57	0,68	0,84	0,77	0,94	1,16	0,93	1,10	1,25	0,98	1,20	1,37
Classe FCEER	(E)		E											
Portata acqua	(2)	1/h	129	155	193	176	208	258	214	255	291	231	286	329
Perdita di carico	(2)(E)	kPa	4	5	7	7	9	13	8	11	14	7	10	13
Resa riscaldamento	(3)(E)	kW	0,95	1,11	1,32	1,21	1,48	1,82	1,45	1,72	1,84	1,50	1,81	2,15
Classe FCCOP	(E)		E											
Portata acqua	(3)	I/h	164	191	227	208	255	313	250	296	317	258	312	370
Perdita di carico	(3)(E)	kPa	5	6	8	8	11	15	9	12	14	6	9	12
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	127	189	231	167	233	319	210	271	344	214	271	344
Potenza assorbita	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Potenza sonora globale	(4)(E)	$d B(A)$	30	32	40	37	42	47	38	44	49	40	44	50
ESTRO			4M			5			6			6M		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	1,48	1,81	2,19	1,57	1,99	2,36	1,73	2,34	2,87	1,90	2,60	3,23
Resa raffreddamento sensibile	(1)(E)	kW	1,04	1,28	1,55	1,15	1,53	1,82	1,23	1,66	2,05	1,30	1,79	2,24
Classe FCEER	(E)		D			E			D			D		
Portata acqua	(2)	1/h	255	312	377	270	343	406	298	403	494	327	448	556
Perdita di carico	(2)(E)	kPa	10	14	20	8	12	16	6	9	13	7	12	17
Resa riscaldamento	(3)(E)	kW	1,53	1,88	2,29	1,74	2,26	2,70	1,76	2,37	2,94	1,94	2,68	3,37
Classe FCCOP	(E)		E											
Portata acqua	(3)	1/h	263	324	394	300	389	465	303	408	506	334	461	580
Perdita di carico	(3)(E)	kPa	9	12	17	8	12	17	5	8	11	6	10	15
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	211	271	344	267	341	442	293	341	442	241	341	442
Potenza assorbita	(E)	W	30	45	66	29	44	57	29	43	56	29	43	56
Potenza sonora globale	(4)(E)	$d B(A)$	41	45	51	35	43	48	36	42	48	35	43	49
ESTRO			7			7M			8			8M		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	1,94	2,58	3,45	2,44	3,33	4,48	2,47	3,21	4,23	2,74	3,64	4,86
Resa raffreddamento sensibile	(1)(E)	kW	1,41	1,99	2,69	1,69	2,31	3,12	1,76	2,39	3,05	1,90	2,53	3,40
Classe FCEER	(E)		E			D			D			D		
Portata acqua	(2)	1/h	334	444	594	420	573	771	425	553	728	472	627	837
Perdita di carico	(2)(E)	kPa	4	7	12	6	11	18	5	8	12	7	12	20
Resa riscaldamento	(3)(E)	kW	2,39	3,13	4,05	2,51	3,40	4,57	2,47	3,24	4,24	2,80	3,70	4,95
Classe FCCOP	(E)		E											
Portata acqua	(3)	I/h	412	539	697	432	585	787	425	558	730	482	637	852
Perdita di carico	(3)(E)	kPa	5	8	13	5	9	15	4	6	10	6	10	17
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	331	450	640	320	450	640	420	497	706	361	497	706
Potenza assorbita	(E)	W	40	50	65	37	61	98	38	61	98	38	61	98
Potenza sonora globale	(4)(E)	$d B(A)$	35	43	52	36	44	53	35	43	53	36	44	54

(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI－2 TUBI

ESTRO			9			9M			95			10		
Velocità			min	med	max									
Resa raffreddamento totale	（1）（E）	kW	2，95	3，59	4，41	3，47	4，30	5，30	3，37	4，12	5，15	3，88	5，14	6，53
Resa raffreddamento sensibile	（1）（E）	kW	2，27	2，85	3，55	2，42	3，00	3，72	2，29	2，93	3，72	2，75	3，70	4，73
Classe FCEER	（E）		D			D			D			E		
Portata acqua	（2）	I／h	508	618	759	598	740	913	580	709	887	668	885	1124
Perdita di carico	（2）（E）	kPa	7	10	14	11	16	24	10	14	21	5	9	12
Resa riscaldamento	（3）（E）	kW	3，31	4，08	4，98	3，53	4，37	5，39	3，52	4，32	5，49	3，97	5，17	6，49
Classe FCCOP	（E）		E											
Portata acqua	（3）	I／h	570	703	858	608	753	928	606	744	945	684	890	1118
Perdita di carico	（3）（E）	kPa	7	10	14	10	14	20	8	12	18	4	7	10
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	527	605	785	470	605	785	601	615	814	661	771	1011
Potenza assorbita	（E）	W	47	68	98	47	68	98	52	73	107	86	127	182
Potenza sonora globale	（4）（E）	$d B(A)$	43	49	56	44	50	57	44	51	58	47	54	61
ESTRO			10M			11			11M			12		
Velocità			min	med	max									
Resa raffreddamento totale	（1）（E）	kW	4，32	5，69	7，20	4，00	6，07	7，78	4，55	6，81	8，74	6，76	8，53	10，7
Resa raffreddamento sensibile	（1）（E）	kW	2，98	3，93	4，99	2，94	4，46	5，72	3，18	4,78	6，15	4，91	6，22	7，76
Classe FCEER	（E）		E											
Portata acqua	（2）	1／h	744	980	1240	689	1045	1340	784	1173	1505	1164	1469	1841
Perdita di carico	（2）（E）	kPa	8	14	21	6	13	20	9	19	29	14	22	32
Resa riscaldamento	（3）（E）	kW	4，28	5，56	6，96	4，39	6，53	8，37	4,75	7，02	9，00	7，45	9，29	12，2
Classe FCCOP	（E）		E											
Portata acqua	（3）	1／h	737	957	1199	756	1124	1441	818	1209	1550	1283	1600	2101
Perdita di carico	（3）（E）	kPa	7	11	16	6	12	18	8	16	25	14	20	33
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	570	771	1011	682	1022	1393	642	1022	1393	1154	1317	1850
Potenza assorbita	（E）	W	86	127	182	109	169	244	109	169	244	210	240	310
Potenza sonora globale	（4）（E）	dB（A）	48	55	62	49	60	67	50	61	68	60	64	71

（1）Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ}$ C，temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido（ 47% umidità relativa）espressa secondo la EN1397：2021
（2）Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$ ，temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido（ 47% umidità relativa）
（3）Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$ ，temperatura aria $20^{\circ} \mathrm{C}$
4）Potenza sonora rilevata secondo ISO 3741 e ISO 3742
（E）Dati certificati EUROVENT
Alimentazione elettrica 230－1－50（V－ph－Hz）

Terminali idronici ESTRO

DATI TECNICI NOMINALI-4 TUBI

ESTRO			1			2			3			4		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	0,74	0,88	1,10	0,97	1,11	1,42	1,22	1,44	1,64	1,24	1,52	1,74
Resa raffreddamento sensibile	(1)(E)	kW	0,56	0,67	0,83	0,73	0,87	1,10	0,91	1,07	1,22	0,96	1,18	1,41
Classe FCEER	(E)													
Portata acqua	(2)	I/h	127	152	189	167	191	245	210	248	282	214	262	300
Perdita di carico	(2)(E)	kPa	4	5	7	6	8	12	8	11	14	7	10	13
Resa riscaldamento	(3)(E)	kW	1,18	1,31	1,49	1,31	1,49	1,66	1,36	1,56	1,76	1,36	1,56	1,76
Classe FCCOP	(E)													
Portata acqua	(3)	1/h	102	113	128	113	128	143	117	134	152	117	134	152
Perdita di carico	(3)(E)	kPa	2	3	4	3	4	4	4	5	7	4	5	6
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	146	184	226	174	225	307	205	261	330	205	261	327
Potenza assorbita	(E)	W	18	21	32	21	28	37	25	36	53	24	36	53
Potenza sonora globale	(4)(E)	$d B(A)$	30	32	40	33	39	45	40	44	49	38	44	50

ESTRO			5			6			7		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	1,55	1,96	2,32	1,70	2,29	2,81	1,92	2,54	3,36
Resa raffreddamento sensibile	(1)(E)	kW	1,14	1,50	1,79	1,21	1,62	2,01	1,40	1,96	2,61
Classe FCEER	(E)		E			D			E		
Portata acqua	(2)	1/h	267	338	400	293	394	484	331	437	579
Perdita di carico	(2)(E)	kPa	8	12	16	5	8	11	4	7	12
Resa riscaldamento	(3)(E)	kW	1,78	2,18	2,53	1,88	2,31	2,68	2,82	3,47	4,20
Classe FCCOP	(E)						E				
Portata acqua	(3)	1/h	153	188	218	162	199	231	243	299	362
Perdita di carico	(3)(E)	kPa	2	3	3	2	3	4	8	12	16
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	238	334	432	237	332	431	316	444	628
Potenza assorbita	(E)	W	29	44	57	29	43	56	37	61	98
Potenza sonora globale	(4)(E)	$d B(A)$	34	43	48	33	41	47	36	45	53

ESTRO			8			9			95		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	2,44	3,17	4,16	3,06	3,74	4,57	3,49	4,27	5,31
Resa raffreddamento sensibile	(1)(E)	kW	1,74	2,36	2,99	2,23	2,80	3,47	2,38	3,01	3,78
Classe FCEER	(E)		D								
Portata acqua	(2)	1/h	420	546	716	527	644	787	601	735	914
Perdita di carico	(2)(E)	kPa	5	7	12	7	10	14	10	14	20
Classe FCCOP	(E)						E				
Resa riscaldamento	(3)(E)	kW	2,73	3,22	3,82	3,55	4,07	4,64	3,70	4,20	4,84
Portata acqua	(3)	I/h	235	277	329	306	350	400	319	362	417
Perdita di carico	(3)(E)	kPa	8	10	14	5	6	8	7	9	12
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	356	490	690	460	593	763	478	603	792
Potenza assorbita	(E)	W	38	61	98	47	68	98	52	73	107
Potenza sonora globale	(4)(E)	dB(A)	39	46	56	48	53	58	46	52	59

ESTRO			10			11			12		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	3,84	5,10	6,46	3,96	5,99	7,64	6,70	8,44	10,5
Resa raffreddamento sensibile	(1)(E)	kW	2,73	3,67	4,67	2,91	4,40	5,61	4,86	6,15	7,63
Classe FCEER	(E)						E				
Portata acqua	(2)	1/h	661	878	1112	682	1031	1316	1154	1453	1806
Perdita di carico	(2)(E)	kPa	5	8	12	5	10	16	14	21	30
Classe FCCOP	(E)						E				
Resa riscaldamento	(3)(E)	kW	5,02	6,02	6,97	4,85	6,29	7,35	6,93	8,01	9,52
Portata acqua	(3)	I/h	432	518	600	418	542	633	597	690	820
Perdita di carico	(3)(E)	kPa	14	19	24	14	22	29	24	31	42
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	565	765	998	636	1007	1362	999	1300	1814
Potenza assorbita	(E)	W	86	127	182	109	169	244	210	240	310
Potenza sonora globale	(4)(E)	dB(A)	46	54	60	48	58	66	63	64	71

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742

FC-46 ${ }^{\text {(E) }}$ Dati certificati EUROVENT

DISEGNI DIMENSIONALI

ESTRO		1	2	3	4	4M	5			6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Motore ON/OFF (3 Vel.)		x	x	x	X	x	x	x		X	x	x	X	X	x	X	X	x	x	x	x	x
Motore ON/OFF (6Vel.)		x	-	X	X	x	x	x		x	X	x	x	x	x	X	x	-	-	-	-	-
Motore Inverter		x	-	x	x	x	x			x	x	-	x	-	x	x	x	-	-	x	x	-
Motore Inverter GreenTech		x	-	x	x	x	x			x	x	-	X	-	x	x	-	-	-	-	-	-
$x=$ disponibile																						
ESTRO	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} B \\ \mathrm{~mm} \end{gathered}$		$\underset{\mathrm{mm}}{\mathrm{C}}$	$\begin{gathered} \text { D } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$		F mm		G mm	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$		M mm	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$		R mm	4	4DF	5 mm	$\begin{aligned} & 8 \\ & \mathrm{~kg} \end{aligned}$
1-2-3-4-4M	774	226		498	51	458		163		263	149	198		187	335	99		486	1/2	1/2	16	21
5-6-6M	984	226		708	51	458		163		263	149	198		187	335	99		486	1/2	1/2	16	27
7-7M-8-8M-9-9M	1194	226		918	51	458		163		263	149	198		187	335	99		486	1/2	1/2	16	33
95	1194	251		918	48	497		185		259	155	220		195	348	120		478	3/4	1/2	16	34
10-10M-11-11M	1404	251		1128	48	497		185		259	155	220		195	348	120		478	3/4	1/2	16	43
12	1614	251		1338	48	497		185		259	155	220		195	348	120		478	3/4	1/2	16	53

Terminali idronici ESTRO

DISEGNI DIMENSIONALI

ESTRO FA

LEGENDA	
$\mathbf{1}$	Spazio utile per collegamenti idraulici
$\mathbf{2}$	Asole per il fissaggio alla parete
$\mathbf{3}$	Spazio utile per collegamenti elettrici
$\mathbf{4}$	Attacchi idraulici batteria standard
4 DF	DF Attacchi idraulici batteria addizionale ad 1 rango DF
$\mathbf{5}$	Scarico condensa

ESTRO FA		1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	10	10M	11	11M	12	
Motore ON/OFF (3 Vel.)		x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x	x	x	
Motore ON/OFF (6 Vel.)		x	-	x	x	x	x	x	x	X	x	x	x	x	x	-	-	-	-	-	
Motore Inverter		x	-	x	X	x	x	x	x	x	-	x	-	x	x	-	-	x	x	-	
Motore Inverter GreenTech		x	-	x	x	x	x	x	x	x	-	x	-	X	X	-	-	-	-	-	
$x=$ disponibile																					
ESTRO	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} B \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$		E mm	$\begin{gathered} \text { F } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$		M mm	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \mathrm{~mm} \end{gathered}$	4		4DF	$\begin{gathered} 5 \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{ma} \\ & \mathrm{~kg} \end{aligned}$
1-2-3-4-4M	774	228	498	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	22
5-6-6M	984	228	708	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	26
7-7M-8-8M-9-9M	1194	228	918	53		458	166	263	149	145	198		187	335	99	486	1/2		1/2	16	32
10-10M-11-11M	1404	253	1128	50		497	188	259	155	170	220		195	348	120	478	3/4		1/2	16	42
12	1614	253	1338	50		497	188	259	155	170	220		195	348	120	478	3/4		1/2	16	50

DISEGNI DIMENSIONALI

ESTRO FU		1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12	
Motore ON/OFF (3 Vel.)		X	X	x	x	x	X	X	x	x	X	X	X	X	x	x	X	X	x	x	X	
Motore ON/OFF (6 Vel.)		x	-	x	x	x	x	x	x	x	x	X	x	x	X	x	-	-	-	-	-	
Motore Inverter		x	-	x	x	x	x	x	x	x	-	x	-	x	x	x	-	-	x	x	-	
Motore Inverter GreenTech		x	-	X	x	x	x	x	x	x	-	x	-	x	x	-	-	-	-	-	-	
$x=$ disponibile																						
ESTRO FU	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} B \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$		$\begin{gathered} D \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { F } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$		H	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	P mm		$\begin{gathered} \mathrm{R} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \mathrm{~mm} \end{gathered}$	Z mm		4	$\begin{aligned} & \text { A6 } \\ & \mathrm{kg} \end{aligned}$
1-2-3-4-4M	774	226	498		51	458	163	263		149	198	187	335	99		486	208	198	246		1/2	22
5-6-6M	984	226	708		51	458	163	263		149	198	187	335	99		486	208	198	246		1/2	29
7-7M-8-8M-9-9M	1194	226	918		51	458	163	263		149	198	187	335	99		486	208	198	246		1/2	35
95	1194	251	918		48	497	185	259		155	220	195	348	120		478	234	208	271		3/4	36
10-10M-11-11M	1404	251	1128		48	497	185	259		155	220	195	348	120		478	234	208	271		3/4	45
12	1614	251	1338		48	497	185	259		155	220	195	348	120		478	234	208	271		3/4	55

Terminali idronici ESTRO

DISEGNI DIMENSIONALI

ESTRO FP

LEGENDA

$\mathbf{1}$	Spazio utile per collegamenti idraulici
$\mathbf{2}$	Asole per il fissaggio alla parete
$\mathbf{3}$	Spazio utile per collegamenti elettrici
$\mathbf{4}$	Attacchi idraulici batteria standard
4DF	DF Attacchi idraulici batteria addizionale ad 1 rango DF
$\mathbf{5}$	Scarico condensa

ESTRO FP		1	2	3		4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12
Motore ON/OFF (3 Vel.)		X	x	x		x	x	x	x	x	x	x	x	x	X	x	x	X	x	x	x	x
Motore ON/OFF (6Vel.)		x	-			X	x	x	x	x	x	x	x	X	X	x	x	-	-	-	-	-
Motore Inverter		x	-			x	x	x	x	x	x	-	x	-	x	x	x	-	-	x	x	-
Motore Inverter GreenTech		x	-			x	x	x	x	x	X	-	X	-	x	x	-	-	-	-	-	-
$\mathrm{x}=$ disponibile																						
ESTRO	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	B mm		C mm		D mm	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	F mm		$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$		P mm	$\begin{gathered} R \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{~mm} \end{gathered}$		T mm			5 mm	$\underset{\mathrm{kg}}{\mathrm{~kg}}$
1-2-3-4-4M	774	226		498		51	458	163		263	187	335		99	486	208		198	1/2	1/2	16	22
5-6-6M	984	226		708		51	458	163		263	187	335		99	486	208		198	1/2	1/2	16	29
7-7M-8-8M-9-9M	1194	226		918		51	458	163		263	187	335		99	486	208		198	1/2	1/2	16	35
95	1194	251		918		48	497	185		259	195	348		120	478	234		208	3/4	1/2	16	36
10-10M-11-11M	1404	251		1128		48	497	185		259	195	348		120	478	234		208	3/4	1/2	16	45
12	1614	251		1338		48	497	185		259	195	348		120	478	234		208	3/4	1/2	16	55

DISEGNI DIMENSIONALI

ESTRO FC		1	2	3	4	4M	5	6	6M	7	7M	8	8M	9	9M	95	10	10M	11	11M	12	
Motore ON/OFF (3 Vel.)		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
Motore ON/OFF (6 Vel.)		X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	-	-	-	-	-	
Motore Inverter		x	-	x	x	x	x	x	x	x	-	x	-	x	x	x	-	-	x	x	X	
Motore Inverter GreenTech		X	-	X	X	X	X	X	X	X	-	X	-	X	X	-	-	-	-	-	X	
$\mathrm{x}=$ disponibile																						
ESTRO	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	D mm	$\begin{gathered} \text { E } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathbf{F} \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	P mm	$\begin{gathered} \text { Q } \\ \mathrm{mm} \end{gathered}$		R mm	S	$\begin{gathered} \mathrm{T} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{U} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \mathrm{~mm} \end{gathered}$	4	c kg
1-2-3-4-4M	584	224	498	51	458	163	263	149	198	187	335	99	189		486	208	198	436	464	61	1/2	18
5-6-6M	794	224	708	51	458	163	263	149	198	187	335	99	189		486	208	198	646	674	61	1/2	23
7-7M-8-8M-9-9M	1004	224	918	51	458	163	263	149	198	187	335	99	189		486	208	198	856	884	61	1/2	27
95	1004	249	918	48	497	185	259	155	220	195	348	120	215		478	234	208	856	884	67	3/4	27
10-10M-11-11M	1214	249	1128	48	497	185	259	155	220	195	348	120	215		478	234	208	1066	1094	67	3/4	37
12	1424	249	1338	48	497	185	259	155	220	195	348	120	215		478	234	208	1276	1304	67	$3 / 4$	43

Terminali idronici ESTRO

DISEGNI DIMENSIONALI
ESTRO FF

LEGENDA

ESTRO FF		1	2	3	4	4M	5	6	6M	7	7M	8	8M	99	M 95	10	10M	11	11M	12	
Motore ON/OFF (3 Vel.)		X	X	x	X	x	X	x	x	X	x	x	x	x	x	X	x	x	x	x	
Motore ON/OFF (6Vel.)		X	-	X	X	x	X	x	x	X	X	x	X	X X	x	-	-	-	-	-	
Motore Inverter		x	-	x	x	x	x	x	x	x	-	x	-	$x \quad x$	- -	-	-	x	x	-	
Motore Inverter GreenTech		X	-	x	x	x	x	x	x	x	-	x	-	$x \quad x$	- -	-	-	-	-	-	
$x=$ disponibile																					
ESTRO	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { B } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { C } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} D \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { G } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} M \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} Q \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} R \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{U} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} V \\ \mathrm{~mm} \end{gathered}$	W mm	4	$\begin{gathered} \mathrm{B} \\ \mathrm{~kg} \end{gathered}$
1-2-3-4-4M	584	224	498	51	458	163	263	149	198	187	335	99	189	486	208	198	436	464	61	1/2	18
5-6-6M	794	224	708	51	458	163	263	149	198	187	335	99	189	486	208	198	646	674	61	1/2	23
7-7M-8-8M-9-9M	1004	224	918	51	458	163	263	149	198	187	335	99	189	486	208	198	856	884	61	1/2	27
95	1004	249	918	48	497	185	259	155	220	195	348	120	215	478	234	208	856	884	67	3/4	27
10-10M-11-11M	1214	249	1128	48	497	185	259	155	220	195	348	120	215	478	234	208	1066	1094	67	3/4	37
12	1424	249	1338	48	497	185	259	155	220	195	348	120	215	478	234	208	1276	1304	67	3/4	43

DISEGNI DIMENSIONALI

Ventilconvettori con ventilatore centrifugo e motore EC

ESTRO i 1 - 9 kW

JONIX
 pure llying

Risparmio energetico e comfort in un'unica soluzione

La continua innovazione che caratterizza il progetto ESTRO propone gruppi di ventilazione con motori a magneti permanenti EC pilotati da inverter.
L'utilizzo di questa tipologia di motore permette di realizzare un'importante riduzione delle potenza assorbita, miglior comfort termoigrometrico percepito e considerevoli riduzioni dell'emissione acustica.
Analisi e verifiche hanno evidenziato come la riduzione della potenza assorbita rispetto ai tradizionali motori $A C$ sia addirittura del 70% nel funzionamento integrato, con corrispondente riduzione delle emissioni di CO_{2}.
La tecnologia inverter DC consente di adeguare in modo continuo la portata aria alle effettive esigenze dell'ambiente riducendo notevolmente le oscillazioni della temperatura ambiente tipiche delle regolazioni a gradini. La modulazione continua della portata aria comporta l'adeguamento della potenza termica erogata, quindi una rapida messa a regime degli ambiente controllati e livelli sonori eccezionalmente bassi nelle fasi di mantenimento.
I ventilconvettori ESTRO i utilizzano pannelli di comando a microprocessore MYCOMFORT LARGE ed EVO che, grazie alle uscite analogiche ed a raffinate logiche di regolazione, controllano perfettamente il funzionamento dei motori EC di valvole modulanti.

PLUS

» Motore EC controllato da inverter
» Bassi consumi energetici
» Funzionamento modulante
» Massima silenziosità
» Batteria fino a 4 ranghi
» Sistema di sanificazione JONIX incorporabile

```
ESTRO FLi Installazione a parete con mobile
ESTRO FA i Installazione in nicchia a parete con mobile
ESTROCLi
ESTRO FUi
ESTRO FP i
ESTRO FB i Installazione a pavimento ed a soffitto con mobile
        ribassato
```

ESTRO FC i
ESTRO FFi
ESTRO FBC

Installazione ad incasso verticale e orizzontale con aspirazione posteriore
Installazione ad incasso verticale e orizzontale con aspirazione frontale
Ribassato ad incasso verticale e orizzontale con aspirazione frontale

COMPONENTI PRINCIPALI

Mobile di copertura

Composto da un pannello in lamiera di acciaio verniciato；fiancate latera－ li，griglia di mandata（orientabile di 180° ）e griglia di ripresa sono realiz－ zate in ABS．

Ventilatori

Centrifughi a doppia aspirazione， bilanciati staticamente e dinamica－ mente，sono realizzati in ABS antista－ tico con pale a profilo alare e moduli sfalsati．I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza

Struttura

Realizzata in lamiera di acciaio zinca－ to di elevato spessore，isolata termi－ camente ed acusticamente con pan－ nelli autoestinguenti di classe 1．Le versioni FUi－FBi－FCi－FFi ed FBCi sono predisposte sia per installazio－ ne verticale sia orizzontale grazie al doppio sistema di raccolta e scarico condensa．

Motore elettrico EC

Motore a magneti permanenti．L＇u－ nità è dotata di scheda inverter di controllo del motore，che permette un preciso settaggio della velocità di rotazione del motore（segnale di controllo 0－10 V ）．

Batteria di scambio

termico

Ad alta efficienza in tubo di rame ed alette in alluminio，è corredata di collettori in ottone e valvola di sfiato． Gli attacchi idraulici sono reversibili in fase di installazione．Su richiesta è possibile montare una batteria addi－ zionale，per impianti a 4 tubi．

ACCESSORI	
Pannelli di comando elettronici a microprocessore con display	
DIST	Distanziale per comandi MY COMFORT per installazione a parete
EVO－2－TOUCH	Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO
EVOBOARD	Scheda di potenza per comando EVO
EVODISP	Interfaccia utente con display per comando EVO
EYNAVEL	Dispositivo per la comunicazione wi－fio Bluetooth tra EVOBOARD e smartphone
KBE	Kit installazione MY COMFORT a bordo
MCLE	Comando a microprocessore con display MY COMFORT LARGE
MCSUE	Sonda umidità per comandi MY COMFORT（medium e large），EVO
MCSWE	Sonda acqua per comandi MY COMFORT，EVO
Pannelli di comando elettronici a microprocessore	
KB A	Kit per linstallazione dei comandi TED a bordo di ESTRO FA
KBLDX	Kit per l＇installazione a destra del comando TED a bordo ESTRO FL／FU／FB
KBLSX	Kit per linstallazione a sinistra del comando TED a bordo ESTRO FL／FU／FB
TED 10	Comando elettronico per il controllo del ventilatore inverter EC e di una o due valvole $\mathrm{ON} /$ OFF 230V
TED SWA	Sonda temperatura aria 0 acqua per comandi TED
Interfaccia di potenza e comandi per serrande	
CSB	Comando a bordo perl＇apertura e la chiusura proporzionale della serranda motorizzata
CSD	Comando ad incasso a parete per l＇apertura e la chiusura proporzionale della serranda motorizzata SM
Batteria addizionale per impiantia 4 tubi	
DF	Batteria addizionale ad 1 rango per impiantia 4 tubi（non utilizzabile sui modelli ESTRO ＂ $\mathrm{M}^{\prime \prime}$ ）
Bacinelle ausiliarie di raccolta condensa，gusci isolanti，pompa scarico condensa	
BH	Bacinella ausiliaria per ventilconvettori ad installazione orizzontale
BV	Bacinella ausiliaria per ventilconvettori ad installazione verticale
GIVKL	Guscio isolante per valvola VKS，attacchi idraulicia sinistra
GIVKR	Guscio isolante per valvola VKS，attacchi idraulici a destra
KSC	Kit pompa di scarico condensa
Zoccoli di sostegno e copertura	
2A	Coppia di zoccoli di sostegno e copertura per ESTRO FA
ZAG	Coppia di zoccoli di sostegno e copertura con griglia anteriore per ESTRO FA
ZC	Coppia di zoccoli di sostegno e copertura per ESTRO CL
2CG	Coppia di zoccoli di sostegno e copertura con griglia anteriore per ESTRO CL

ZL	Coppia di zoccoli di sostegno e copertura per ESTRO FL
ZLG	Coppia di zocoli di sostegno e copertura con griglia anteriore per ESTRO FL
Pannelli di chiusura posteriore	
PH	Pannello posteriore verniciato per modelli ad installazione orizzontale con mobile
PV	Pannello posteriore verniciato per modelli ad installazione verticale con mobile
Griglie di mandata e ripresa aria	
GE	Griglia in alluminio di aspirazione aria esterna con controtelaio
GEF	Griglia in alluminio di aspirazione aria esterna con controtelaio e filtro aria
GM	Griglia di mandata aria in alluminio，a doppio ordine，con controtelaio
RGC	Plenum con collari circolari per griglia di mandata aria
Plenum e raccordi	
RA90	Raccordo di aspirazione angolare
RAD	Raccordo di aspirazione dritto
RADC	Plenum di aspirazione aria con collari circolari
RM90	Raccordo di mandata angolare
RM90C	Raccordo di mandata angolare coibentato
RMCD	Raccordo di mandata dritto coibentato
RMCD C	Plenum di mandata con collari circolari
RMD	Raccordo di mandata dritto
Serrande di presa aria esterna	
SM	Serranda motorizzata，motore a destra，con trasformatore
SM	Serranda motorizzata，motore a sinistra，con trasformatore
SM	Serranda di presa aria motorizzata
SMC	Serranda motorizzata，motore a destra，per comando centralizzato
SMC	Serranda motorizzata，motore a sinistra，per comando centralizzato
Valvole	
KV	Valvola a 2 vie，attuatore ON／OFF，alimentazione 230 V ，kit idraulico lato attacchi，per batteria principale
KVM	Valvola a 2 vie，attuatore MODULANTE，alimentazione $24 V$ ，kit idraulico lato attacchi，per batteria principale
VPIC	Valvole a 2 vie pressure independent，attuatori ON／OFF o MODULANTI，alimentazione 230V o 24V，kit idraulici，per batteria principale e addizionale
Sistemi di sanificazione	
JONIX－on board	Modulo di sanificazione JONIX per installazione a bordo

Fan coil ESTRO i

DATI TECNICI NOMINALI - 2 TUBI

ESTROi			1			3			4			4M		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	4,00	5,30	6,50	5,20	6,90	8,40	5,20	6,90	8,40	5,20	6,90	8,40
Resa raffreddamento totale	(1)(E)	kW	0,77	0,91	1,14	1,25	1,51	1,72	1,35	1,69	1,94	1,49	1,84	2,22
Resa raffreddamento sensibile	(1)(E)	kW	0,59	0,69	0,86	0,94	1,13	1,28	1,04	1,30	1,49	1,05	1,31	1,58
Classe FCEER	(E)													
Portata acqua	(2)	1/h	133	157	196	215	260	296	232	291	334	257	317	382
Perdita di carico	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	10	14	20
Resa riscaldamento	(3)(E)	kW	0,95	1,11	1,32	1,45	1,72	1,84	1,50	1,81	2,15	1,53	1,88	2,29
Classe FCCOP	(E)			C			B			B			C	
Portata acqua	(3)	1/h	164	191	227	250	296	317	258	312	370	263	324	394
Perdita di carico	(3)(E)	kPa	5	6	8	9	12	14	6	9	12	9	12	17
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	149	189	231	211	271	344	211	271	344	211	271	344
Potenza assorbita	(E)	W	6	8	9	7	9	19	7	9	19	9	12	24
Potenza sonora globale	(4)(E)	$d B(A)$	30	32	40	38	44	49	40	44	50	41	45	51

ESTRO i			5			6			6M			7		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	3,80	5,70	7,30	3,80	5,70	7,30	3,80	5,70	7,30	3,60	5,40	8,00
Resa raffreddamento totale	(1)(E)	kW	1,59	2,02	2,40	1,75	2,37	2,91	1,92	2,63	3,27	1,97	2,62	3,49
Resa raffreddamento sensibile	(1)(E)	kW	1,17	1,56	1,86	1,25	1,69	2,09	1,32	1,82	2,28	1,44	2,03	2,73
Classe FCEER	(E)		A			A			A			C		
Portata acqua	(2)	1/h	274	348	413	301	408	501	331	453	563	339	451	601
Perdita di carico	(2)(E)	kPa	8	12	16	5	8	11	7	12	17	4	7	12
Resa riscaldamento	(3)(E)	kW	1,74	2,26	2,70	1,76	2,37	2,94	1,74	2,41	3,03	2,39	3,13	4,05
Classe FCCOP	(E)		A			A			B			C		
Portata acqua	(3)	1/h	300	389	465	303	408	506	300	415	522	412	539	697
Perdita di carico	(3)(E)	kPa	8	12	17	5	8	11	6	10	15	5	8	13
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	241	341	442	241	341	442	241	341	442	320	450	640
Potenza assorbita	(E)	W	6	8	16	8	10	20	6	8	16	10	17	34
Potenza sonora globale	(4)(E)	$d B(A)$	35	43	48	36	42	48	35	43	49	35	46	52

ESTROi			8			9			9 M			95		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	3,70	5,40	8,00	5,00	6,70	8,90	5,00	6,70	8,90	4,80	6,10	8,30
Resa raffreddamento totale	(1)(E)	kW	2,50	3,26	4,30	2,99	3,64	4,48	3,51	4,35	5,37	3,41	4,17	5,22
Resa raffreddamento sensibile	(1)(E)	kW	1,79	2,44	3,12	2,31	2,90	3,62	2,46	3,05	3,79	2,47	3,11	3,95
Classe FCEER	(E)		A			B			A			A		
Portata acqua	(2)	1/h	430	561	740	515	627	771	604	749	925	587	718	899
Perdita di carico	(2)(E)	kPa	6	10	15	7	10	14	11	16	24	10	14	21
Resa riscaldamento	(3)(E)	kW	2,47	3,24	4,24	3,36	4,11	4,88	3,53	4,37	5,39	3,52	4,32	5,49
Classe FCCOP	(E)													
Portata acqua	(3)	1/h	425	558	730	579	708	840	608	753	928	606	744	945
Perdita di carico	(3)(E)	kPa	5	8	14	7	9	13	10	14	20	8	12	18
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	361	497	706	470	605	785	470	605	785	488	615	814
Potenza assorbita	(E)	W	10	13	27	15	20	41	17	23	47	15	18	43
Potenza sonora globale	(4)(E)	$d B(A)$	35	43	53	43	49	56	44	50	57	44	51	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI - 2 TUBI

ESTRO i				11			11M	
Velocità			min	med	max	min	med	max
Tensione in ingresso	(E)	V	3,60	6,20	8,60	3,60	6,20	8,60
Resa raffreddamento totale	(1)(E)	kW	4,11	6,24	8,02	4,65	6,94	8,89
Resa raffreddamento sensibile	(1)(E)	kW	3,05	4,63	5,96	3,28	4,91	6,30
Classe FCEER	(E)			B			A	
Portata acqua	(2)	1/h	708	1075	1381	801	1195	1531
Perdita di carico	(2)(E)	kPa	6	13	20	9	19	29
Resa riscaldamento	(3)(E)	kW	4,39	6,53	8,37	4,75	7,02	9,00
Classe FCCOP	(E)							
Portata acqua	(3)	I/h	756	1124	1441	818	1209	1550
Perdita di carico	(3)(E)	kPa	6	12	18	8	16	25
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	642	1022	1393	642	1022	1393
Potenza assorbita	(E)	W	17	50	114	13	38	87
Potenza sonora globale	(4)(E)	$d B(A)$	49	60	67	50	61	68

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Fan coil ESTRO i

DATI TECNICI NOMINALI - 4 TUBI

ESTRO i			1			3			4			5		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	4,00	5,30	6,50	5,10	6,60	8,10	5,10	6,60	8,10	3,70	5,50	7,20
Resa raffreddamento totale	(1)(E)	kW	0,75	0,89	1,12	1,23	1,47	1,67	1,25	1,55	1,77	1,57	1,99	2,37
Resa raffreddamento sensibile	(1)(E)	kW	0,57	0,68	0,85	0,92	1,10	1,25	0,97	1,21	1,44	1,16	1,53	1,84
Classe FCEER	(E)		C			B			B			A		
Portata acqua	(2)	1/h	129	153	193	212	253	288	215	267	305	270	343	408
Perdita di carico	(2)(E)	kPa	4	5	7	8	11	14	7	10	13	8	12	16
Resa riscaldamento	(3)(E)	kW	1,18	1,31	1,49	1,36	1,56	1,76	1,36	1,56	1,76	1,78	2,18	2,53
Classe FCCOP	(E)		B			B			B			B		
Portata acqua	(3)	1/h	102	113	128	117	134	152	117	134	152	153	188	218
Perdita di carico	(3)(E)	kPa	2	3	4	4	5	7	4	5	6	2	3	3
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	146	184	226	205	261	330	205	261	327	238	334	432
Potenza assorbita	(E)	W	7	8	9	7	8	18	7	8	18	8	10	19
Potenza sonora globale	(4)(E)	$d B(A)$	29	32	40	40	44	49	38	44	50	34	43	48
ESTROi			6				7				8			
Velocità			min	med		max	min	med		max	min			max
Tensione in ingresso	(E)	V	3,80	5,70		7,30	3,60	5,40		8,00	3,70			8,00
Resa raffreddamento totale	(1)(E)	kW	1,72	2,32		2,86	1,95	2,59		3,44	2,47			4,24
Resa raffreddamento sensibile	(1)(E)	kW	1,23	1,65		2,06	1,43	2,01		2,69	1,77			3,07
Classe FCEER	(E)		A											
Portata acqua	(2)	I/h	296	400		492	336	446		592	425			730
Perdita di carico	(2)(E)	kPa	5	8		11	4	7		12	5			12
Resa riscaldamento	(3)(E)	kW	1,88	2,31		2,68	2,82	3,47		4,20	2,73			3,82
Classe FCCOP	(E)		B				B				A			
Portata acqua	(3)	1/h	162	199		231	243	299		362	235			329
Perdita di carico	(3)(E)	kPa	2	3		4	8	12		16	8			14
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	237	332		431	316	444		628	356			690
Potenza assorbita	(E)	W	6	11		17	9	12		17	9			25
Potenza sonora globale	(4)(E)	$d B(A)$	33	41		47	36	45		53	39			56

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u mididà relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo 1503741 e ISO 3742
(E) Dati certificati EUROVENT

DATI TECNICI NOMINALI - 4 TUBI

ESTROi			9			95			11		
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	5,00	6,70	8,90	4,80	6,10	8,30	3,60	6,20	8,60
Resa raffreddamento totale	(1)(E)	kW	3,10	3,79	4,64	3,53	4,32	5,39	3,76	5,67	7,20
Resa raffreddamento sensibile	(1)(E)	kW	2,27	2,85	3,54	2,42	3,06	3,86	3,00	4,52	5,73
Classe FCEER	(E)		B			A			B		
Portata acqua	(2)	1/h	534	653	799	608	744	928	647	976	1240
Perdita di carico	(2)(E)	kPa	7	10	14	10	14	20	5	10	16
Resa riscaldamento	(3)(E)	kW	3,55	4,07	4,64	3,70	4,20	4,84	4,85	6,29	7,35
Classe FCCOP	(E)						B				
Portata acqua	(3)	1/h	306	350	400	319	362	417	418	542	633
Perdita di carico	(3)(E)	kPa	7	8	11	7	9	12	14	22	29
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	460	593	763	478	603	792	636	1007	1362
Potenza assorbita	(E)	W	19	25	48	13	16	34	18	51	116
Potenza sonora globale	(4)(E)	dB(A)	48	53	58	46	52	59	48	58	66

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Ventilconvettore con mobile di design profondo 17 cm

FLAT S 1-3 kW

PLUS

» Mobile di design con profondità 17 cm
" Microswitch su flap aria
» Utilizzo di ABS stabilizzato ai raggi UV
» Attacchi idraulici reversibili
» Motore a 3 velocità
» Ventilatori centrifughi in ABS
» Sistema di sanificazione JONIX incorporabile

La risposta alle nuove esigenze progettuali in ambito residenziale

La serie FLAT di Galletti diventa SLIM. Infatti con solo 17 cm di profondità, FLAT S garantisce dimensioni compatte che lo rendono facilmente integrabile in ogni contesto, rispondendo cosi ai nuovi trend progettuali in ambito residenziale (e non solo).
La mini serie FLAT S significa innovazione in termini progettuali, per garantire prestazioni sonore di assoluta eccellenza con il vantaggio di un design esclusivo che ben si abbina sia all'utilizzo residenziale sia a quello commerciale.
Il mobile di copertura di design colore RAL9010 è di dimensioni contenute, costituito da lamiera di acciaio e ABS stabilizzato agli UV. La griglia superiore è costituita da un flap ed alette orientabili, costituito da microinterruttore che interrompe il funzionamento dell'unità quando viene posto in posizione di chiusura.
L'adozione di ABS stabilizzato agli UV nelle parti che compongono il mobile di copertura e antistatico nel gruppo di ventilazione (coclea e ventilatore centrifugo) garantiscono la medesima resa estetica e acustica durante tutta la vita del prodotto.

COMPONENTI PRINCIPALI

Mobile di copertura

Mobile di copertura di design colore RAL9010, profondo solo 17 cm , pannello frontale in lamiera di acciaio. Fiancate, griglia superiore e portelle laterali realizzate in ABS stabilizzato agli UV per mantenere il colore inalterato nel tempo. La griglia superiore è costituita da un flap ed alette orientabili. Il flap è dotato di microinterruttore che interrompe il funzionamento dell'unità quando viene posto in posizione di chiusura

Struttura

Realizzata in lamiera di acciaio zincato di elevato spessore, isolata termicamente ed acusticamente con pannelli autoestingueti di classe 1.

Ventilatori

Centrifughi a doppia aspirazione, bilanciati staticamente e dinamicamente, sono realizzati in ABS antistatico con pale a profilo alare e moduli sfalsati. I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza.

Motore elettrico

Montato su supporti antivibranti, con condensatore permanentemente inserito e protezione termica degli avvolgimenti è direttamente accoppiato ai ventilatori. È disponibile sia a 3 sia a 6 (Su richiesta) velocità di rotazione per rispondere a tutte le richieste specifiche di prestazioni, silenziosità, consumi elettrici.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di
 manutenzione.

CONFIGURATORE

I modelli sono completamente configurabili selezionando la versione e le opzioni. A fianco è riportato un esempio di configurazione.

CONFIGURATORE

1 Versione
L L- Installazione a parete con mobile Motore
0 Motore a 3 velocità
I Motore EC
3 Lato attacchi batteria principale
L Attacchi a sinistra
R Attacchia destra
4 Lato attacchi batteria addizionale/resistenza elettrica
0 Assente
L Attacchia a sinistra
R Attacchia destra
Valvola
0 Assente
1 VKS -Valvola 3 vie-230V - ON/OFF - kit completo
2 KV -Valvola 2 vie - 230V-0N/OFF
3 VKMS - Valvola 3 vie-24V MODULANTE - kit completo
4 KVM - Valvola 2 vie-24V - MODULANTE
5 VKS24-Valvola 3 vie-24V-ON/OFF-kit completo
6 KV24-Valvola 2 vie-24V-0N/OFF
A VKSND-Valvola 3 vie-230V-ON/OFF - kit lato batteria
B VKMSND - Valvola 3 vie-24V - MODULANTE - kit lato batteria
C VKS24ND -Valvola 3 vie-24V-ON/OFF - kit lato batteria
6 Pannello di comando
0 Assente
1 CB-Commutatore di velocità
2 TB-Termostato e commutatore
3 TIB - Termostato, commutatore e selettore E/I
4 TED 2T - Comando elettronico 2 tubi

5 TED 4T - Comando elettronico 4 tubi
TED 10 - Comando elettronico EC
MCBE - My comfort base
MCME - My comfort medium
MCLE - My comfort large
EVOBOARD - Scheda di potenza
Scheda di potenza EVOBOARD + modulo Wireless Navel
Sonde
Assente
SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
SW - Sonda acqua per MYCOMFORT, LED 503 e EVO
SU - Sonda umidità per MYCOMFORT e EVO
SA+SW - Sonda aria + acqua per MYCOMFORT, LED 503 e EVO
SA+SU - Sonda aria + umidità per MYCOMFORT e EVO
SA+SU+SW - Sonda aria + umidità + acqua per MY COMFORT e EVO
TC - Termostato di consenso
SA - Sonda aria remota per TED
SW - Sonda acqua per TED
SA + SW - Sonda aria + acqua per TED
8 Accessori vari
Assente
JONIX
BV - Bacinella ausiliaria
GIVK - Guscio valvola
9 Filtro
0 Filtro aria standard
10 Release
00
A A

ACCESSORI

Pannelli di comando elettromeccanici

CB	Con
CD	Com
TC	Ter
TIB	Ter

Pannelli di comando elettronici a microprocessore con display

COG Placra di finitura per comand LED 503 colore rigi RAL 7031
COW Placca di finitura per comando LED 503 colore bianco RAL 9003
DIST
$\begin{array}{ll}\text { EVO-2-TOUCH } & \text { Interfaccia utente touch screen } 2.8^{\prime \prime} \text { per comando EVO } \\ \text { EVOBOARD } & \text { Schedad di potenza per comando EVO }\end{array}$
EVOBOARD Scheda di potenza per comando EVO
EVODISP Interfaccia utente con display per comando EVO
EYNAVEL Dispositivo per la comunicazione wi-fio Bluetooth tra EVOBOARD e smartphone
KBFLAE Kit installazione comandi MY COMFORT a bordo FLAT
LED503 Comando elettronico con display ad incasso a parete LED 503
MCBE Comando a microprocessore con display MY COMFORT BASE
MCLE Comando a microprocessore con display MY COMFORT LARGE
MCME Comando a microprocessore con display MY COMFORT MEDIUM
MCSUE \quad Sonda umidità per comandi MY COMFORT (medium e large), EVO
MCSWE Sonda acqua per comandi MY COMFORT , EVO
Pannelli di comando elettronicia microprocessore
KB F Kit per l'installazione dei comandi TED a bordo di FLAT/FLAT S
TED 2T Comando elettronico per il controllo del ventilatore AC e di una valvola ON/OFF 230 V
TED 4T Comando elettronico per il controllo del ventilatore AC e di due valvole ON/OFF 230V
TED SWA Sonda temperatura aria 0 acqua per comandi TED
Interfaccia di potenza e comandi per serrande
KP Interfaccia di potenza per il collegamento in parallelo fino a 4 ventilconvettori ad un unico
Batteria addizionale per impiantia 4 tubi
DF Batteria addizionale ad 1 rango per impianti a 4 tubi

Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa
BVK Bacinella ausiliaria per ventilconvettori ad installazione verticale
GIVKL Guscio isolante per valvola VKS, attacchi idraulici a sinistra
GIVKR Guscio isolante per valvola VKS, attacchi idraulici a destra

| Zoccoli di sostegno e copertura |
| :--- | :--- |
| ZLS \quad Coppia di zoccoli di sostegno e copertura per FLATS |

Pannelli di chiusura posteriore

PV Pannello posteriore verniciato per modelli ad installazione verticale con mobile	
Valvole	

Valvole

KV Valvola a 2 vie, attuatore 0N/OFF, alimentazione 230 V , kit idraulico lato attacchi, per batteria principale
KV24DF Valvole a 2 vie, attuatori $0 \mathrm{~N} /$ OFF, alimentazione 24 V , kit idraulici lato attacchi, per batteria principale e batteria addizionale Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per V2VDF+STD batteria principale e addizionale

V2VSTD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24V, kit idraulici, per batteria principale
V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24V, kit idraulici, per

V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24V, kit idraulici, per batteria addizionale
V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24V, kit idraulici, per

VKDF24 Valvola a 3 vie, attuatore ON/OFF, alimentazione 24V, kit idraulico completo, per batteria addizionale

VKMS	$\begin{array}{l}\text { Valvola a 3 } 3 \text { vie, attuatore MODULANTE, alimentazione 24 V, kit idraulico completo, per } \\ \text { batteria principale }\end{array}$
VKMSND	$\begin{array}{l}\text { Valvola a 3 vie, attuatore MODULANTE, alimentazione 24 } \\ \text {, , kit idraulico senza detentore, per }\end{array}$

batteria principale
VKSND Valvola a 3 vie, attuatore ON/OFF, alimentazione 230 V , kit idraulico senza detentore, per batteria principale
VPIC Valvole a 2 vie pressure independent, attuatori ON/OFF, alimentazione 230V, kit idraulici, per

Sistemi di sanificazione

JONIX inside Modulo di sanificazione JONIX per installazione a bordo

Fan coil FLAT S

DATI TECNICI NOMINALI-2 TUBI

FLATS				13			23			33			43	
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,39	1,73	2,28	1,75	2,12	2,75
Resa raffreddamento sensibile	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Classe FCEER	(E)													
Portata acqua	(2)	I/h	148	168	213	186	230	300	243	303	399	303	368	477
Perdita di carico	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Resa riscaldamento	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,59	1,52	1,85	2,40	1,85	2,22	2,86
Classe FCCOP	(E)			D			D			E			D	
Portata acqua	(3)	1/h	155	176	221	174	211	277	264	321	417	321	386	497
Perdita di carico	(3)(E)	kPa	2	3	4	3	5	8	3	4	7	4	6	9
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	200	250	340	250	310	420
Potenza assorbita	(E)	W	12	17	23	14	20	27	25	31	41	25	31	42
Potenza sonora globale	(4)(E)	$d B(A)$	30	35	40	35	40	46	32	38	46	37	42	49

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u uididà relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47\% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI - 4 TUBI

flat S			13			23			33			43		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	0,85	0,96	1,22	1,08	1,33	1,72	1,40	1,74	2,29	1,75	2,12	2,75
Resa raffreddamento sensibile	(1)(E)	kW	0,60	0,68	0,87	0,74	0,91	1,19	1,00	1,24	1,65	1,25	1,52	1,99
Classe FCEER	(E)		D											
Portata acqua	(2)	I/h	148	168	213	186	230	300	243	303	399	303	368	477
Perdita di carico	(2)(E)	kPa	3	3	5	5	7	11	3	5	7	5	7	10
Resa riscaldamento	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	1,88	2,16	2,69	2,16	2,45	3,02
Classe FCCOP	(E)													
Portata acqua	(3)	I/h	91	100	119	118	136	167	165	189	235	189	215	264
Perdita di carico	(3)(E)	kPa	2	2	3	4	5	7	1	2	3	2	2	3
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	200	250	340	250	310	420
Potenza assorbita	(E)	W	12	17	23	14	20	27	23	28	37	25	31	42
Potenza sonora globale	(4)(E)	dB(A)	30	35	40	35	40	46	32	38	46	37	42	49

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DISEGNI DIMENSIONALI

LEGENDA

$\mathbf{1}$	Attacchi idraulici femmina batteria standard $\varnothing 1 / 2^{\prime \prime}$
$\mathbf{2}$	Attacchi idraulici batteria addizionale ad 1 rango DF $\varnothing 1 / 2^{\prime \prime}$
$\mathbf{3}$	Diametro scarico condensa installazione verticale $\varnothing 16 \mathrm{~mm}$
Diametro scarico condensa installazione orizzontale $\varnothing 17 \mathrm{~mm}$	

Diametro scarico condensa installazione orizzontale ø 17 mm

FLATS	\mathbf{A}	\mathbf{L}	mas $\mathbf{m m}$
$\mathbf{1 3}$	534	820	$\mathbf{k g}$
$\mathbf{2 3}$	704	990	17
$\mathbf{3 3 - 4 3}$	874	1160	21

Ventilconvettore con mobile di design profondo 17 cm e motore EC

FLAT Si1-3 kW

PLUS

» Mobile di design con profondità 17 cm
» Bassi consumi energetici
» Funzionamento modulante
" Microswitch sul flap uscita aria
" Attacchi idraulici reversibili
» Motore EC controllato da inverter
" Ventilatori centrifughi in ABS
" Sistema di sanificazione JONIX incorporabile

La risposta alle nuove esigenze progettuali in ambito residenziale

La serie FLAT di Galletti diventa SLIM. Infatti con solo 17 cm di profondità, FLAT S garantisce dimensioni compatte che lo rendono facilmente integrabile in ogni contesto, rispondendo cosi ai nuovi trend progettuali in ambito residenziale (e non solo).
La mini serie FLAT S significa innovazione in termini progettuali, per garantire prestazioni sonore di assoluta eccellenza con il vantaggio di un design esclusivo che ben si abbina sia all'utilizzo residenziale sia a quello commerciale.
I terminali idronici FLATS i di Galletti sono equipaggiati con motore elettrico a magneti permanenti (brushless) che, controllato da un inverter, consente la variazione continua del numero di giri del ventilatore.
Oltre allimportante riduzione degli assorbimenti elettrici rispetto ai motori AC , l'utilizzo della tecnologia EC inverter permette di adeguare continuamente il funzionamento dell'unità all'effettivo carico termoigrometrico dell'ambiente con evidenti benefici dal punto di vista del comfort ed acustico.
Il suo impiego è particolarmente efficace nelle frequenti situazioni di funzionamento ai carichi parziali, regime che si presenta con maggior frequenza, quando la logica di regolazione permette velocità di rotazione del motore molto ridotte con eccezionali riduzioni dei consumi elettrici e delle emissioni acustiche.
II funzionamento delle unità con motore brushless è gestito dal pannello di comando a microprocessore EVO, MYCOMFORT LARGE e TED utilizzando una uscita analogica ($0-10 \mathrm{~V}$) che viene collegata all'inverter.

COMPONENTI PRINCIPALI

Mobile di copertura

Mobile di copertura di design colore RAL9010, profondo solo 17 cm , pannello frontale in lamiera di acciaio. Fiancate, griglia superiore e portelle laterali realizzate in ABS stabilizzato agli UV per mantenere il colore inalterato nel tempo. La griglia superiore è costituita da un flap ed alette orientabili. II flap è dotato di microinterruttore che interrompe il funzionamento dell'unità quando viene posto in posizione di chiusura.

Ventilatori

Centrifughi a doppia aspirazione, bilanciati staticamente e dinamicamente, sono realizzati in ABS antistatico con pale a profilo alare e moduli sfalsati. I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza.

Motore elettrico

L'unita e dotata di scheda inverter di controllo del motore, che può essere separata oppure montata a bordo del motore stesso, la quale permette un preciso settaggio della massima velocita di rotazione del motore (segnale di controllo $0-10 \mathrm{~V}$) anche nei casi in cui sia necessario limitare la massima velocita di rotazione per contenere i livelli sonori.

Struttura

Realizzata in lamiera di acciaio zincato di elevato spessore, isolata termicamente ed acusticamente con pannelli autoestingueti di classe 1.

Batteria di scambio termico

Ad alta efficienza in tubo di rame ed alette in alluminio, è corredata di collettori in ottone e valvola di sfiato. Gli attacchi idraulici sono reversibili in fase di installazione. Su richiesta è possibile montare una batteria addizionale, per impianti a 4 tubi.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

ACCESSORI	
Pannelli di comando elettronici a microprocessore con display	
DIST	Distanziale eer comandi MY COMFORT per installazione a parete
EVO-2-TOUCH	Interfaccia utente touch screen 2.8 " per comando EVO
EVOBOARD	Scheda di potenza per comando EVO
EVODISP	Interfaccia utente con display per comando EVO
EYNAVEL	Dispositivo perla comunicazione wi-fio Bluetooth tra EVOBOARD e smartphone
KBFLAE	Kit installazione comandi MY COMFORT a bordo FLAT
MCLE	Comando a microprocessore con display MY COMFORT LARGE
MCSUE	Sonda umidità per comandi MY COMFORT (medium e large), EVO
MCSWE	Sonda acqua per comandi MY COMFORT, EVO
Pannelli di comando elettronici a microprocessore	
KB F	Kit per linstallazione dei comandi TED a bordo di FLAT/FLATS
TED 10	Comando elettronico per il controllo del ventilatore inverter EC e di una o due valvole $\mathrm{ON} /$ OFF 230V
TED SWA	Sonda temperatura aria 0 acqua per comandi TED
Batteria addizionale per impianti a 4 tubi	
DF	Batteria addizionale ad 1 rango per impiantia 4 tubi
Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa	
BV	Bacinella ausiliaria per ventilconvettori ad installazione verticale
GIVKL	Guscio isolante per valvola VKS, attacchi idraulicia sinistra
GIVKR	Guscio isolante per valvola VKS, attacchi idraulici a destra
Zoccoli di sostegno e copertura	
ZLS	Coppia di zoccoli d i sostegno e copertura per FLATS
Pannelli di chiusura posteriore	
PV	Pannello posteriore verniciato per modelli ad installazione verticale con mobile
Valvole	
KV	Valvola a 2 vie, attuatore $0 \mathrm{~N} / 0 \mathrm{FF}$, alimentazione 230 V , kit idraulico lato attacchi, per batteria principale
KV24	Valvola a 2 vie, attuatore ON/OFF, alimentazione 24 V , kit idraulico lato attacchi, per batteria principale
KV24DF	Valvole a 2 vie, attuatori ON/OFF, alimentazione 24V, kit idraulici lato attacchi, per batteria principale e batteria addizionale

Fan coil FLAT S i

DATI TECNICI NOMINALI - 2 TUBI

FLAT Si			13			23			43		
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Resa raffreddamento totale	(1)(E)	kW	0,85	0,97	1,23	0,93	1,19	1,53	1,75	2,12	2,75
Resa raffreddamento sensibile	(1)(E)	kW	0,60	0,69	0,88	0,74	0,93	1,20	1,26	1,54	2,01
Classe FCEER	(E)						B				
Portata acqua	(2)	1/h	148	168	213	186	230	300	303	368	477
Perdita di carico	(2)(E)	kPa	3	3	5	6	8	12	5	7	10
Resa riscaldamento	(3)(E)	kW	0,89	1,01	1,27	1,00	1,22	1,54	1,85	2,22	2,86
Classe FCCOP	(E)						-				
Portata acqua	(3)	1/h	155	176	221	174	211	277	321	386	497
Perdita di carico	(3)(E)	kPa	2	3	4	5	8	11	4	6	9
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	250	310	420
Potenza assorbita	(E)	W	7	8	10	7	8	11	10	12	21
Potenza sonora globale	(4)(E)	$d B(A)$	30	35	40	35	40	46	37	42	49

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI-4 TUBI

FLATSi			13			23			43		
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	4,80	5,80	7,70	4,50	5,80	7,90	5,10	6,30	8,00
Resa raffreddamento totale	(1)(E)	kW	0,85	0,97	1,23	1,08	1,33	1,74	1,75	2,12	2,75
Resa raffreddamento sensibile	(1)(E)	kW	0,60	0,69	0,88	0,74	0,92	1,21	1,26	1,54	2,01
Classe FCEER	(E)						B				
Portata acqua	(2)	1/h	148	168	213	186	230	300	303	368	477
Perdita di carico	(2)(E)	kPa	3	3	5	4	7	11	5	7	10
Resa riscaldamento	(3)(E)	kW	1,04	1,15	1,36	1,35	1,56	1,91	2,16	2,45	3,02
Classe FCCOP	(E)			C			B			B	
Portata acqua	(3)	1/h	91	100	119	118	136	167	189	215	264
Perdita di carico	(3)(E)	kPa	2	2	3	4	5	7	2	2	3
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	115	135	170	135	170	225	250	310	420
Potenza assorbita	(E)	W	7	8	10	7	8	11	10	12	21
Potenza sonora globale	(4)(E)	$d B(A)$	30	35	40	35	40	46	37	42	49

[^0]
DISEGNI DIMENSIONALI

FLATSi	\mathbf{A} $\mathbf{m m}$	L $\mathbf{m m}$	mis kg
$\mathbf{1 3}$	534	820	17
$\mathbf{2 3}$	704	990	21
$\mathbf{4 3}$	874	1160	23

Ventilconvettori di design con ventilatore centrifugo

FLAT 2-5 kW

PLUS

» Mobile di design
» Microswitch sul flap uscita aria
» Utilizzo di ABS stabilizzato ai raggi UV
» Attacchi idraulici reversibili
» Motore a 306 velocità
» Ventilatori centrifughi in ABS
" Sistema di sanificazione JONIX incorporabile

FLAT Galletti: prestazioni e design in un unico terminale

FLAT Galletti è stato progettato con l'obiettivo di offrire prestazioni e design ai vertici della sua categoria.
L'unicità di FLAT parte dall'utilizzo di materiali di altissima qualità che contribuiscono alla eccezionale robustezza del prodotto, unitamente alla garanzia di rendimenti costanti nel tempo.
FLAT ottimizza la distribuzione dell'aria in ambiente grazie alla griglia di uscita aria integrata che consente l'orientamento dell'aria trattata e filtrata in 4 direzioni. Il flap principale è dotato in un microinterruttore che interrompe il funzionamento del ventilatore e manda in OFF le valvole in caso di chiusura. II flap è utile per evitare l'accumulo di polveri nei periodi di non utilizzo.
L'adozione di ABS stabilizzato agli UV nelle parti che compongono il mobile di copertura e antistatico nel gruppo di ventilazione (coclea e ventilatore centrifugo) garantiscono la medesima resa estetica e acustica durante la vita del prodotto.
Particolarmente curata la progettazione del gruppo motoventilante che garantisce prestazioni sonore di assoluta eccellenza sia nella motorizzazione a 3 velocità sia a 6 .

COMPONENTI PRINCIPALI

Mobile di copertura

Colore RAL9010, pannello frontale in lamiera di acciaio. Fiancate, griglia superiore e portelle laterali realizzate in ABS stabilizzato agli UV per mantenere il colore inalterato nel tempo. La griglia superiore è costituita da un flap ed alette orientabili. Il flap è dotato di microinterruttore che interrompe il funzionamento dell'unità quando viene posto in posizione di chiusura.

Struttura

Realizzata in lamiera di acciaio zin cato di elevato spessore, isolata termicamente ed acusticamente con pannelli autoestinguenti di classe 1.

Batteria di scambio
 termico

Ad alta efficienza in tubo di rame ed alette in alluminio, è corredata di collettori in ottone e valvola di sfiato. Gli attacchi idraulici sono reversibili in fase di installazione. Su richiesta è possibile montare una batteria addizionale, per impianti a 4 tubi.

Ventilatori

Centrifughi a doppia aspirazione, bilanciati staticamente e dinamicamente, sono realizzati in ABS antistatico con pale a profilo alare e moduli sfalsati. I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza.

Motore elettrico

Montato su supporti antivibranti, con condensatore permanentemente inserito e protezione termica degl avvolgimenti è direttamente accoppiato ai ventilatori. è disponibile sia a 3 sia a 6 velocità di rotazione per rispondere a tutte le richieste specifiche di prestazioni, silenziosità, consumi elettrici.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

CONFIGURATORE

I modelli sono completamente configurabili selezionando la versione e le opzioni. A fianco è riportato un esempio di configurazione.

Versione	Campi	1	2	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	10	11
FLLAT10		L	0	M	0	1	E	0	0	0	0	A

Per verificare la compatibilità delle opzioni si prega di utilizzare il software di selezione oil listino prezzi.

CONFIGURATORE

1 Versione
L L-Installazione a parete con mobile 2 Motore
0 Motore a 3 velocità
I Motore BLDC
P Motore 6 velocità
3 Lato attacchi batteria principale
L Attacchi a sinistra
R Attacchi a destra
4 Lato attacchi batteria addizionale/resistenza elettrica
0 Assente
L Attacchi a sinistra
R Attacchia destra

Valvola

0 Assente
1 VKS - Valvola 3 vie - 230V - ON/OFF - kit completo
2 KV - Valvola 2 vie - 230V-ON/OFF
3 VKMS - Valvola 3 vie-24V MODULANTE - kit completo
4 KVM - Valvola 2 vie-24V - MODULANTE
5 VKS24-Valvola 3 vie-24V-ON/OFF - kit completo
6 KV24-Valvola 2 vie-24V-ON/OFF
A VKSND-Valvola 3 vie - 230 V - ON/OFF - kit lato batteria
B VKMSND-Valvola 3 vie - $24 V$ - MODULANTE-kit lato batteria
C VKS24ND -Valvola 3 vie-24V - ON/OFF - kit lato batteria
6 Pannello di comando
0 Assente
1 CB-Commutatore di velocità
3 TIB- Termostato, commutatore e selettore E/I
4 TED 2T - Comando elettronico 2 tubi
5 TED 4T - Comando elettronico 4 tubi
6 TED 10 - Comando elettronico BLDC

A MCBE-My comfort base
MCME-My comfort medium
MCLE - My comfort large
EVOBOARD - Scheda di potenza
G EVOBOARD - Scheda di potenza + modello Wireless Navel
7 Sonde
0 Assente
SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
SW - Sonda acqua per MYCOMFORT, LED 503 e EVO
SU - Sonda umidità per MYCOMFORT e EVO
SA+SW - Sonda aria + acqua per MYCOMFORT, LED 503 e EVO
SA+SU - Sonda aria + umidità per MYCOMFORT e EVO
SA+SU+SW - Sonda aria + umidità + acqua per MY COMFORT e EVO
TC - Termostato di consenso
SA - Sonda aria remota per TED
SW - Sonda acqua per TED
SA + SW - Sonda aria + acqua per TED
8 Accessori vari
Assente
JONIX
BV - Bacinella ausiliaria
GIVK - Guscio valvola
lonizzatore
lonizzatore con comando
9 Filtro
Filtro aria standard
10 Release
$0 \quad 0$
A A
11 Release
A A

ACCESSORI

Pannelli di comando elettromeccanici	
CB	Commutatore di velocità a bordo
CD	Commutatore di velocità ad incasso a parete
CDE	Commutatore di velocità a parete
TA	Termostato ambiente a parete
TA2	Termostato ambiente a parete con selettore stagionale
TC	Termostato di minima temperatura acqua in riscaldamento ($42^{\circ} \mathrm{C}$)
TIB	Termostato, commutatore e selettore E/I a bordo
Pannelli di comando elettronici a microprocessore con display	
COB	Placca di finitura per comando LED 503 colore nero RAL 9005
COG	Placea di initura per comando LED 503 colore grigio RAL 7031
COW	Placca di finitura per comando LED 503 colore bianco RAL 9003
DIST	Distanziale per comandi MY COMFORT per installazione a parete
EVO-2-TOUCH	Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO
EVOBOARD	Scheda di potenza per comando EVO
EVODISP	Interfaccia utente con display per comando EVO
EYNAVEL	Dispositivo per la comunicazione wi-fio Bluetooth tra EVOBOARD e smartphone
KBFLAE	Kit installazione comandi MY COMFORT a bordo FLAT
LED503	Comando elettronico con display ad incasso a parete LED 503
MCBE	Comando a microprocessore con display MY COMFORT BASE
MCLE	Comando a microprocessore con display MY COMFORT LARGE
MCME	Comando a microprocessore con display MY COMFORT MEDIUM
MCSUE	Sonda umidità per comandi MY COMFORT (medium e large), EVO
MCSWE	Sonda acqua per comandi MY COMFORT, EVO
Pannelli di comando elettronici a microprocessore	
KB F	Kit per linstallazione dei comandi TED a bordo di FLAT/FLATS
TED 2T	Comando elettronico per il controllo del ventilatore AC e di una valvola ON/OFF 230 V
TED 4T	Comando elettronico per il controllo del ventilatore ACe di due valvole ON/OFF 230 V

TED SWA	Sonda temperatura aria o acqua per comandi TED
Interfaccia di potenza e comandi per serrande	
KP	Interfaccia di potenza per il collegamento in parallelo fino a 4 ventilconvettori ad un unico comando
Batteria addizionale per impiantia 4 tubi	
DF	Batteria addizionale ad 1 rango per impiantia 4 tubi
Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa	
BH	Bacinella ausiliaria per ventilconvettori ad installazione orizzontale
BV	Bacinella ausiliaria per ventilconvettori ad installazione verticale
GIVKL	Guscio isolante per valvola VKS, attacchi idraulicia sinistra
GIVKR	Guscio isolante per valvola VKS, attacchi idraulici a destra
Zoccoli di sostegno e copertura	
ZL	Coppia di zocoli di sostegno e copertura per FLATL
Pannelli di chiusura posteriore	
PH	Pannello posteriore verniciato per modelli ad installazione orizzontale con mobile
PV	Pannello posteriore verniciato per modelli ad installazione verticale con mobile
Valvole	
V2VDF+STD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale e addizionale
V2VSTD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria addizionale
V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
VPIC	Valvole a 2 vie pressure independent, attuatori ON/OFF, alimentazione $230 V$, kit idraulici, per batteria principale e addizionale

Sistemi di sanificazione

JONIX inside Modulo di sanificazione JONIX per installazione a bordo

Fan coil FLAT

DATI TECNICI NOMINALI - 2 TUBI

FLAT			10			20			30			40		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	1,19	1,34	1,77	1,38	1,71	2,22	1,44	2,01	2,66	1,67	2,29	2,87
Resa raffreddamento sensibile	(1)(E)	kW	0,86	0,96	1,27	1,02	1,27	1,66	1,10	1,53	2,03	1,27	1,75	2,20
Classe FCEER	(E)		D			E			E			E		
Portata acqua	(2)	1/h	205	231	305	238	294	382	248	346	458	288	394	494
Perdita di carico	(2)(E)	kPa	6	7	12	6	8	13	3	5	7	4	6	10
Resa riscaldamento	(3)(E)	kW	1,16	1,29	1,71	1,38	1,67	2,17	1,55	2,04	2,72	1,76	2,32	2,89
Classe FCCOP	(E)		E											
Portata acqua	(3)	1/h	200	222	294	238	288	374	267	351	468	303	400	498
Perdita di carico	(3)(E)	kPa	4	5	9	6	8	12	2	4	6	3	5	8
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	212	226	305	227	284	378	239	344	467	277	407	520
Potenza assorbita	(E)	W	19	23	33	25	38	57	28	43	57	29	45	60
Potenza sonora globale	(4)(E)	$d B(A)$	34	38	44	38	44	50	30	38	44	33	42	48

FLAT				50			60			70	
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	2,05	2,56	3,26	2,21	2,92	4,08	2,53	3,30	4,38
Resa raffreddamento sensibile	(1)(E)	kW	1,61	2,00	2,53	1,76	2,33	3,28	2,04	2,69	3,60
Classe FCEER	(E)			E			E			D	
Portata acqua	(2)	1/h	353	441	561	381	503	703	436	568	754
Perdita di carico	(2)(E)	kPa	4	5	8	3	5	8	8	13	23
Resa riscaldamento	(3)(E)	kW	2,24	2,67	3,36	2,64	3,36	4,61	2,96	3,76	4,96
Classe FCCOP	(E)						E				
Portata acqua	(3)	1/h	386	460	579	455	579	794	510	647	854
Perdita di carico	(3)(E)	kPa	3	4	5	4	7	11	8	14	22
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	338	466	593	365	552	800	418	659	911
Potenza assorbita	(E)	W	40	56	75	38	58	88	41	65	96
Potenza sonora globale	(4)(E)	dB(A)	36	42	50	42	52	59	43	51	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u midità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI - 4 TUBI

FLAT			10			20			30			40		
Velocità			min	med	max									
Resa raffreddamento totale	(1)(E)	kW	1,23	1,39	1,76	1,32	1,64	2,04	1,39	1,95	2,51	1,61	2,22	2,70
Resa raffreddamento sensibile	(1)(E)	kW	0,88	1,00	1,28	0,97	1,22	1,54	1,06	1,48	1,93	1,22	1,70	2,08
Classe FCEER	(E)		D			E			E			E		
Portata acqua	(2)	1/h	212	239	303	227	282	351	239	336	432	277	382	465
Perdita di carico	(2)(E)	kPa	5	6	9	5	8	12	2	4	7	3	6	9
Resa riscaldamento	(3)(E)	kW	1,35	1,46	1,76	1,44	1,65	1,96	1,78	2,13	2,59	1,96	2,35	2,74
Classe FCCOP	(E)		E											
Portata acqua	(3)	1/h	116	126	152	124	142	169	153	183	223	169	202	236
Perdita di carico	(3)(E)	kPa	3	3	5	3	4	6	6	9	12	7	10	13
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	187	215	289	205	270	359	232	332	451	273	393	502
Potenza assorbita	(E)	W	28	34	49	25	38	57	28	43	57	29	45	60
Potenza sonora globale	(4)(E)	$d B(A)$	34	41	47	40	45	50	31	39	45	35	43	49

DATI TECNICI NOMINALI - 4 TUBI

FLAT			50			60			70		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	1,96	2,46	3,06	2,12	2,82	3,82	2,43	3,18	4,09
Resa raffreddamento sensibile	(1)(E)	kW	1,55	1,92	2,40	1,69	2,24	3,10	1,96	2,59	3,40
Classe FCEER	(E)						E				
Portata acqua	(2)	I/h	338	424	527	365	486	658	418	548	704
Perdita di carico	(2)(E)	kPa	3	4	6	6	8	15	5	8	12
Resa riscaldamento	(3)(E)	kW	2,55	2,87	3,36	2,70	3,15	3,91	2,98	3,46	4,16
Classe FCCOP	(E)						E				
Portata acqua	(3)	1/h	220	247	289	232	271	337	257	298	358
Perdita di carico	(3)(E)	kPa	4	6	8	5	8	10	3	3	5
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	356	447	569	390	530	768	462	631	873
Potenza assorbita	(E)	W	40	56	75	38	58	88	41	65	96
Potenza sonora globale	(4)(E)	dB(A)	36	45	50	42	48	56	43	51	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DISEGNI DIMENSIONALI

Ventilconvettore di design con ventilatore centrifugo e motore EC

FLATi2-5 kW

PLUS

» Motore EC controllato da inverter
» Bassi consumi energetici
» Funzionamento modulante
» Ventilatori centrifughi in ABS
» Mobile di design con ABS stabilizzato agli UV
» Microswitch sul flap uscita aria
" Attacchi idraulici reversibili
» Sistema di sanificazione JONIX incorporabile

Tecnologia e design in un'unica soluzione

I terminali idronici FLAT i di Galletti sono equipaggiati con motore elettrico a magneti permanenti (brushless) che, controllato da un inverter, consente la variazione continua del numero di giri del ventilatore.
Oltre allimportante riduzione degli assorbimenti elettrici rispetto ai motori $A C$, I'utilizzo della tecnologia EC inverter permette di adeguare continuamente il funzionamento dell'unità all'effettivo carico termoigrometrico dell'ambiente con evidenti benefici dal punto di vista del comfort ed acustico.
Il suo impiego è particolarmente efficace nelle frequenti situazioni di funzionamento ai carichi parziali, regime che si presenta con maggior frequenza, quando la logica di regolazione permette velocità di rotazione del motore molto ridotte con eccezionali riduzioni dei consumi elettrici e delle emissioni acustiche.
Il funzionamento delle unità con motore brushless è gestito dal pannello di comando a microprocessore EVO, MYCOMFORT LARGE, TED utilizzando una uscita analogica ($0-10 \mathrm{~V}$) che viene collegata all'inverter.

FLATLi
Installazione in vista sospeso a parete, mobile di copertura con uscita aria verticale.

COMPONENTI PRINCIPALI

Mobile di copertura dal
 design raffinato

Colore RAL9010, pannello frontale in lamiera di acciaio. Fiancate, griglia superiore e portelle laterali realizzate in ABS stabilizzato agli UV per mantenere il colore inalterato nel tempo. La griglia superiore è costituita da un flap ed alette orientabili. Il flap è dotato di microinterruttore che interrompe il funzionamento dell'unità quando viene posto in posizione di chiusura.

Ventilatori

Centrifughi a doppia aspirazione, bilanciati staticamente e dinamicamente, sono realizzati in ABS antistatico con pale a profilo alare e moduli sfalsati. I ventilatori sono alloggiati in una coclea in ABS ad alta efficienza.

Struttura

Realizzata in lamiera di acciaio zincato di elevato spessore, isolata termicamente ed acusticamente con pannelli autoestingueti di classe 1.

Motore elettrico EC

L'unità è dotata di scheda inverter di controllo del motore, che può essere separata oppure montata a bordo del motore stesso, la quale permette un preciso settaggio della massima velocità di rotazione del motore (segnale di controllo 0-10 V) anche nei casi in cui sia necessario limitare la massima velocità di rotazione per contenere i livelli sonori.

Batteria di scambio termico

Ad alta efficienza in tubo di rame ed alette in alluminio, è corredata di collettori in ottone e valvola di sfiato. Gli attacchi idraulici sono reversibili in fase di installazione. Su richiesta è possibile montare una batteria addizionale, per impianti a 4 tubi.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

Pannelli di comando elettronici a microprocessore con display	GIVKL	Guscio isolante per valvola VKS, attachi idraulici a sinistra
DIST Distanziale per comandi MY COMFORT per installazione a parete	GIVKR	Guscio isolante per valvola VKS, attacchi idraulici a destra
EVO-2-TOUCH Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO	Zoccoli di sostegno e copertura	
EVOBOARD Scheda di potenza per comando EVO	ZL	Coppia di zoccoli d i sostegno e copertura per FLAT L
EVODISP Interfaccia utente con display per comando EVO	Pannelli di chiusura posteriore	
EYNAVEL Dispositivo per la comunicazione wi-fio o Bluetooth tra EVOBOARD e smartphone	PH	Pannello posteriore verniciato per modelli ad installazione orizzontale con mobile
KBFLAE Kit installazione comandi MY COMFORT a bordo FLAT	PV	Pannello posteriore verniciato per modelli ad installazione verticale con mobile
MCLE Comando a microprocessore con display MY COMFORT LARGE	Valvole	
MCSUE \quad Sonda umidità per comandi MY COMFORT (medium e large), EVO	V2VDF+STD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V 024 V , kit idraulici, per batteria principale e addizionale
MCSWE Sonda acqua per comandi MY COMFORT, EVO		
Pannelli di comando elettronici a microprocessore	V2VSTD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
KB F Kit perl linstallazione dei comandi TED a bordo di FLAT/FLATS		
TED $10 \quad$ Comando elettronico per il controllo del ventilatore inverter EC e di una o due valvole $\mathrm{ON} /$ OFF 230 V	V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria addizionale
TED SWA Sonda temperatura aria 0 acqua per comandi TED	V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V 024 V , kit idraulici, per batteria principale
Batteria addizionale per impianti a 4 tubi		
DF Batteria addizionale ad 1 rango per impiantia 4 tubi	VPIC	Valvole a 2 vie pressure independent, attuatori ON/OFF, alimentazione 230V, kit idraulici, per batteria principale e addizionale
Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa		
BH Bacinella ausiliaria per ventilconvettori ad installazione orizzontale	Sistemi di sanificazione	
BV Bacinella ausiliaria per venticonvettori ad installazione verticale	JONIX inside Modulo di sanificazione JONIX per installazione a b	

Fan coil FLAT i

DATI TECNICI NOMINALI - 2 TUBI

Flati			20			40			70		
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90
Resa raffreddamento totale	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,56	3,34	4,43
Resa raffreddamento sensibile	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	2,07	2,73	3,65
Classe FCEER	(E)						B				
Portata acqua	(2)	1/h	239	300	389	251	344	430	441	575	763
Perdita di carico	(2)(E)	kPa	6	8	13	4	6	10	6	8	16
Resa riscaldamento	(3)(E)	kW	1,52	1,84	2,39	1,76	2,32	2,89	2,96	3,76	4,96
Classe FCCOP	(E)						B				
Portata acqua	(3)	1/h	262	317	412	303	400	498	510	647	854
Perdita di carico	(3)(E)	kPa	6	8	12	3	5	8	5	9	14
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	216	284	378	283	407	520	482	659	911
Potenza assorbita	(E)	W	7	11	22	9	15	31	13	21	49
Potenza sonora globale	(4)(E)	dB(A)	38	44	53	33	42	48	43	51	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI-4 TUBI

FLATi			20			40			70		
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	5,10	6,90	8,80	4,40	6,50	8,30	4,50	6,30	8,90
Resa raffreddamento totale	(1)(E)	kW	1,39	1,74	2,26	1,46	2,00	2,50	2,46	3,22	4,14
Resa raffreddamento sensibile	(1)(E)	kW	1,03	1,30	1,70	1,12	1,55	1,93	1,99	2,63	3,45
Classe FCEER	(E)		C			A			B		
Portata acqua	(2)	1/h	208	260	324	281	387	472	424	554	713
Perdita di carico	(2)(E)	kPa	5	8	12	3	6	9	4	6	9
Resa riscaldamento	(3)(E)	kW	1,44	1,65	1,96	1,96	2,35	2,74	2,98	3,46	4,16
Classe FCCOP	(E)		C			B			B		
Portata acqua	(3)	1/h	124	142	169	169	202	236	257	298	358
Perdita di carico	(3)(E)	kPa	3	4	6	7	10	13	3	3	5
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	205	270	359	273	393	502	462	631	873
Potenza assorbita	(E)	W	10	16	31	7	12	24	13	21	49
Potenza sonora globale	(4)(E)	$d B(A)$	40	45	50	35	43	49	43	51	58

[^1]
DISEGNI DIMENSIONALI

FLATLi	\mathbf{A}	\mathbf{L}	\ldots
	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{k g}$
$\mathbf{2 0}$	534	820	19
$\mathbf{4 0}$	704	990	23
$\mathbf{7 0}$	874	1160	28

Ventilconvettori ad incasso con cassaforma

CFV 1-4 kW

PLUS

» Motore EC controllato da inverter
» Bassi consumi energetici
» Funzionamento modulante
» Facile accessibilità al fan coil
" Pannello frontale verniciabile

CLIMATIZZAZIONE INVISIBILE PER UN COMFORT STRAORDINARIO

CFV è la soluzione perfetta per soddisfare l'esigenza progettuale di nascondere completamente il terminale dimpianto. || cuore di questo prodotto è il fan coil CF adatto a qualsiasi tipo di installazione con una profondità di solo $12,6 \mathrm{~cm}$. Le dimensioni compatte sono unite a bassi consumi energetici grazie al motore EC ad inverter che, rispetto al motore tradizionale AC, garantisce un risparmio energetico fino al 70% durante il suo funzionamento stagionale.
Il fan coil è ospitato nella cassaforma CYC in acciaio zincato sia per installazione verticale che orizzontale. Nella struttura metallica sono previste delle pretranciature in corrispondenza degli attacchi idraulici ed elettrici dell'apparecchio per un'agevole installazione.
Il pannello frontale di copertura CYP nasconde il fan coil ma allo stesso tempo lo rende di facile accesso per tutte le operazioni di manutenzione. Líntegrazione con la parete è massima considerando la possibilità di verniciare il pannello frontale, che lo fa letteralmente sparire nell'ambiente da climatizzare.

VERSIONI

CFV INSTALLAZIONE VERTICALE

1. Pannello frontale CYPV
2. Fan coil CF
3. Cassaforma CYC

CFV INSTALLAZIONE ORIZZONTALE

1. Pannello frontale CYPH
2. Fan coil CF
3. Cassaforma CYC
4. Canale telescopico CYRMCD
5. Griglia di mandata a profilo diritto CY8048

Per verificare la compatibilità delle opzioni si prega di utilizzare il software di selezione o il listino prezzi.

CONFIGURATORE

1	Versione	2	2 vie - on/off 230 V
C	Ad incasso	6	Pannello di comando
2	Motore	7	Scheda elettronica a bordo macchina per connessione a MY COMFORT LARGE
I	Motore inverter	7	Sonde
3	Lato attacchi batteria principale	2	SW - Sonda acqua per comando MY COMFORT
L	Sinistra	8	Accessori vari
R	Destra	0	Assente
4	Lato attacchi batteria addizionale/resistenza elettrica	9	Filtro
0	Assente	0	Filtro aria standard al posto di GO
L	DF sinistra	10	Release
R	DF destra	0	0
5	Valvola	A	A

ACCESSORI		
Pannelli di comando elettronici a microprocessore con display	RMC90	Canale di mandata aria curvo a 90°
CYBOARD Scheda elettronica a bordo machina per connessione a MYCOMFORT	RMCD	Canale di mandata aria telescopico
DIST Distanziale per comandi MY COMFORT per installazione a parete	Accessori vari	
MCLE Comando a microprocessore con display MY COMFORT LARGE	(*)A00	Cassaforma in lamiera zincata per versione 2 tubi
Griglie di mandata e ripresa aria	**OAO1	Cassaforma in lamiera zincata per versione 4 tubi
8048 Griglia di mandata aria in alluminio, a doppio ordine	P*OAHO	Pannello di copertura a soffitto con cornice e griglia di aspirazione per versione 2 tubi
Valvole	P*0AH1	Pannello di copertura a soffitto con cornice e griglia di aspirazione per versione 4 tubi
K4S Kit valvola 3 vie per impiantia 4 tubi	P*0AVO	Pannello di copertura a parete con cornice, griglia di aspirazione e aletta di mandata per versione 2 tubi
KV24K Kit valvola 2 vie per impianti 4 tubi		
KVK Kit valvola 2 vie, motore termoelettrico	P*0AV1	Pannello di copertura a parete con cornice, griglia di aspirazione e aletta di mandata per versione 4 tubi
Plenum, moduli di aspirazione, raccordi di aspirazione, mandata aria e mobili di copertura		

DATI TECNICI NOMINALI-2 TUBI

CFV			10			20			30			40			50		
Velocità			min	med	max												
Tensione in ingresso	(E)	V	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0	3,30	6,80	10,0
Resa raffreddamento totale	(1)(E)	kW	0,43	0,73	0,91	0,75	1,36	2,12	1,15	2,08	2,81	1,32	2,39	3,30	1,36	2,57	3,71
Resa raffreddamento sensibile	(1)(E)	kW	0,29	0,51	0,71	0,59	1,04	1,54	0,83	1,51	2,11	1,02	1,84	2,65	1,05	1,98	2,90
Classe FCEER	(E)		C			B			A			A			A		
Portata acqua	(2)	1/h	74	126	157	129	234	365	198	358	484	227	412	568	234	443	639
Perdita di carico	(2)(E)	kPa	6	10	12	2	4	8	3	10	17	3	9	18	3	11	21
Resa riscaldamento	(3)(E)	kW	0,37	0,69	1,02	0,82	1,53	2,21	1,20	2,16	3,02	1,47	2,59	3,81	1,49	2,82	4,32
Classe FCCOP	(E)			D			B			B			B			B	
Portata acqua	(3)	1/h	64	119	176	141	263	381	207	372	520	253	446	656	257	486	744
Perdita di carico	(3)(E)	kPa	3	7	9	2	4	9	3	9	19	3	9	21	3	7	23
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	49	90	146	118	210	294	180	318	438	247	410	567	262	479	663
Potenza assorbita	(E)	W	5	7	11	4	8	19	6	11	20	5	11	29	6	12	33
Potenza sonora globale	(4)(E)	dB(A)	37	47	54	37	47	54	37	47	54	37	47	55	37	48	57

[^2]
Terminali idronici CFV

DATI TECNICI NOMINALI-4 TUBI

CFV			10			20			30			40			50		
Velocità			min	med	max												
Tensione in ingresso	(E)	V	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10	3,3	6,8	10
Resa raffreddamento totale	(1)(E)	kW	0,40	0,73	0,84	0,75	1,34	1,93	1,08	1,95	2,50	1,21	2,20	2,92	1,30	2,30	3,21
Resa raffreddamento sensibile	(1)(E)	kW	0,27	0,51	0,65	0,59	1,02	1,39	0,78	1,42	1,87	0,94	1,70	2,28	1,01	1,79	2,53
Classe FCEER	(E)		C			B			A			A			A		
Portata acqua	(2)	1/h	69	126	144	129	230	332	186	335	430	208	378	502	224	396	552
Perdita di carico	(2)(E)	kPa	5	10	11	2	4	7	2	9	14	2	8	15	3	9	17
Resa riscaldamento	(3)(E)	kW	0,30	0,51	0,45	0,63	0,94	1,10	0,92	1,28	1,51	1,30	1,94	2,21	1,39	2,11	2,54
Classe FCCOP	(E)		D			C			B			B			B		
Portata acqua	(3)	1/h	52	88	77	108	162	189	158	220	260	224	334	380	239	363	437
Perdita di carico	(3)(E)	kPa	2	2	2	2	2	4	4	4	6	2	3	4	2	3	6
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	46	91	132	124	207	260	194	291	370	302	367	476	364	416	542
Potenza assorbita	(E)	W	4	6	11	4	8	19	4	9	20	4	10	29	5	12	33
Potenza sonora globale	(4)(E)	dB(A)	37	44	51	37	47	54	37	47	54	37	47	55	37	48	57

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DISEGNI DIMENSIONALI

DISEGNI DIMENSIONALI

CF 4 tubi

Fan coil a parete alta

FM 2-4 kW

Inverter
Inverter
Technology

Nuovo terminale idronico Galletti che coniuga silenziosità, design e gestione del comfort

FM si distingue per un elevato contenuto tecnologico grazie all'impiego di un motore EC, valvola di regolazione incorporata e comunicazione seriale.
Il controllo automatico della velocità di ventilazione è gestito attraverso una logica proporzionale, integrativa e derivativa capace di garantire, rispettivamente, stabilità, precisione e rapidità d'intervento.
La comunicazione seriale è in grado di fare interagire fino a 32 unità garantendo una gestione globale, con modifica automatica dei parametri su tutte le unità coordinata da unico punto.
Attraverso l'accessorio WALLPAD è possibile controllare una ad una le unità connesse nel sistema.
FM può essere interconnesso ad un sistema di supervisione con comunicazione Modbus.
Se da un lato la valvola già montata a bordo e il sistema di tubi flessibili permettono un'installazione rapida e sicura, dall'altro la tecnologia ventilante con motore EC e la batteria per ottimizzato scambio termico offrono all'utente un terminale silenzioso, elevate prestazioni e bassi consumi.

Modelli 022/032/042

I modelli con valvola a 2 vie già installata a bordo si adattano perfettamente ai sistemi in cui sia presente un circolatore modulante o altri mezzi per variare la portata d'acqua.

COMPONENTI PRINCIPALI

Mobile di copertura

Dal gradevole design studiato per integrarsi in ogni tipo di ambiente, è realizzato in ABS. L'uscita aria integrata è dotata di deflettore motorizzato, con movimento automatico o posizionabile dall'utente, ed alette orientabili per assicurare la distribuzione dell'aria nel locale in modo uniforme. Il pannello frontale è completo di display di visualizzazione dello stato di funzionamento e della temperatura ambiente.

Batteria di scambio termico

Lo scambiatore di calore a pacco alettato è composto da tubo di rame e aletta in alluminio persianata.
|| trattamento idrofilico sulle alette garantisce uno scambio termico ottimale anche in presenza di condensazione superficiale.

Telecomando

Fornito di serie, il comando a infrarossi consente il controllo di un solo terminale o di una rete combinata e l'impostazione di fasce orarie giornaliere.

WALLPAD

Il vero punto di forza di questo comando è legato allo sviluppo di reti di comunicazione. Connettendo fino a 32 unità attraverso un bus di rete e collegando il comando WALLPAD ad una di esse (Master) è possibile controllarne il funzionamento.
In particolare l'utente potrà scegliere se comunicare contemporaneamente a tutte le unità connesse, ad esempio variando la modalità di funzionamento dell'intero impianto, - dialogare con ogni singola unità differenziando i parametri di regolazione fra un fan coil e l'altro. La scelta fra una comunicazione "globale" o a un singolo terminale viene effettuata tramite un semplice pulsante.

Motore EC

Motore elettronico a magneti permanenti per consentire una modulazione continua della velocità di ventilazione con assorbimenti elettrici più che dimezzati rispetto ai motori asincroni.

Gruppo valvole

Valvola ON OFF a 2 vie già cablata e installata all'interno del terminale. || collegamento all'impianto avviene per mezzo di tubi flessibili collocati sul retro dell'unità.
Senza aumenti di dimensioni e complicazioni d'installazione la valvola si chiude al raggiungimento del set point ricircolando il flusso d'acqua ed evitandone l'ingresso in batteria.

Ventilatore

Ventilatore tangenziale a bassa rumorosità

WALLPAD

ACCESSORI

Comando remoto a filo

Fan coil FM

DATI TECNICI NOMINALI

FM				02			03			04	
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	1,21	1,43	1,82	1,58	2,09	2,55	2,66	3,26	3,71
Resa raffreddamento sensibile	(1)(E)	kW	1,00	1,20	1,53	1,35	1,81	2,22	1,94	2,40	2,74
Classe FCEER				C			B			B	
Portata acqua	(2)	1/h	209	247	316	320	426	520	458	564	642
Perdita di carico	(2)(E)	kPa	12	19	29	16	28	39	28	40	50
Perdita di carico valvola 2 vie e 3 vie	(2)	kPa	2	3	5	5	6	11	11	17	22
Resa riscaldamento	(3)(E)	kW	1,38	1,76	2,23	2,07	2,65	3,25	3,12	3,86	4,06
Classe FCCOP				C			B			B	
Portata acqua	(3)	1/h	240	306	388	359	461	566	543	672	695
Perdita di carico	(3)(E)	kPa	12	19	29	17	28	39	32	46	52
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	290	370	500	370	500	645	570	740	788
Potenza assorbita	(E)	W	10	13	18	10	15	22	13	20	30
Potenza sonora globale	(4)(E)	dB(A)	33	41	49	40	43	54	46	53	58

[^3]Modelli con valvola a 2 vie incorporata 022 / 032 / 042
Modelli con valvola a 3 vie incorporata 023 / 033 / 043 (su richiesta)

DISEGNI DIMENSIONALI

Modulo di design ad effetto Coandă - EFFETTO

Modulo di design ad effetto Coandă

EFFETTO

L’armonia perfetta tra comfort e design

Galletti presenta EFFETTO il modulo di design per l'aspirazione e diffusione dell'aria concepita per sposarsi con l'affidabilità ed il comfort delle cassette idroniche ACQVARIA e ACQVARIA i (modello $600 \times 600 \mathrm{~mm}$).
EFFETTO rompe gli schemi standard delle cassette idroniche, andando oltre la classica griglia in ABS con alette orientabili e presenta un modulo di design che sfrutta l'effetto Coandă. La Advanced Design Unit di Galletti dà vita ad una cassetta idronica Made in Italy dal design essenziale e lineare che può integrarsi allo stile di qualsiasi ambiente anche a livello cromatico.
EFFETTO non è solo estetica ma anche comfort, perchè è stato concepito per ottimizzare al massimo la diffusione dell'aria grazie all'effetto Coandă.
Il pannello metallico Dibond di EFFETTO è composto da un sandwich di alluminio e polietilene.
La raffinata finitura metallica si unisce alle capacità isolanti del polietilene, per prevenire fenomeni di condensa. La griglia di aspirazione in acciaio crea un'unica superficie con il pannello, esaltando la sottigliezza complessiva del prodotto. Il filtro e facilmente removibile per operazioni di manutenzione.
II convogliatore è in polistirene nero RAL 9005 per un perfetto abbinamento dei colori, la sua geometria è stata progettata per ottimizzare il flusso d'aria diffuso nell'ambiente. La luminosità dell'alluminio permette alla griglia di adattarsi ad ogni situazione, mantenendo sempre ben visibile il bordo fresato del pannello che ne delinea la forma, anche in situazioni di poca luce. II modulo, staccandosi dal soffitto interagisce con tutti gli elementi e le sorgenti luminose dell'ambiente.
EFFETTO è la scelta perfetta per garantire un layout lineare e pulito all'ambiente da climatizzare.

VERSIONI DISPONIBILI

Sono disponibili tre versioni cromatiche: alluminio naturale spazzolato, bianco RAL9010 e nero RAL9005. Il colore nero viene applicato anche a tutti i componenti della struttura interna e tecnologica, in modo da ricreare un effetto ombra sulle superfici circostanti, facendo fluttuare nell'aria il pannello.

Grey - alluminio naturale spazzolato

White - bianco RAL9010

Black - nero RAL9005

SIMULAZIONI FLUIDODINAMICHE COMPUTAZIONALI

CONVOGLIATORE

Le simulazioni fluidodinamiche computazionali (CFD) hanno permesso di studiare la diffusione dell'aria in ambiente al fine di sfruttare al massimo l'effetto Coandă: il flusso d'aria lambisce il soffitto senza investire direttamente l'occupante, scongiurando quindi fenomeni di discomfort localizzati.
Sezione del modulo EFFETTO in cui sono evidenziati i flussi areaulici.

CASE STUDY RISCALDAMENTO

Nelle simulazioni CFD si è considerato un locale adibito a ristorante che può ospitare circa 100 persone equipaggiato da 9 cassette idroniche ACQVARIA con modulo EFFETTO. Le condizioni estive di progetto sono: temperatura aria esterna $5^{\circ} \mathrm{C}$, temperatura set point ambiente $20^{\circ} \mathrm{C}$.
La norma UNI EN ISO 7730 individua degli indici che definiscono situazioni di discomfort termoigrometrico: Temperatura del pavimento; Elevata disuniformità della temperatura verticale; Correnti d'aria; Voto Medio Previsto.

CASE STUDY RAFFREDDAMENTO

Nelle simulazioni CFD si è considerato un locale adibito a ristorante che può ospitare circa 100 persone equipaggiato da 9 cassette idroniche ACQVARIA con modulo EFFETTO. Le condizioni estive di progetto sono: temperatura aria esterna $33^{\circ} \mathrm{C}$, temperatura set point ambiente $26^{\circ} \mathrm{C}$.
La geometria dei convogliatori in polistirolo nero è stata progettata con l'ausilio di simulazioni CFD e di verifiche sperimentali presso i laboratori R\&D di Galletti.
L'obiettivo era garantire che il getto d'aria lambisca il soffitto e le pareti senza mai investire direttamente l'occupante attraverso l'effetto Coandă. La distribuzione dell'aria in ambiente è omogenea, la zona di sinistra ha una temperatura dell'aria più alta rispetto alla media perchè adiacente alla cucina.

CONCLUSIONI

Tutti gli indici di comfort considerati hanno confermato che le condizioni di comfort termo-igrometrico sono garantite anche in presenza di stratificazione dell'aria nelle zone adiacenti al soffitto, fenomeno diffuso durante la stagione di riscaldamento.

Modulo di design ad effetto Coandă - EFFETTO

EFFETI $]_{A}$ 属

EFFETTO AIRCLISSI

Spesso i terminali idronici sono valutati secondo un unico aspetto: le loro performance tecniche. Senza dubbio le prestazioni termodinamiche e acustiche sono importantissime, ma solo se inserite allinterno di in un concetto olistico più ampio |l terminale idronico oggi deve essere considerato al pari di tutti gli altri elementi d'arredo presenti nei locali da climatizzare, una piattaforma capace di dialogare con la fisionomia dell'ambiente e con le persone che lo vivono. L'interazione da oggi è ancora più forte, con un contenuto emozionale inedito per le cassette idroniche: la luce.
Da oggi EFFETTO si integra con AirClissi, diventando nel mondo delle cassette idroniche: il primo modulo luminoso ad effetto Coandă, dove gli elementi aria e luce s incontrano in un design unico. Con EFFETTO AirClissi, Galletti sposta il concept di cassetta idronica ad un livello estetico mai raggiunto, dove la luce diventa la nuova protagonista della scena.

VERSIONI DISPONIBILI

Il modulo luminoso Airclissi è disponibile nella colorazione neutra 4000 K. Questa versione cromatica è compatibile con EFFETTO Grey, White e Black.

Lintensità luminosa è modulabile attraverso il controllore a microprocessore EVO, tramite un unico dispositivo si ha pieno controllo delle condizioni termo-igrometriche dell'ambiente e da oggi anche della sua illuminazione. L'estrema eleganza di questo è raggiunta grazie alla combinazione di linee minimali e carattere, del materiale Dibond e della luce.

DISEGNI DIMENSIONALI

ACQVARIA 10-20-30-35 + EFFETT0 + AirClissi

ACQVARIA	
AQ10Q0BO-AQ10QIBO -AQ1000BB-AQ10QIBB	$23+2,5$
AQ20QOBO - AQ2OQIBO - AQ20QOBB - AQ30QOBO - AQ30QIBO - AQ30QOBB - AQ30QIBB	$24+2,5$

LEGENDA	
$\mathbf{1}$	Scatola elettrica
$\mathbf{2}$	Scarico condensa $\varnothing 10$
$\mathbf{3}$	Uscita acqua $\varnothing 1 / 2^{" ~}$ gas femmina
$\mathbf{4}$	Entrata acqua $\varnothing 1 / 2^{\prime \prime}$ gas femmina
$\mathbf{5}$	Uscita acqua $\varnothing 1 / 2^{" ~}$ DF gas femmina
$\mathbf{6}$	Entrata acqua $\varnothing 1 / 2^{\prime \prime}$ DF gas femmina
$\mathbf{7}$	Pannello AirClissi (opzione)

Ventilconvettori a cassetta

ACQVARIA 3-10 kW

JONIX

PLUS

" Affidabilità e robustezza in una struttura compatta
» Aria di rinnovo con immissione diretta o miscelata
" Scambiatore di calore fino a 3 ranghi
» Pompa scarico condensa per dislivelli fino a 0,9 m
» Tempi di installazione e commissioning ridotti
» Sistema di sanificazione JONIX incorporabile

VERSIONI DISPONIBILI

Oltre alle 2 griglie in ABS con alette orientabili sono disponibili anche EFFETTO e EFFETTO Airclissi.

EFFETTO, modulo di aspirazione e diffusione dell'aria ad effetto Coandă.

EFFETTO Airclissi, Il nuovo concept di design che integra la luce alla diffusione dell'aria ad effetto Coandă.

Solidità ed efficienza in un unico

 prodotto.La gamma di ventilconvettori a cassetta ACQVARIA, con motore a tre velocità, è composta da 6 modelli abbinabili ad impianti a 2 tubi e da 6 modelli abbinabili ad impianti a 4 tubi. Sviluppata in due frame dimensionali (modularità 600×600 mm e $900 \times 900 \mathrm{~mm}$), è caratterizzata da elevate prestazioni e livelli sonori estremamente contenuti, grazie alla particolare attenzione che è stata posta nella progettazione degli scambiatori di calore e dei gruppi di ventilazione.
La struttura dell'unità in controsoffitto alloggia tutti i componenti: batteria di scambio termico, gruppo motoventilante, sistema di raccolta e scarico condensa. La sua struttura è predisposta per l'immissione in ambiente di aria primaria, la sua miscelazione con aria di ricircolo e la distribuzione dell'aria trattata dalla cassetta in locali attigui.
La pompa di scarico condensa, idonea per dislivelli fino a 90 cm , è comandata da un galleggiante con 3 livelli di attivazione per la massima silenziosità e sicurezza di funzionamento. II design ed il colore, RAL9003 oppure RAL.9010, della griglia di ripresa e diffusione aria in ambiente garantiscono l'integrazione ottimale nelle pannellature dei controsoffitti. Facile accesso al filtro aria per le operazioni di pulizia.
Alle cassette ACQVARIA si abbinano tutti i pannelli di comando con interfaccia utente installata a parete, elettronici o a microprocessore programmabili.
Su richiesta vengono installati a bordo macchine il regolatore EVO BOARD, sonde aria, acqua e umidità, e valvole a 203 vie, con attuatore ON-OFF oppure modulante.
Sono disponibili anche valvole di bilanciamento e controllo indipendente dalla pressione il cui utilizzo di riduce notevolmente i tempi di commissioning.

COMPONENTI PRINCIPALI

Struttura

Realizzata in lamiera di acciaio zincato rivestita esternamente in floccato PES e coibentata internamente in poliuretano espanso, a garanzia di isolamento termico e acustico. Limmissione di aria di rinnovo in ambiente è realizzabile direttamente tramite l'unità grazie alla predisposizione di connessioni per l'immissione neutra o miscelata. Sono disponibili accessori per l'opportuno collegamento ai canali di adduzione. Sull'unità sono presenti sistemi per l'ancoraggio dell'unità al soffitto. I cablaggi elettrici si realizzano all'interno di una scatola di contenimento, facilmente raggiungibili sul lato per un'agevole connessione

Batteria di scambio termico

In tubo di rame ed alette in alluminio ad alta efficienza bloccate al tubo mediante espansione meccanica. Con almeno due ranghi nei modelli per impianti a 2 tubi è disponibile nella configurazione $2+1$ nei modelli per impianti a 4 tubi. La batteria è completa di valvole manuali per lo sfiato dell'aria. Su richiesta possono essere collegate alla batteria valvole per la regolazione ed il bilanciamento del funzionamento dell'unità.

Gruppo motoventilante

Motore elettrico a 3 velocità direttamente collegato a ventilatore centrifugo a pala rovescia con profilo ottimizzato per la stabilità di funzionamento a tutti i regimi di rotazione.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

Sistema di raccolta e scarico condensa

Posta sotto lo scambiatore di calore la bacinella principale è realizzata in polistirene ed è inserita all'interno dei profili ottimizzati per la distribuzione dell'aria in ambiente. La pompa di scarico condensa riesce a sollevare la condensa fino a $0,9 \mathrm{~m}$ rispetto al punto di uscita dalla macchina. Il funzionamento della pompa è controllato da un galleggiante con tre livelli di intervento che la attivano, la arrestano e, in caso di superamento del livello critico, fermano il funzionamento del ventilatore della cassetta e chiudono la valvola sull'acqua. Completa la fornitura la bacinella ausiliaria per la raccolta della condensa proveniente dalle valvole di regolazione.

Griglia

Di forma quadrata per l'aspirazione e la diffusione dell'aria in ambiente, è realizzata in ABS colore RAL9003 oppure RAL9010. La griglia di aspirazione è apribile per l'accesso al filtro aria. La diffusione dell'aria in ambiente avviene attraverso i 4 lati ciascuno corredato di aletta orientabile opportunamente coibentata con isolante termico.
Da oggi disponibile anche il nuovo modulo EFFETTO in alluminio per l'aspirazione e la diffusione dell'aria ad effetto Coandă.

Modalità di controllo

Galletti rinnova le modalità di controllo dei ventilconvettori integrando sulla piattaforma EVO la nuova interfaccia utenteEVO-2-TOUCH ed il dispositivo NAVEL per la gestione con smartphone.

EVO-2-TOUCH

è un'interfaccia utente con display capacitivo da $2.8^{\prime \prime}$ con sonde di temperature ed umidità integrate ad utilizzo facilitato per I'utente finale.

NAVEL

è il dispositivo associato ad EVOBOARDche rende possibile la comunicazione WI-FI - Bluetooth con lo smartphone in cui è presente la GALLETTI APP (disponibile per iOS e Android).

JONIX Non Thermal Plasma Technology (Optional)

Sanitizza gli ambienti sfruttando le proprietà dell'aria quando è attivata dall'energia prodotta dagli speciali generatori NTP brevettati JONIX. L'aria attivata è composta da molecole "eccitate" (Reactive Species) che vanno ad attaccare le molecole inquinanti, disgregandole e i microrganismi, provocando loro danni strutturali e funzionali tali da renderli inattivi (azione biocida e virucida). I dispositivi Jonix Non Thermal Plasma Technology, opportunamente utilizzati e dimensionati, agiscono su una grande varietà di inquinanti come virus, batteri, muffe, allergeni, composti chimici volatili e ogni tipo di odore, contribuendo alla prevenzione dei contagi da malattie aerotrasmesse (incluso Covid-19).

ACCESSORI			
Pannelli di comando elettronici a microprocessore con display	Interfaccia di potenza e comandi per serrande		
DIST Distanziale per comandi MY COMFORT per installazione a parete	KP	Interfaccia di potenza per il collegamento in parallelo fino a 4 ventilconvettori ad un unico	
EVO-2-TOUCH Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO			
EVOBOARD Scheda di potenza per comando EVO	Valvole		
EVODISP Interfaccia utente con display per comando EVO	PIC-AQ	Valvole a 2 vie, PRESSURE INDEPENDENT	
EYNAVEL Dispositivo per la comunicazione wi-fio Bluetooth tra EVOBOARD e smartphone	V2-AQ	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V 024 V , kit idraulici, per modelli a 102 batterie	
LED503 Comando elettronico con display ad incasso a parete LED 503			
MCBE Comando a microprocessore con display MY COMFORT BASE	V3-AQ	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per modelli a 102 batterie	
MCLE Comando a microprocessore con display MY COMFORT LARGE	modellia 102 batterie Plenum, moduli di aspirazione, raccordi di aspirazione, mandata aria e mobili di copertura		
MCME Comando a microprocessore con display MY COMFORT MEDIUM	PAR	Spigot per immissione aria di rinnovo miscelata	
MCSUE Sonda umidità per comandi MY COMFORT (medium e large), EVO			
MCSWE Sonda a cqua per comandi MY COMFORT, EVO	MOB		
Pannelli di comando elettronici a microprocessore	PAR PMAA	Plenum immissione aria rinnovo non miscelata	
TED 2T Comando elettronico per il controllo del ventilatore AC e di una valvola ON/0FF 230V		PMAA Plenum perl la mandata aria Sistemi di sanificazione	
TED 4T Comando elettronico peril controllo del ventilatore AC e di due valvole ON/OFF 230 V			
TED SWA Sonda temperatura aria 0 a cqua per comandi TED	JONIX- on board	Modulo di sanificazione JONIX per installazione a bordo	

Cassette ACQVARIA

DATI TECNICI NOMINALI 2 TUBI

ACQVARIA			AQ10Q0B0			AQ20Q0BO			AQ30QOBO		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	1,70	1,97	2,53	2,39	3,55	4,31	3,40	4,61	5,00
Resa raffreddamento sensibile	(1)(E)	kW	1,33	1,60	2,14	1,66	2,53	3,18	2,43	3,44	3,79
Classe FCEER	(E)		C			C			D		
Portata acqua	(1)	1/h	295	342	441	416	616	749	593	803	873
Perdita di carico	(1)(E)	kPa	3	4	6	9	19	26	9	16	18
Resa riscaldamento	(2)(E)	kW	1,97	2,33	3,10	2,29	3,44	4,30	3,49	4,92	5,35
Classe FCCOP	(E)		C			D			E		
Portata acqua	(2)	I/h	342	404	539	399	597	747	607	855	930
Perdita di carico	(2)(E)	kPa	3	5	8	7	15	22	8	15	17
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	297	379	557	306	487	640	479	717	805
Potenza assorbita	(E)	W	18	23	42	32	40	50	57	74	89
Potenza sonora globale	(3)(E)	$d B(A)$	33	37	45	40	44	50	47	55	58
ACQVARIA			AQ40QOBO			AQ50Q0BO			AQ60Q0BO		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale	(1)(E)	kW	4,64	5,36	7,01	5,16	6,11	8,24	6,34	8,61	9,73
Resa raffreddamento sensibile	(1)(E)	kW	3,42	3,99	5,29	3,68	4,37	6,10	4,59	6,40	7,35
Classe FCEER	(E)		C								
Portata acqua	(1)	I/h	805	930	1223	893	1060	1434	1097	1498	1696
Perdita di carico	(1)(E)	kPa	14	18	28	12	16	26	16	26	32
Resa riscaldamento	(2)(E)	kW	5,16	6,06	8,17	5,22	6,53	9,18	6,71	9,53	11,1
Classe FCCOP	(E)		D			C			D		
Portata acqua	(2)	1/h	897	1053	1420	908	1136	1596	1167	1656	1930
Perdita di carico	(2)(E)	kPa	14	18	30	10	15	26	15	26	33
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	801	997	1494	718	902	1380	902	1380	1651
Potenza assorbita	(E)	W	47	64	108	47	64	108	64	108	147
Potenza sonora globale	(3)(E)	dB(A)	35	40	51	35	40	51	40	51	56

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aría $20^{\circ} \mathrm{C}$
(3) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

ACQVARIA			AQ10Q0BB			AQ20QOBB			AQ30Q0BB		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale DF	(1)(E)	kW	1,56	1,85	2,35	2,01	2,83	3,38	2,58	3,38	3,62
Resa raffreddamento sensibile DF	(1)(E)	kW	1,24	1,49	1,94	1,49	2,22	2,77	2,00	2,77	3,02
Classe FCEER DF	(E)		C			E			E		
Portata acqua		1/h	271	321	410	351	493	589	453	593	637
Perdita di carico	(E)	kPa	3	4	6	10	16	22	5	8	9
Resa riscaldamento	(2)(E)	kW	2,53	2,88	3,55	2,75	3,62	4,22	3,67	4,54	4,81
Classe FCCOP	(E)		C			D			E		
Portata acqua	(2)	1/h	222	258	311	241	317	369	322	398	421
Perdita di carico	(2)(E)	kPa	4	5	8	6	9	12	5	8	9
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	289	366	533	306	487	640	479	717	805
Potenza assorbita	(E)	W	18	23	42	35	55	73	57	74	89
Potenza sonora globale	(3)(E)	$d B(A)$	33	37	45	40	44	50	47	55	58
ACQVARIA			AQ35@0BB			AQ40QOBB			AQ60Q0BB		
Velocità			min	med	max	min	med	max	min	med	max
Resa raffreddamento totale DF	(1)(E)	kW	3,50	4,39	4,68	4,73	6,60	7,45	5,83	8,48	9,00
Resa raffreddamento sensibile DF	(1)(E)	kW	2,56	3,17	3,50	3,47	5,04	5,81	4,29	6,56	6,98
Classe FCEER DF	(E)		D			C			D		
Portata acqua		1/h	602	755	805	822	1148	1299	1010	1477	1571
Perdita di carico	(E)	kPa	8	12	15	10	20	25	16	31	34
Resa riscaldamento	(2)(E)	kW	2,57	2,94	3,18	6,57	8,76	9,67	8,64	11,7	12,4
Classe FCCOP	(E)		E			C			C		
Portata acqua	(2)	1/h	221	253	273	634	840	929	757	1026	1083
Perdita di carico	(2)(E)	kPa	7	12	14	12	19	23	16	27	30
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	479	717	805	718	1147	1380	902	1544	1651
Potenza assorbita	(E)	W	44	67	75	47	86	108	64	128	147
Potenza sonora globale	(3)(E)	dB(A)	47	55	58	39	47	51	40	54	56

[^4]
Cassette ACQVARIA

DISEGNI DIMENSIONALI

ACQVARIA 10-20-30-35

ACQVARIA	kg
AQ10QOBO - AQ10QOBB	$23+2,5$
AQ20QOBO - AQ30QOBO - AQ20QOBB -	$24+2,5$
AQ30QOBB - AQ35QOBB	

LEGENDA	
$\mathbf{1}$	Scatola elettrica
$\mathbf{2}$	Scarico condensa $\varnothing 10$
$\mathbf{3}$	Uscita acqua $\varnothing 1 / 2^{" ~ g a s ~ f e m m i n a ~}$
$\mathbf{4}$	Entrata acqua $\varnothing 1 / 2^{\prime \prime}$ gas femmina
$\mathbf{5}$	Uscita acqua $\varnothing 1 / 2^{\prime \prime}$ DF gas femmina
$\mathbf{6}$	Entrata acqua $ø 1 / 2^{\prime \prime}$ DF gas femmina
NOTA E' possibile abbinare alle cassette ACQVARIA 60×60 cm il modulo EFFETTO e	
EFFETTO AirClissi, per il dimensionale vedere a pagina 87	

DISEGNI DIMENSIONALI

ACQVARIA 40-50-60 (Taglia 50 non disponibile per versione con doppia batteria)

ACQVARIA	a
AQ40QOBO - AQ40QOBB	$42+5$
AQ50QOBO - AQ60QOBO -AQ60OBB	$43+5$

LEGENDA	
$\mathbf{1}$	Scatola elettrica
$\mathbf{2}$	Scarico condensa $\emptyset 10$
$\mathbf{3}$	Uscita acqua $\emptyset 3 / 4^{\prime \prime}$ gas femmina
$\mathbf{4}$	Entrata acqua $\emptyset 3 / 4^{\prime \prime}$ gas femmina
$\mathbf{5}$	Entrata acqua DF $ø 1 / 2^{\prime \prime}$ gas femmina
$\mathbf{6}$	Uscita acqua DF $\emptyset 1 / 2^{\prime \prime}$ gas femmina

Ventilconvettori a cassetta con motore EC

ACQVARIA i 3-10 kW

JONIX
Inverter

PLUS

» Tecnologia GreenTech
» Motore EC a magneti permanenti assicura il controllo preciso e continuo del funzionamento
» Bassi consumi energetici
» Aria di rinnovo con immissione diretta o miscelata
» Pompa scarico condensa per dislivelli fino a 0,9 m
» Tempi di installazione e commissioning ridotti
" Sistema di sanificazione JONIX incorporabile

Comfort, silenziosità ed efficienza in perfetta armonia!

La nuova serie di cassette idroniche ACQVARIA i, con motore EC a magneti permanenti controllato da inverter, si compone di sei modelli ($10-20-30-40-50-60$) per impianti a 2 tubie cinque ($10-30-35-40-60$) per impianti a 4 tubi.
Língegnerizzazione dell'unità permette di sviluppare fino a 5 kW in fase di raffreddamento nello standard dei controsoffitti modulari $600 \times 600 \mathrm{~mm}$, oltre 10 Kw nella modularità $860 \times 860 \mathrm{~mm}$, con livelli sonori eccezionalmente bassi nelle fasi di mantenimento del comfort ambiente.
Ai noti vantaggi dei motori EC, si unisce la tecnologia GreenTech (nei modelli 10-20-30-35) che integra linverter direttamente nel gruppo motoventilante.
ACQVARIA i sfrutta lintera piattaforma di controllori a microprocessore Galletti, MYCOMFORT, EVO e TED10 che integrano raffinate logiche di regolazione su base temperatura aria, umidità aria e temperatura acqua.
I benefici si traducono nella maggiore accuratezza nel raggiungere e mantenere le condizioni di comfort desiderate grazie alla opportuna modulazione della velocità di ventilazione e nella riduzione delle emissioni acustiche che si adeguano all'effettivo carico termico.
I consumi elettrici vengono infine abbattuti con percentuali che possono arrivare fino al 75\% in meno rispetto ai tradizionali motori $A C$ a velocità fisse.
L'unità in controsoffitto alloggia tutti i componenti, batteria di scambio termico, gruppo motoventilante, sistema di raccolta e scarico condensa. La sua struttura è predisposta per limmissione in ambiente di aria primaria, la sua miscelazione con aria di ricircolo e la distribuzione dell'aria trattata dalla cassetta in locali attigui.
Il design ed il colore, RAL9003 oppure RAL9010, della griglia di ripresa e diffusione aria in ambiente garantiscono lintegrazione ottimale nelle pannellature dei controsoffitti. Facile accesso al filtro aria per le operazioni di pulizia.
L'unità può essere fornita completa di valvole, fra cui valvole di bilanciamento e controllo indipendente dalla pressione il cui utilizzo di riduce notevolmente itempi di commissioning.

VERSIONI DISPONIBILI

Oltre alle 2 griglie in ABS con alette orientabili sono disponibili anche EFFETTO e EFFETTO Airclissi.

EFFETTO, modulo di aspirazione e diffusione dell'aria ad effetto Coandă.
EFFETTO Airclissi, Il nuovo concept di design che integra la luce alla diffusione dell'aria ad effetto Coandă.

Luce Neutra
EFFETT0 + AirClissi

COMPONENTI PRINCIPALI

Struttura

Realizzata in lamiera di acciaio zincato rivestita esternamente in floccato PES e coibentata internamente in poliuretano espanso, a garanzia di isolamento termico e acustico. Limmissione di aria di rinnovo in ambiente è realizzabile direttamente tramite l'unità grazie alla predisposizione di connessioni per l'immissione neutra o miscelata. Sono disponibili accessori per l'opportuno collegamento ai canali di adduzione. Sull'unità sono presenti sistemi per l'ancoraggio dell'unità al soffitto. I cablaggi elettrici si realizzano all'interno di una scatola di contenimento, facilmente raggiungibili sul lato per un'agevole connessione

Batteria di scambio termico

In tubo di rame ed alette in alluminio ad alta efficienza bloccate al tubo mediante espansione meccanica. Con almeno due ranghi nei modelli per impianti a 2 tubi è disponibile nella configurazione $2+1$ nei modelli per impianti a 4 tubi. La batteria è completa di valvole manuali per lo sfiato dell'aria. Su richiesta possono essere collegate alla batteria valvole per la regolazione ed il bilanciamento del funzionamento dell'unità.

Sistema di raccolta e scarico condensa

Posta sotto lo scambiatore di calore la bacinella principale è realizzata in polistirene ed è inserita all'interno dei profili ottimizzati per la distribuzione dell'aria in ambiente La pompa di scarico condensa riesce a sollevare la condensa fino a $0,9 \mathrm{~m}$ rispetto al punto di uscita dalla macchina. Il funzionamento della pompa è controllato da un galleggiante con tre livelli di intervento che la attivano, la arrestano e, in caso di superamento del livello critico, fermano il funzionamento del ventilatore della cassetta e chiudono la valvola sull'acqua. Completa la fornitura la bacinella ausiliaria per la raccolta della condensa proveniente dalle valvole di regolazione

Modalità di controllo

Galletti rinnova le modalità di controllo dei ventilconvettori integrando sulla piattaforma EVO la nuova interfaccia utenteEVO-2-TOUCH ed il dispositivo NAVEL per la gestione con smartphone.

Gruppo motoventilante

Motore elettrico a magneti permanenti EC controllato ad inverter (integrato nei modelli GreenTech) direttamente collegato a ventilatore centrifugo a pala rovescia con profilo ottimizzato per la stabilità di funzionamento a tutti i regimi di rotazione.

Filtro aria

Filtro rigenerabile realizzato in polipropilene a nido d'ape, facilmente estraibile per le operazioni di manutenzione.

Griglia

Di forma quadrata per l'aspirazione e la diffusione dell'aria in ambiente, è realizzata in ABS colore RAL9003 oppure RAL9010. La griglia di aspirazione è apribile per l'accesso al filtro aria. La diffusione dell'aria in ambiente avviene attraverso i 4 lati ciascuno corredato di aletta orientabile opportunamente coibentata con isolante termico.
Da oggi disponibile anche il nuovo modulo EFFETTO in alluminio per l'aspirazione e la diffusione dell'aria ad effetto Coandă

EVO-2-TOUCH

è unínterfaccia utente con display capacitivo da $2.8^{\prime \prime}$ con sonde di temperature ed umidità integrate ad utilizzo facilitato per l'utente finale.

NAVEL

è il dispositivo associato ad EVOBOARDche rende possibile la comunicazione WI-FI o Bluetooth con lo smartphone in cui è presente la GALLETTI APP (disponibile per iOS e Android).

JONIX Non Thermal Plasma Technology

Sanitizza gli ambienti sfruttando le proprietà dell'aria quando è attivata dall'energia prodotta dagli speciali generatori NTP brevettati JONIX. L’aria attivata è composta da molecole "eccitate" (Reactive Species) che vanno ad attaccare le molecole inquinanti, disgregandole e i microrganismi, provocando loro danni strutturali e funzionali tali da renderli inattivi (azione biocida e virucida). I dispositivi Jonix Non Thermal Plasma Technology, opportunamente utilizzati e dimensionati, agiscono su una grande varietà di inquinanti come virus, batteri, muffe, allergeni, composti chimici volatili e ogni tipo di odore, contribuendo alla prevenzione dei contagi da malattie aerotrasmesse (incluso Covid-19).

ACCESSORI		
Pannelli di comando elettronici a microprocessore con display	Valvole	
DIST Distanziale per comandi MY COMFORT per installazione a parete	PIC-AQ	Valvole a 2 vie, PRESSURE INDEPENDENT
EVO-2-TOUCH Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO	V2-AO	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kitidraulici, per
EVOBOARD Scheda di potenza per comando EVO		modellia 102 batterie
EVODISP Interfaccia utente con display per comando EVO	V3-AQ	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per
EYNAVEL Dispositivo per la comunicazione wi-fio Bluetooth tra EVOBOARD e smartphone	U3-AQ	modellia 102 batterie
MCLE Comando a microprocessore con display MY COMFORT LARGE	Plenum, moduli di aspirazione, raccordi di aspirazione, mandata aria e mobili di copertura	
MCSUE Sonda umidità per comandi MY COMFORT (medium e large), EVO	BAR	Spigot per immissione aria di innovo miscelata
MCSWE Sonda acqua per comandi MY COMFORT, EVO	MOB	Mobile di copertura per cassetta
Pannelli di comando elettronici a microprocessore	PAR	Plenum immissione aria rinnovo non miscelata
TED 10 Comando elettronico per il controllo del ventilatore inverter BLDC e di una o due valvole	PMAA	Plenum per la mandata aria
TED 10 ON/OFF 230V	Sistemi di sanificazione	
TED SWA Sonda temperatura aria o acqua per comandi TED	JONIX - on board	Modulo di sanificazione JONIX per installazione a bordo

Cassette ACQVARIA i

DATI TECNICI NOMINALI 2 TUBI

acquariai			AQ10QIBO				AQ20QIB0				AQ30QIBO			
				min	med	max		min	med	max		min	med	max
Velocità			1	2	3	4	1	2	3	4	1	2	3	4
Tensione in ingresso		V	2,00	3,50	4,50	6,00	2,00	4,00	5,50	8,00	2,00	4,00	6,50	10,0
Resa raffreddamento totale	(1)(E)	kW	1,33	1,93	2,24	2,63	1,49	2,68	3,40	4,39	1,54	2,76	3,95	5,23
Resa raffreddamento sensibile	(1)(E)	kW	0,99	1,51	1,81	2,20	1,03	1,94	2,54	3,41	1,05	1,98	2,96	4,11
Classe FCEER	(E)		A											
Portata acqua	(1)	I/h	229	331	385	452	256	460	584	754	264	473	678	898
Perdita di carico	(1)(E)	kPa	2	4	5	7	3	10	15	23	3	9	18	29
Resa riscaldamento	(2)(E)	kW	1,49	2,27	2,70	3,25	1,42	2,69	3,48	4,58	1,47	2,77	4,09	5,55
Classe FCCOP	(E)		A				B				B			
Portata acqua	(2)	1/h	258	395	470	565	248	468	605	797	255	481	711	965
Perdita di carico	(2)(E)	kPa	2	5	6	9	3	8	13	21	3	8	16	27
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	212	397	454	583	187	397	551	796	190	397	650	980
Potenza assorbita	(E)	W	7	7	10	18	7	9	15	37	7	9	22	67
Potenza sonora globale	(3)(E)	$d B(A)$	28	35	40	48	28	37	44	54	29	38	49	61
ACQVARIA i			AQ40QIBO				AQ50Q1B0				AQ60QIBO			
			min	med	max			min	med	max		min	med	max
Velocità			1	2	3	4	1	2	3	4	1	2	3	4
Tensione in ingresso		V	2,00	3,00	5,00	10,0	2,00	3,00	5,00	8,00	2,00	4,00	6,50	10,0
Resa raffreddamento totale	(1)(E)	kW	4,80	5,36	6,39	8,27	5,17	5,92	7,26	9,01	5,26	6,70	8,37	10,5
Resa raffreddamento sensibile	(1)(E)	kW	3,80	3,92	4,75	6,35	3,66	4,24	5,31	6,78	3,69	4,80	6,15	7,97
Classe FCEER	(E)		A				A				B			
Portata acqua	(1)	1/h	833	921	1097	1420	888	1015	1245	1545	902	1150	1436	1805
Perdita di carico	(1)(E)	kPa	12	16	21	34	10	13	18	27	10	15	22	33
Resa riscaldamento	(2)(E)	kW	5,50	6,00	7,30	9,74	5,43	6,33	7,99	10,2	5,48	7,23	9,35	12,2
Classe FCCOP	(E)		A				B				B			
Portata acqua	(2)	1/h	953	1043	1269	1692	944	1100	1390	1779	952	1257	1625	2116
Perdita di carico	(2)(E)	kPa	3	16	23	38	9	12	19	29	9	15	23	36
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	843	978	1276	1916	724	864	1143	1554	710	976	1321	1831
Potenza assorbita	(E)	W	14	18	36	150	14	18	36	93	14	25	60	150
Potenza sonora globale	(3)(E)	dB(A)	35	39	45	57	35	39	48	53	36	43	50	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo u uido (47% u uidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(3) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

ACQVARIA			AQ10QIBB				AQ30QIBB				AQ350\|BB			
				min	med	max		min	med	max		min	med	max
Velocità			1	2	3	4	1	2	3	4	1	2	3	4
Tensione in ingresso		V	2,00	3,50	4,50	6,00	2,00	4,00	6,50	10,0	2,00	4,00	6,50	10,0
Resa raffreddamento totale	(1)(E)	kW	1,24	1,85	2,18	2,60	1,55	2,62	3,53	4,41	2,34	3,03	3,83	5,01
Resa raffreddamento sensibile	(1)(E)	kW	0,92	1,46	1,79	2,23	1,24	2,10	2,74	3,58	1,49	2,17	2,79	3,98
Classe FCEER DF	(E)		A											
Portata acqua	(E)	1/h	213	317	374	447	267	451	607	759	403	521	659	862
Perdita di carico	(E)	kPa	2	4	6	8	5	7	12	25	4	6	10	17
Resa riscaldamento	(2)(E)	kW	2,03	2,90	3,34	3,86	2,35	3,73	4,38	5,51	1,92	2,39	2,88	3,43
Classe FCCOP	(E)		A				B				B			
Portata acqua	(2)	1/h	178	254	292	338	202	321	377	474	165	206	248	295
Perdita di carico	(2)(E)	kPa	3	6	8	11	3	4	8	11	4	5	10	16
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	199	356	460	610	195	395	643	982	195	395	643	982
Potenza assorbita	(E)	W	7	7	10	18	7	9	22	67	7	9	22	67
Potenza sonora globale	(3)(E)	dB(A)	28	35	40	48	29	38	49	61	29	38	49	61

ACQVARIA			AQ40QIBB				AQ60QIBB			
			min	med	max			min	med	max
Velocità			1	2	3	4	1	2	3	4
Tensione in ingresso		V	2,00	3,00	5,00	10,0	2,00	4,00	6,50	10,0
Resa raffreddamento totale	(1)(E)	kW	4,61	5,34	6,61	9,07	4,70	6,09	7,62	9,50
Resa raffreddamento sensibile	(1)(E)	kW	3,34	3,94	5,03	7,29	3,37	4,50	5,82	7,56
Classe FCEER DF	(E)		A				B			
Portata acqua	(E)	1/h	792	917	1135	1555	806	1045	1307	1631
Perdita di carico	(E)	kPa	12	15	22	37	11	17	25	37
Resa riscaldamento	(2)(E)	kW	7,01	7,96	9,53	12,3	7,15	8,96	10,8	12,9
Classe FCCOP	(E)		A				B			
Portata acqua	(2)	I/h	613	697	834	1078	626	785	947	1133
Perdita di carico	(2)(E)	kPa	11	14	19	30	12	18	24	33
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	687	841	1137	1823	673	956	1314	1823
Potenza assorbita	(E)	W	14	18	36	150	14	25	60	150
Potenza sonora globale	(3)(E)	dB(A)	35	39	45	57	36	43	50	58

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(3) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Cassette ACQVARIA i

DISEGNI DIMENSIONALI

ACQVARIA i 10-20-30 (per impianto a 2 tubi) - 10-30-35 (per impianto a 4 tubi)

LEGENDA	
$\mathbf{1}$	Passaggio dei cavi elettrici
$\mathbf{2}$	Scarico condensa $\emptyset 10$
$\mathbf{3}$	Uscita acqua $\emptyset 1 / 2^{\prime \prime}$ gas femmina
4	Entrata acqua $\emptyset 1 / 2^{\prime \prime}$ gas femmina
$\mathbf{5}$	Uscita acqua $\emptyset 1 / 2^{\prime \prime}$ DF gas femmina
$\mathbf{6}$	Entrata acqua $\emptyset 1 / 2^{\prime \prime}$ DF gas femmina
NOTA E' possibile abbinare alle cassette ACQVARIA i 60×60 cm il modulo EFFETTO e	
EFFETTO AirClissi, per il dimensionale vedere a pagina 87	

DISEGNI DIMENSIONALI

ACQVARIA i 40-50-60 (Taglia 50 non disponibile per la versione con doppia batteria)

Mod.	$\begin{aligned} & \circ \\ & \mathrm{kg} \end{aligned}$
AQ40QIBO	$42+5$
AQ50QIBO	$43+5$
AQ600\|B0	$43+5$
AQ40QIBB	$42+5$
AQ600\|BB	$43+5$

LEGENDA

$\mathbf{1}$	Scatola elettrica
$\mathbf{2}$	Scarico condensa $\varnothing 10$
$\mathbf{3}$	Uscita acqua $\varnothing 3 / 4^{\prime \prime}$ gas femmina
$\mathbf{4}$	Entrata acqua $\varnothing 3 / 4^{\prime \prime}$ gas femmina
$\mathbf{5}$	Entrata acqua DF $\varnothing 1 / 2^{\prime \prime}$ gas femmina
$\mathbf{6}$	Uscita acqua DF $\varnothing 1 / 2^{\prime \prime}$ gas femmina

Unità canalizzabili a media prevalenza

 DUCTIMAX 2-8 kW

Prestazioni e compattezza nelle installazioni ad incasso a soffitto

L'unità canalizzabile DUCTIMAX è stata realizzata per la climatizzazione di ambienti dove viene richiesta l'installazione di unità a media prevalenza performanti e dalle dimensioni di ingombro ridotte. La gamma copre un range di portata aria da 300 a $1200 \mathrm{~m}^{3} / \mathrm{h}$ distribuita su 12 modelli. La batteria di scambio termico permette l'utilizzo di DUCTIMAX nelle più diverse condizioni di utilizzo. La struttura portante infatti alloggia una batteria a 304 ranghi a cui è possibile abbinare uno scambiatore aggiuntivo ad 102 ranghi (su richiesta) per eccezionali prestazioni anche a bassi differenziali di temperatura. Le batterie possono essere ottimizzate per applicazioni centralizzate quali district cooling. DUCTIMAX è stata progettata per installazione orizzontale a soffitto. La vasca principale di raccolta della condensa è posta internamente alla struttura dell'unità ed è a pressione positiva rispetto allo scarico per facilitare il drenaggio della condensa.
Ė disponibile un'ampia gamma di comandi per installazione a parete del tipo elettromeccanico e a microprocessore con display. Ad integrare il funzionamento idronico sono disponibili resistenze elettriche complete di sicurezze.
L'effetto del filtro aria G3 o G4 può essere abbinato al sistema di ionizzazione dell'aria.

La struttura permette di combinare un'ampia gamma di accessori in ripresa e mandata fino ad ottenere la configurazione ottimale dell'unità.

VERSIONI DISPONIBILI

DMXXDOLO...A	Unità per impianti a 2 tubi
DMXXDOLL...A	Unità per impianti a 4 tubi dotata di una batteria addizionale ad 1 rango per circuito acqua calda

DMXXDOLM...A
Unità per impianti a 4 tubi dotata di una batteria addizionale a 2 ranghi per circuito acqua calda (A richiesta)

COMPONENTI PRINCIPALI

Struttura

Realizzata in lamiera di acciaio zincato, isolata termicamente ed acusticamente con pannelli autoestinguenti di classe 1. Altezza ridotta per agevolare l'installazione in posizione orizzontale, in controsoffitto. La struttura contiene la vasca di raccolta e scarico condensa.

Batteria di scambio termico

A 304 ranghi, ad alta efficienza, in tubo di rame ed alette in alluminio bloccate ai tubi mediante espansione meccanica. È corredata di collettori in ottone e valvola di sfiato aria. La batteria, normalmente fornita con attacchi a sinistra, può essere ruotata di 180°. Su richiesta sono disponibili batterie ad alta efficienza ottimizzate per le applicazioni district cooling.

Motore elettrico

Motore elettrico multi-velocità, dl tipo asincrono monofase, con condensatore permanentemente inserito e protettore termico, montato su supporti antivibranti.

Ventilatori

Ventole centrifughe a doppia aspirazione realizzate in ABS o alluminio, a pale avanti, bilanciate staticamente e dinamicamente, accoppiate direttamente al motore elettrico.

Filtro aria

Filtro aria rigenerabile in fibra acrilica, classe di filtrazione G2, G3 o G4, posto sull'aspirazione dell'aria, estraibile a cassetto dal basso.

CONFIGURATORE

I modelli sono completamente configurabili selezionando la versione e le opzioni. A fianco è riportato un esempio di configurazione.

Versione
 DM44

Per verificare la compatibilità delle opzioni si prega di utilizzare il software di selezione oil listino prezzi.

CONFIGURATORE

1	Versione	0	Assente
D	Versione canalizzabile	E	EVOBOARD - Scheda di potenza
2	Motore	G	Scheda di potenza EVOBOARD + modulo Wireless Navel
0	Motore 3 velocità	7	Sonde
1	Motore 7 velocità	0	Assente
I	Motore BLDC	1	SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
P	Motore 6 velocità	2	SW - Sonda acqua per MYCOMFORT, LED503 e EVO
3	Lato attacchi batteria principale	3	SU - Sonda umidità per MYCOMFORT e EVO
L	Attachi a sinistra	4	SA+SW - Sonde aria + acqua per MYCOMFORT, LED503 e EVO
R	Attacchi a destra	5	SA+SU - Sonde aria + umidità per MYCOMFORT e EVO
4	Lato attacchi batteria addizionale/resistenza elettrica	6	SA+SU+SW - Sonde aria + umidità + acqua per MYCOMFORT e EVO
0	Assente	B	SA - Sonda aria remota per TED
E	RE - Resistenza elettrica	C	SW - Sonda acqua per TED
L	Attacchi a sinistra	D	SA + SW - Sonde aria + acqua per TED
R	Attacchi a destra	8	Accessori vari
5	Valvola	0	Assente
0	Assente	2	JONIX
1	VKS - Valvola 3 vie - 230V - ON/OFF - kit completo	5	BH - Bacinella ausiliaria
2	KV - Valvola 2 vie - 230 V - ON/OFF	9	Filtro
3	VKMS - Valvola 3 vie - 24V - MODULANTE - kit completo	2	Filtro G2
4	KVM - Valvola 2 vie - 24V - MODULANTE	3	Filtro G3
5	VKS24-Valvola 3 vie - 24 V - ON/OFF - kit completo	10	Release
6	KV24-Valvola 2 vie - 24 V - ON/OFF	0	0
6	Pannello di comando	A	A

D Versione canalizzabile
Motore
0 Motore 3 velocità
Motore 7 velocita
Motore BLDC
Motore 6 velocità
L Attacchi a sinistra
R Attacchia destra
Lato attacchi batteria addizionale/resistenza elettrica
0 Assente
, Resistenza elettrica
Attacchi a sinistra
Valvola
0 Assente
1 VKS - Valvola 3 vie-230V - ON/OFF - kit completo
KV-Valvola 2 vie-230V-ON/OFF
3 VKMS - Valvola 3 vie-24V-MODULANTE - kit completo
5 VKS24-Valvola 3 vie-24V - ON/OFF - kit completo
vie-24V-ON/OFF
Pannello di comando

Assente
EVOBOARD - Scheda di potenza

- ${ }^{G}$ Scheda di potenza EVOBOARD + modulo Wireless Navel

Assente

SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
SW - Sonda acqua per MYCOMFORT, LED503 e EVO
SU - Sonda umidità per MYCOMFORT e EVO
SA SW - Sonde aria + acqua per MYCOMFORT, LED503 e EVO
SA+SU+SW - Sonde aria + umidità + acqua per MYCOMFORT e EVO
SA - Sonda aria remota per TED
SW - Sonda acqua per TED
+SW - Sonde aria + acqua per TED
Accessori vari
Assente
BH - Bacinella ausiliaria
9 Filtro
2 Filtro G2
3 Filtro G3
00
A A

ACCESSORI

Pannelli di comando elettromeccanici	
CD	Commutatore di velocità ad incasso a parete
CDE	Commutatore di velocità a parete
TC	Termostato di minima temperatura acqua in riscaldamento ($42^{\circ} \mathrm{C}$)
Pannelli di comando elettronici a microprocessore con display	
COB	Placca di finitura per comando LED 503 colore nero RAL 9005
COG	Placca di finitura per comando LED 503 colore grigio RAL 7031
COW	Placca di finitura per comando LED 503 colore bianco RAL 9003
DIST	Distanziale eer comandi MY COMFORT per installazione a parete
EVO-2-TOUCH	Interfaccia utente touch screen $2.8{ }^{\prime \prime}$ per comando EVO
EVOBOARD	Scheda di potenza per comando EVO
EVODISP	Interfaccia utente con display per comando EVO
EYNAVEL	Dispositivo per la comunicazione wi-fi o Bluetooth tra EVOBOARD e smartphone
LED503	Comando elettronico con display ad incasso a parete LED 503
MCBE	Comando a microprocessore con display MY COMFORT BASE
MCLE	Comando a microprocessore con display MY COMFORT LARGE
MCME	Comando a microprocessore con display MY COMFORT MEDIUM
MCSUE	Sonda umidità per comandi MY COMFORT (medium elarge), EVO
MCSWE	Sonda acqua per comandi MY COMFORT, EVO
Pannelli di comando elettronici a microprocessore	
TED 2T	Comando elettronico per il controllo del ventilatore AC e di una valvola ON/OFF 230V
TED 4T	Comando elettronico per il controllo del ventilatore AC e di due valvole ON/OFF 230 V
TED SWA	Sonda temperatura aria o acqua per comandi TED
Interfaccia di potenza e comandi per serrande	
KP	Interfaccia di potenza per il collegamento in parallelo fino a 4 ventilconvettori ad un unico comando
Resistenze elettriche	
RE	Resistenza elettrica con kit di montaggio, scatola relè e sicurezze
Griglie di mandata e ripresa aria	
GA	Griglia in alluminio di aspirazione aria, con cornice
GM	Griglia di mandata aria in alluminio, a doppio ordine, con controtelaio
Valvole	
V2VDF+STD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V 024 V , kit idraulici, per batteria principale e addizionale

V2VSTD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230V o 24V, kit idraulici, per batteria principale
V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V 024 V , kit idraulici, per batteria addizionale
V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230V o 24V, kit idraulici, per batteria principale
VPIC	Valvole a 2 vie pressure independent, attuatori ON/OFF, alimentazione 230V, kit idraulici, per batteria principale e addizionale
Plenum, moduli di aspirazione, raccordi di aspirazione, mandata aria e mobili di copertura	
MAF90	Modulo di aspirazione frontale con filtro aria piano, classe G3
MAFO	Modulo di aspirazione con filtro aria ondulato, classe G4
MAF090	Modulo di aspirazione frontale con filtro aria piano, classe G4
PAF	Plenum di aspirazione frontale non coibentato con collariø 200 mm
PMA	Plenum di mandata/aspirazione non coibentato con collari $\emptyset 200 \mathrm{~mm}$
PMAC	Plenum di mandata/aspirazione coibentato con collariø 200 mm
R90	Raccordo 90° mandata/aspirazione non coibentato
R90C	Raccordo 90° mandata/aspirazione coibentato
RD	Raccordo dritto di mandata/aspirazione non coibentato
RDC	Raccordo dritto di mandata/aspirazione coibentato
Tubi flessibili di collegamento e tappi di chiusura	
TFA	Tubo flessibile non coibentato, $\varnothing 200 \mathrm{~mm}$ (6 metri non frazionabili)
TFM	Tubo flessibile coibentato, 0200 mm (6 metri non frazionabili)
TP	Tappo in plastica $\emptyset 200 \mathrm{~mm}$
Cassette di mandata e aspirazione aria	
CA	Cassetta di aspirazione con griglia alveolare
CAF	Cassetta di a spirazione con griglia alveolare $300 \times 600 \mathrm{~mm}$, completa di filtro G2
CM	Cassetta di mandata coibentata con griglia
Accessori vari	
KSC	Kit pompa di scarico condensa
VRC	Bacinella ausiliaria di raccolta condensa
Sistemi di sanificazione	
JONIX-mic	Modulo di sanificazione JONIX installato su canale
JONIX- pln	Modulo di sanificazione JONIX installato su plenum

Unità canalizzabile DUCTIMAX

DATI TECNICI NOMINALI 2 TUBI

DUCTIMAX			13			14			23			24		
Velocità			min	med	max									
Velocità certificate			2,5,7			2,5,7			1,5,7			1,5,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	246	276	109	246	276	171	275	341	171	275	341
Prevalenza statica utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Potenza assorbita	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Resa raffreddamento totale	(1)(E)	kW	0,92	1,72	1,90	0,95	1,91	2,11	1,27	1,90	2,27	1,36	2,11	2,53
Resa raffreddamento sensibile	(1)(E)	kW	0,61	1,21	1,34	0,63	1,30	1,43	0,89	1,34	1,59	0,93	1,44	1,72
Classe FCEER	(E)		D											
Portata acqua	(2)	1/h	160	306	340	167	337	375	222	339	408	239	374	453
Perdita di carico	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Resa riscaldamento	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Classe FCCOP	(E)		D											
Portata acqua	(3)	1/h	153	315	346	158	345	384	231	345	408	244	382	466
Perdita di carico	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Batteria standard - numero ranghi			3			4			3			4		
Potenza sonora globale	(4)	$d B(A)$	32	49	29	28	49	52	39	50	54	39	50	54
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	30	47	50	26	47	50	37	48	52	37	48	52
Potenza sonora mandata aria	(4)(E)	$d B(A)$	29	46	49	25	46	49	37	47	51	36	47	51
ductimax			33			34			43			44		
Velocità			min	med	max									
Velocità certificate			1,6,7			1,6,7			1,4,7			1,4,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	360	402	195	360	402	305	532	652	305	532	652
Prevalenza statica utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Potenza assorbita	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Resa raffreddamento totale	(1)(E)	kW	1,44	2,28	2,51	1,57	2,69	2,96	1,92	3,17	3,68	2,29	3,78	4,45
Resa raffreddamento sensibile	(1)(E)	kW	1,01	1,69	1,86	1,07	1,86	2,03	1,42	2,39	2,81	1,57	2,61	3,08
Classe FCEER	(E)		D			D			E			D		
Portata acqua	(2)	1/h	252	406	449	274	476	527	343	568	664	407	673	798
Perdita di carico	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Resa riscaldamento	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Classe FCCOP	(E)		D											
Portata acqua	(3)	I/h	272	470	515	276	488	538	408	644	749	419	687	814
Perdita di carico	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Batteria standard - numero ranghi			3			4			3			4		
Potenza sonora globale	(4)	$d B(A)$	39	50	54	39	50	54	38	52	58	38	52	58
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	37	48	52	37	48	52	36	50	56	36	50	56
Potenza sonora mandata aria	(4)(E)	$d B(A)$	36	47	51	36	47	51	35	49	55	35	49	55

DUCTIMAX			53			54			63			64		
Velocità			min	med	max									
Velocità certificate			1,6,7			1,6,7			5,6,7			5,6,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Prevalenza statica utile	(E)	Pa	12	50	61	12	50	61	40	50	53	40	50	60
Potenza assorbita	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Resa raffreddamento totale	(1)(E)	kW	2,22	4,22	4,63	2,44	4,79	5,23	6,15	6,66	7,21	6,91	7,49	8,12
Resa raffreddamento sensibile	(1)(E)	kW	1,60	3,09	3,39	1,70	3,33	3,64	4,51	4,88	5,29	4,83	5,23	5,67
Classe FCEER	(E)		D											
Portata acqua	(2)	I/h	394	753	828	432	850	930	1095	1191	1295	1225	1333	1448
Perdita di carico	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Resa riscaldamento	(3)(E)	kW	2,54	4,76	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Classe FCCOP	(E)		D											
Portata acqua	(3)	1/h	442	827	898	457	875	955	1162	1256	1357	1248	1356	1472
Perdita di carico	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	20	23
Batteria standard - numero ranghi			3			4			3			4		
Potenza sonora globale	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Potenza sonora mandata aria	(4)(E)	$d B(A)$	35	52	55	35	53	55	58	60	66	58	60	66

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u uidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aría $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

ductimax			13			14			23			24		
Velocità			min	med	max									
Velocità certificate			2,5,7			2,5,7			1,5,7			1,5,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	243	270	109	243	270	170	272	336	170	272	336
Prevalenza statica utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Potenza assorbita	(E)	W	24	57	82	24	57	82	34	69	106	34	69	106
Resa raffreddamento totale	(1)(E)	kW	0,92	1,70	1,86	0,95	1,88	2,06	1,26	1,88	2,24	1,35	2,09	2,49
Resa raffreddamento sensibile	(1)(E)	kW	0,61	1,20	1,31	0,63	1,28	1,40	0,88	1,33	1,57	0,92	1,42	1,70
Classe FCEER	(E)		D											
Portata acqua	(2)	I/h	160	302	333	167	334	368	221	335	404	238	370	447
Perdita di carico	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Resa riscaldamento	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Classe FCCOP	(E)		D											
Portata acqua	(3)	1/h	100	169	180	100	169	180	136	181	204	136	181	204
Perdita di carico	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Batteria DF - numero di ranghi			1			1			1			1		
Potenza sonora globale	(4)	$d B(A)$	32	49	52	28	49	52	39	50	54	39	50	54
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	30	47	50	26	47	50	37	48	52	37	48	52
Potenza sonora mandata aria	(4)(E)	$d B(A)$	29	46	49	25	46	49	36	47	51	36	47	51
DUCTIMAX			33			34			43			44		
Velocità			min	med	max									
Velocità certificate			1,6,7			1,6,7			1,4,7			1,4,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	357	398	195	357	398	302	524	642	302	524	642
Prevalenza statica utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Potenza assorbita	(E)	W	34	85	106	34	85	106	76	143	192	76	143	192
Resa raffreddamento totale	(1)(E)	kW	1,44	2,26	2,48	1,57	2,67	2,93	1,89	3,13	3,64	2,27	3,73	4,40
Resa raffreddamento sensibile	(1)(E)	kW	1,01	1,68	1,84	1,07	1,84	2,01	1,41	2,35	2,78	1,56	2,57	3,04
Classe FCEER	(E)		D			D			E			D		
Portata acqua	(2)	1/h	252	402	445	274	473	522	339	562	656	403	664	788
Perdita di carico	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Resa riscaldamento	(3)(E)	kW	2,09	3,09	3,29	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Classe FCCOP	(E)		C			C			D			D		
Portata acqua	(3)	1/h	183	271	288	183	271	288	245	334	371	245	334	371
Perdita di carico	(3)(E)	kPa	2	3	4	2	3	4	3	5	6	3	5	6
Batteria DF - numero di ranghi			1			1			1			1		
Potenza sonora globale	(4)	dB(A)	36	47	51	36	47	51	38	52	58	38	52	58
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	37	48	52	37	48	52	36	50	56	36	50	56
Potenza sonora mandata aria	(4)(E)	$d B(A)$	36	47	51	36	47	51	35	49	55	35	49	55

dUCTIMAX			53			54			63			64		
Velocità			min	med	max									
Velocità certificate			1,6,7			1,6,7			5,6,7			5,6,7		
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	683	755	333	683	755	1050	1163	1289	1050	1163	1289
Prevalenza statica utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Potenza assorbita	(E)	W	76	167	192	76	167	192	235	280	332	235	280	332
Resa raffreddamento totale	(1)(E)	kW	2,22	4,20	4,60	2,44	4,76	5,20	6,15	6,66	7,21	6,91	7,49	8,12
Resa raffreddamento sensibile	(1)(E)	kW	1,60	3,07	3,36	1,70	3,31	3,62	4,51	4,88	5,29	4,83	5,23	5,67
Classe FCEER	(E)		D											
Portata acqua	(2)	1/h	394	749	822	432	846	925	1095	1191	1295	1225	1333	1448
Perdita di carico	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Resa riscaldamento	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Classe FCCOP	(E)		D											
Portata acqua	(3)	1/h	297	452	477	297	452	477	562	590	618	562	590	618
Perdita di carico	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Batteria DF - numero di ranghi			1			1			1			1		
Potenza sonora globale	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Potenza sonora mandata aria	(4)(E)	$d B(A)$	35	52	55	35	52	55	58	60	66	58	60	66

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u uidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Unità canalizzabile DUCTIMAX

DISEGNI DIMENSIONALI

dUCTIMAX 1-4

DUCTIMAX	13	14	23	24	33	34	43	44	
Motore ON/OFF	x	x	x	x	x	x	x	x	
Motore Inverter	x	x	x	x	x	x	x	x	
$\mathrm{x}=$ disponibile									
DUCTIMAX		$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	m		1	3 mm	$\begin{aligned} & \circ \\ & \mathrm{kg} \end{aligned}$
13-14		758	677	648	70		1/2	17	24
23-24		758	677	648	70		1/2	17	25
33-34		968	887	858	91		1/2	17	33
43-44		968	887	858	91		1/2	17	36

DISEGNI DIMENSIONALI

DUCTIMAX	53	54	63	64
Motore ON/0FF	x	x	x	x
Motore Inverter	x	x	x	x

$x=$ disponibile

DUCTIMAX	1	2	\bigcirc	3
	"	"	kg	mm
53-54	3/4	1/2	45	17
63-64	3/4	1/2	51	17

Unità canalizzabili a media prevalenza con motore EC

DUCTIMAXi2-8 kW

JONIX
 pure llyma

Modulazione ed efficienza ad incasso a soffitto

DUCTIMAX i rappresenta il completamento della gamma con l'utilizzo della tecnologia EC inverter sui motori elettrici. Alle peculiarità di DUCTIMAX si sommano i benefici della tecnologia brushless in termini di riduzione dei consumi elettrici e conseguente riduzione delle emissioni di CO_{2}, aumento della flessibilità di funzionamento grazie alla modulazione della portata aria ed aumento del livello di comfort termoigrometrico ed acustico.
La gamma è composta da 12 modelli che coprono un range di portata aria da 300 a $1200 \mathrm{~m}^{3} / \mathrm{h}$.
La modulazione continua della portata aria e l'utilizzo di scambiatori di calore ad alta efficienza consente di operare anche con differenze di temperatura aria - acqua contenute. Gli scambiatori di calore possono inoltre essere ottimizzati nella circuitazione per applicazioni centralizzate quali district cooling.
Il funzionamento è regolato da pannelli di comando a parete del tipo a microprocessore con display come i modelli MYCOMFORT LARGE ed EVO.
L'azione del filtro aria G3 o G4 può essere abbinata al sistema di ionizzazione dell'aria disponibile come accessorio.

PLUS

» Motore EC a magneti permanenti
» Basso consumo elettrico
» Facile setup aeraulico
" Batteria fino a 4 ranghi
» Dimensioni compatte
» Attacchi idraulici reversibili
" Vasta disponibilità di accessori
» Sistema di sanificazione JONIX incorporabile

Oltre ad assicurare un grande vantaggio in termini di efficienza energetica, il motore EC pilotato da inverter consente flessibilità di installazione e riduce i tempi di setup aeraulico, grazie alla modulazione continua della portata aria.

VERSIONI DISPONIBILI

DMXXDILO...A Unità per impianti a 2 tubi
DMXXDILL...A Unità per impianti a 4 tubi dotata di una batteria addizionale ad 1 rango per circuito acqua calda

DMXXDILM...A Unità per impianti a 4 tubi dotata di una batteria addizionale a 2 ranghi per circuito acqua calda (A richiesta)

COMPONENTI PRINCIPALI

Struttura

Realizzata in lamiera di acciaio zincato, isolata termicamente ed acusticamente con pannelli autoestinguenti di classe 1. Altezza ridotta per agevolare l'installazione in posizione orizzontale, in controsoffitto. La struttura contiene la vasca di raccolta e scarico condensa.
La vasca principale di raccolta della condensa è posta internamente alla struttura dell'unità ed è a pressione positiva rispetto allo scarico per facilitare il drenaggio della condensa.

Motore elettrico EC

Motore a magneti permanenti. L'unità è dotata di scheda inverter di controllo del motore, che permette un preciso settaggio della velocità di rotazione (segnale di controllo 0-10V).

Ventilatori

Ventole centrifughe a doppia aspirazione realizzate in ABS o alluminio, a pale avanti, bilanciate staticamente e dinamicamente, accoppiate direttamente al motore elettrico.

Batteria di scambio termico

A 304 ranghi, ad alta efficienza, in tubo di rame ed alette in alluminio bloccate ai tubi mediante espansione meccanica. È corredata di collettori in ottone e valvola di sfiato aria. La batteria, normalmente fornita con attacchi a sinistra, può essere ruotata di 180°. Su richiesta sono disponibili batterie ad alta efficienza ottimizzate per le applicazioni district cooling

Filtro aria

Filtro aria rigenerabile in fibra acrilica, classe di filtrazione G2 ○ G3, posto sull'aspirazione dell'aria, estraibile a cassetto dal basso

Unità canalizzabile DUCTIMAX i

DATI TECNICI NOMINALI 2 TUBI

DUCTIMAX			13			14			23			24		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	2,90	8,00	9,00	2,90	8,00	9,00	4,30	7,50	8,40	4,30	7,50	8,40
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	246	276	109	246	276	171	275	341	171	275	341
Prevalenza statica utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Potenza assorbita	(E)	W	6	25	33	6	25	33	10	24	39	10	24	39
Resa raffreddamento totale	(1)(E)	kW	0,93	1,76	1,95	0,96	1,92	2,16	1,29	1,95	2,34	1,38	2,16	2,60
Resa raffreddamento sensibile	(1)(E)	kW	0,62	1,25	1,39	0,64	1,34	1,48	0,91	1,39	1,66	0,95	1,49	1,79
Classe FCEER	(E)		A											
Portata acqua	(2)	1/h	161	306	340	167	337	375	222	339	408	239	374	453
Perdita di carico	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Resa riscaldamento	(3)(E)	kW	0,88	1,81	1,99	0,91	1,98	2,21	1,33	1,98	2,35	1,40	2,20	2,68
Classe FCCOP	(E)		A											
Portata acqua	(3)	I/h	153	315	346	158	345	384	231	345	408	244	382	466
Perdita di carico	(3)(E)	kPa	1	4	5	2	6	7	2	5	7	3	7	10
Batteria standard - numero ranghi			3			4			3			4		
Potenza sonora globale	(4)	$d B(A)$	28	49	52	28	49	52	39	50	54	39	50	54
Potenza sonora irradiata + aspirazione aria	(4)(E)	dB(A)	26	47	50	26	47	50	37	48	52	37	48	52
Potenza sonora mandata aria	(4)(E)	dB(A)	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i			33			34			43			44		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	360	402	195	360	402	305	532	652	305	532	652
Prevalenza statica utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Potenza assorbita	(E)	W	10	26	35	10	26	35	22	51	77	22	51	77
Resa raffreddamento totale	(1)(E)	kW	1,46	2,33	2,59	1,59	2,74	3,04	1,98	3,26	3,79	2,35	3,87	4,56
Resa raffreddamento sensibile	(1)(E)	kW	1,03	1,74	1,94	1,09	1,91	2,11	1,48	2,48	2,92	1,63	2,70	3,19
Classe FCEER	(E)		A			A			B			A		
Portata acqua	(2)	1/h	252	406	449	274	476	527	343	568	664	407	673	798
Perdita di carico	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	14	18
Resa riscaldamento	(3)(E)	kW	1,57	2,70	2,96	1,59	2,80	3,10	2,35	3,71	4,31	2,41	3,95	4,68
Classe FCCOP	(E)		A											
Portata acqua	(3)	1/h	272	470	515	276	488	538	408	644	749	419	687	814
Perdita di carico	(3)(E)	kPa	2	5	6	2	6	8	4	9	11	5	12	16
Batteria standard - numero ranghi			3			4			3			4		
Potenza sonora globale	(4)	$d B(A)$	39	50	54	39	50	54	38	52	58	38	52	58
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	37	48	52	37	48	52	36	50	56	36	50	56
Potenza sonora mandata aria	(4)(E)	$d B(A)$	36	47	51	36	47	51	35	49	55	35	49	55

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 2 TUBI

DUCTIMAX i				53			54			63			64	
Velocità			min	med	max									
Tensione in ingresso	(E)	V	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	687	760	333	687	760	1050	1163	1289	1050	1163	1289
Prevalenza statica utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Potenza assorbita	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Resa raffreddamento totale	(1)(E)	kW	2,29	4,34	4,75	2,51	4,91	5,35	6,28	6,81	7,38	7,04	7,64	8,28
Resa raffreddamento sensibile	(1)(E)	kW	1,67	3,21	3,51	1,77	3,45	3,76	4,64	5,03	5,46	4,96	5,38	5,84
Classe FCEER	(E)			A			A			C			B	
Portata acqua	(2)	1/h	394	753	828	432	850	930	1094	1190	1295	1225	1332	1448
Perdita di carico	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Resa riscaldamento	(3)(E)	kW	2,54	4,74	5,17	2,63	5,03	5,49	6,68	7,22	7,80	7,18	7,80	8,46
Classe FCCOP	(E)			A			A			B			B	
Portata acqua	(3)	1/h	441	827	898	457	875	955	1162	1256	1356	1248	1355	1471
Perdita di carico	(3)(E)	kPa	2	7	8	3	9	11	12	14	16	17	19	22
Batteria standard - numero ranghi				3			4			3			4	
Potenza sonora globale	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Potenza sonora mandata aria	(4)(E)	$d B(A)$	35	52	55	35	52	55	58	60	66	58	60	66

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umididà relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Unità canalizzabile DUCTIMAX i

DATI TECNICI NOMINALI 4 TUBI

ductimaxi			13			14			23			24		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	2,90	7,90	8,90	2,90	7,90	8,90	4,50	7,30	8,90	4,50	7,30	8,90
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	109	243	270	109	243	270	170	272	336	170	272	336
Prevalenza statica utile	(E)	Pa	10	50	63	10	50	63	19	50	77	19	50	77
Potenza assorbita	(E)	W	6	25	32	6	25	32	10	23	39	10	23	39
Resa raffreddamento totale	(1)(E)	kW	0,93	1,74	1,91	0,96	1,92	2,11	1,28	1,93	2,31	1,37	2,14	2,56
Resa raffreddamento sensibile	(1)(E)	kW	0,62	1,24	1,36	0,64	1,32	1,45	0,90	1,38	1,64	0,94	1,47	1,77
Classe FCEER	(E)		A											
Portata acqua	(2)	1/h	161	302	333	167	334	368	221	335	404	238	370	447
Perdita di carico	(2)(E)	kPa	2	5	6	2	7	8	3	6	8	4	8	12
Resa riscaldamento	(3)(E)	kW	1,14	1,93	2,06	1,14	1,93	2,06	1,55	2,07	2,32	1,55	2,07	2,32
Classe FCCOP	(E)		A											
Portata acqua	(3)	1/h	100	169	180	100	169	180	136	181	204	136	181	204
Perdita di carico	(3)(E)	kPa	1	2	3	1	2	3	2	3	3	2	3	3
Batteria DF-numero di ranghi			3+1			4+1			$3+1$			4+1		
Potenza sonora globale	(4)	$d B(A)$	28	49	52	28	49	52	39	50	54	39	50	54
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	26	47	50	26	47	50	37	48	52	37	48	52
Potenza sonora mandata aria	(4)(E)	$d B(A)$	25	46	49	25	46	49	36	47	51	36	47	51

DUCTIMAX i			33			34			43			44		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	4,50	7,40	8,30	4,50	7,40	8,30	5,40	8,30	9,90	5,40	8,30	9,90
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	195	357	398	195	357	398	302	524	642	302	524	642
Prevalenza statica utile	(E)	Pa	19	50	63	19	50	63	17	50	75	17	50	75
Potenza assorbita	(E)	W	10	26	35	10	26	35	21	50	77	21	50	77
Resa raffreddamento totale	(1)(E)	kW	1,46	2,31	2,56	1,59	2,72	3,01	1,95	3,22	3,75	2,33	3,82	4,51
Resa raffreddamento sensibile	(1)(E)	kW	1,03	1,73	1,92	1,09	1,89	2,09	1,47	2,44	2,89	1,62	2,66	3,15
Classe FCEER	(E)		A			A			B			A		
Portata acqua	(2)	1/h	252	402	445	274	473	522	339	562	656	403	664	788
Perdita di carico	(2)(E)	kPa	2	5	5	3	7	9	3	8	11	6	13	18
Resa riscaldamento	(3)(E)	kW	1,71	2,53	2,69	2,09	3,09	3,29	2,80	3,82	4,24	2,80	3,82	4,24
Classe FCCOP	(E)		A											
Portata acqua	(3)	1/h	183	271	288	183	271	288	245	334	371	245	334	371
Perdita di carico	(3)(E)	kPa	3	4	5	2	3	4	3	5	6	3	5	6
Batteria DF - numero di ranghi			$3+1$			4+1			$3+1$			4+1		
Potenza sonora globale	(4)	$d B(A)$	39	50	54	39	50	54	38	52	58	38	52	58
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	37	48	52	37	48	52	36	50	56	36	50	56
Potenza sonora mandata aria	(4)(E)	$d B(A)$	36	47	51	36	47	51	35	49	55	35	49	55

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

DUCTIMAX i			53			54			63			64		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	3,40	7,60	8,50	3,40	7,60	8,50	6,80	7,50	8,30	6,80	7,50	8,30
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	333	683	755	333	683	755	1050	1163	1289	1060	1163	1289
Prevalenza statica utile	(E)	Pa	12	50	61	12	50	61	40	50	60	40	50	60
Potenza assorbita	(E)	W	11	54	67	11	54	67	105	128	162	105	128	162
Resa raffreddamento totale	(1)(E)	kW	2,29	4,32	4,72	2,51	4,88	5,32	6,28	6,81	7,38	7,04	7,64	8,28
Resa raffreddamento sensibile	(1)(E)	kW	1,67	3,19	3,48	1,77	3,43	3,74	4,64	5,03	5,46	4,96	5,38	5,84
Classe FCEER	(E)		A			A			C			B		
Portata acqua	(2)	1/h	394	749	822	432	846	925	1094	1190	1295	1225	1332	1448
Perdita di carico	(2)(E)	kPa	2	7	8	3	10	12	13	16	18	20	23	26
Resa riscaldamento	(3)(E)	kW	3,40	5,17	5,45	3,40	5,17	5,45	6,42	6,73	7,06	6,42	6,73	7,06
Classe FCCOP	(E)		A			A			C			C		
Portata acqua	(3)	1/h	297	452	477	297	452	477	562	589	618	562	589	618
Perdita di carico	(3)(E)	kPa	6	13	14	6	13	14	19	21	22	19	21	22
Batteria DF - numero di ranghi			3+1			4+1			3+1			4+1		
Potenza sonora globale	(4)	$d B(A)$	38	55	58	38	55	58	61	63	69	61	63	69
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	36	53	56	36	53	56	59	61	67	59	61	67
Potenza sonora mandata aria	(4)(E)	dB(A)	35	52	55	35	52	55	58	60	66	58	60	66

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco / $19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Unità termoventilanti ad alta prevalenza

UTN 3-23 kW

JONIX
pura living

Flessibilità di installazione per rispondere ad ogni esigenza

La gamma di unitả termoventilanti UTN è stata realizzata per la climatizzazione di ambienti dove sia richiesto l'utilizzo di terminali idronici canalizzabili in grado di fornire prevalenze utili fino a 180 Pa e potenze frigorifere da 3 a 23 kW . Le unità sono caratterizzate da un'elevata flessibilità di installazione, potendo infatti essere posizionate sia in verticale che in orizzontale e permettendo di modificare l'orientamento dell'aspirazione dell'aria nella parte posteriore o frontale dell'unità stessa tramite il semplice spostamento del pannello di ispezione. Tutte le unità sono prowviste di serie di una predisposizione per l'immissione dell'aria esterna di rinnovo e di asole per il fissaggio rapido alla parete o al soffitto. L'altezza ridotta (280 mm fino alla taglia 16 e 350 mm per le taglie superiori) ne assicura l'alloggiamento nei normali controsoffitti e l'ampia disponibilità di accessori, sia idraulici che aeraulici, ne rende agevole lintegrazione negli impianti di climatizzazione. È disponibile nelle versioni standard ed alta efficienza, dipendentemente dallo scambiatore a pacco alettato utilizzato, per meglio adattarsi alle esigenze dell'ambiente da climatizzare.

PLUS

» Dimensioni compatte (altezza 280 mm fino alla taglia 16 e 350 mm per le taglie superiori)
» Installazione verticale ed orizzontale
" Vasta disponibilità di accessori per una semplice integrazione nell'impianto
» Prevalenza utile fino a 180 Pa
" Elevata flessibilità di installazione
» Sistema di sanificazione JONIX incorporabile

Comfort e igiene
Disponibile su richiesta sistema di decontaminazione dell'aria inserito su apposito plenum.

La versione doppia pannellatura è realizzata con lamiera preverniciata e coibentata con lana di roccia ignifuga di classe 0 (A richiesta)

COMPONENTI PRINCIPALI

Struttura

In lamiera d'acciaio zincata e coibentata con materiale fonoassorbente, termoisolante e autoestinguente, a cellule chiuse, per ridurre le emissioni acustiche e prevenire la formazione di condensa sulla superficie esterma.

Modulo filtro

Il filtro aria è disponibile come accessorio nelle classi di filtrazione G2 o G4 e realizzato in fibra acrilica rigenerabile.

Batteria di scambio termico

È composta da tubi di rame e alette d'alluminio fissate tramite mandrinatura.
Gli attacchi idraulici sono reversibili.
È disponibile una batteria addizionale per l'installazione delle unità in impianti a 4 tubi.

Ventilatore

I ventilatori sono in alluminio di itipo centrifugo a doppia aspirazione e pale sfalsate per ridurre le emissioni acustiche. Sono bilanciati staticamente e dinamicamente per minimizzare le sollecitazioni trasmesse all'abero motore.

Motore elettrico

Motore elettrico a 3 velocità, montato su supporti antivibranti, con condensatore permanentemente inserito e protezione termica degli avvolgimenti, direttamente accoppiato ai ventilatori.

Sistema di raccolta e scarico condensa
Ė realizato tramite due vasche in lamiera zincata e coibentata e predisposto per installazione orizzontale e verticale.

CONFIGURATORE

I modelli sono completamente configurabili selezionando la versione e le opzioni. A fianco è riportato un esempio di configurazione.

Versione
UT08
Per verificare la compatibilità delle opzioni si prega di utilizzare il software di selezione oil listino prezzi.

CONFIGURATORE

1 Versione

A Versione canalizzabile alta resa
D Versone canalizzabile standard
2 Motore
O Motore a 3 velocita
I Motore BLDC
3 Lato attacchi batteria principale
L Attacchia a sinistra
R Attacchi a destra
4 Lato attacchi batteria addizionale/resistenza elettrica
0 Assente
L Attacchi a sinistra
R Attacchi a destra
5 Valvola
0 Assente
Pannello di comando
0 Assente
E EVOBOARD - Scheda di potenza
G Scheda di potenza EVOBOARD + modulo Wireless Navel

7 Sonde
Assente
SA - Sonda aria remota per MYCOMFORT, LED503 e EVO
SW - Sonda acqua per MYCOMFORT, LED 503 e EVO
SU - Sonda umidità per MYCOMFORT e EVO
SA +SW - Sonda aria + acqua per MYCOMFORT, LED 503 e EVO
SA+SU - Sonda aria + umidità per MYCOMFORT e EVO
SA+SU+SW - Sonda aria + umidità + acqua per MY COMFORT e EVO
SA - Sonda aria remota per TED
C SW - Sonda acqua per TED
SA + SW - Sonda aria + acqua per TED
8 Accessori vari
Assente
2 JONIX
9 Filtro
N Senza filtro
10 Release
0 O
A A

ACCESSORI

Pannelli di comando elettromeccanici	
CD	Commutatore di velocità ad incasso a parete
IPM	Scheda di potenza per il collegamento di UTN 30-30A-40-40A ai pannelli di comando
TA2	Termostato ambiente a parete con selettore stagionale
TC	Termostato di minima temperatura acqua in riscaldamento ($42^{\circ} \mathrm{C}$)
TD	Comando a parete con commutatore di velocità, termostato e selettore stagionale
TDC	Comando a parete con commutatore di velocità e termostato
Pannelli di comando elettronici a microprocessore con display	
COB	Placca di finitura per comando LED 503 colore nero RAL 9005
COG	Placca di finitura per comando LED 503 colore grigio RAL 7031
COW	Placca di finitura per comando LED 503 colore bianco RAL 9003
DIST	Distanziale eer comandi MY COMFORT per installazione a parete
EVO-2-TOUCH	Interfaccia utente touch screen 2.8 "per comando EVO
EVOBOARD	Scheda di potenza per comando EVO
EVODISP	Interfaccia utente con display per comando EVO
EYNAVEL	Dispositivo per la comunicazione wi-fi o Bluetooth tra EVOBOARD esmartphone
LED503	Comando elettronico con display ad incasso a parete LED 503
MCBE	Comando a microprocessore con display MY COMFORT BASE
MCLE	Comando a microprocessore con display MY COMFORT LARGE
MCME	Comando a microprocessore con display MY COMFORT MEDIUM
MCSUE	Sonda umidità per comandi MY COMFORT (medium e large), EVO
MCSWE	Sonda acqua per comandi MY COMFORT, EVO
Pannelli di comando elettronici a microprocessore	
TED 2T	Comando elettronico per il controllo del ventilatore AC e di una valvola ON/OFF 230 V
TED 4T	Comando elettronico per il controllo del ventilatore AC e di due valvole ON/OFF 230 V
TED SWA	Sonda temperatura aria 0 acqua per comandi TED
Interfaccia di potenza e comandi per serrande	
CSD	Comando ad incasso a parete per l'apertura e la chiusura proporzionale della serranda motorizzata SM
KP	Interfaccia di potenza per il collegamento in parallelo fino a 4 ventilconvettori ad un unico comando
Bacinelle ausiliarie di raccolta condensa, gusci isolanti, pompa scarico condensa	
KSC	Kit pompa di scarico condensa
Resistenze elettriche	
RE	Resistenza elettrica con kit di montaggio, scatola relè e sicurezze
Griglie di mandata e ripresa aria	
GA	Griglia in alluminio di aspirazione aria, con cornice

GM	Griglia di mandata aria in alluminio, a doppio ordine, con controtelaio
GR	Griglia di aspirazione aria con controtelaio
GRF	Griglia di aspirazione aria con filtro e controtelaio
Serrande di presa aria esterna	
PA90	Serranda motorizzata di presa aria esterna
Valvole	
V2VDF+STD	Valvole a 2 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale e addizionale
V2VSTD	Valvole a 2 vie, attuatori $0 \mathrm{~N} / 0 \mathrm{FF}$ o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
V3VDF	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria addizionale
V3VSTD	Valvole a 3 vie, attuatori ON/OFF o MODULANTI, alimentazione 230 V o 24 V , kit idraulici, per batteria principale
VPIC	Valvole a 2 vie pressure independent, attuatori ON/OFF, alimentazione 230V, kit idraulici, per batteria principale e addizionale
Plenum, moduli di aspirazione, raccordi di aspirazione, mandata aria e mobili di copertura	
G90	Raccordo a 90° per aspirazione e mandata
MAF	Modulo di aspirazione con filtro aria piano, classe G2
MAFO	Modulo di aspirazione con filtro aria ondulato, classe G4
PCOC	Pannello di collegamento a canale rettangolare
PCOF	Pannello di collegamento a tubi flessibili $\emptyset 200 \mathrm{~mm}$
Tubi flessibili di collegamento e tappi di chiusura	
TFA	Tubo flessibile non coibentato, $\emptyset 200 \mathrm{~mm}$ (6 metri non frazionabili)
TFM	Tubo flessibile coibentato, 0200 mm (6 metri non frazionabili)
TP	Tappo in plastica $\emptyset 200 \mathrm{~mm}$
Cassette di mandata e aspirazione aria	
CA	Cassetta di aspirazione con griglia alveolare
CAF	Cassetta di aspirazione con griglia alveolare $300 \times 600 \mathrm{~mm}$, completa di filtro G2
CM	Cassetta di mandata coibentata con griglia
Accessori vari	
UYBP	Kit batteria di postriscaldamento ad acqua
VRCH	Vaschetta ausiliaria di raccolta condensa per unità ad installazione orizzontale
VRCV	Vaschetta ausiliaria di raccolta condensa per unità ad installazione verticale
Sistemi di sanificazione	
JONIX-mic	Modulo di sanificazione JONIX installato su canale
JONIX-pln	Modulo di sanificazione JONXX installato su plenum

DATI TECNICI NOMINALI 2 TUBI

UTN			6A			6D			8A			8D		
Velocità			min	med	max									
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	343	458	561	348	465	572	532	692	791	534	700	802
Prevalenza statica utile	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Potenza assorbita	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Resa raffreddamento totale	(1)(E)	kW	2,22	2,88	3,39	1,94	2,46	2,84	3,29	4,09	4,50	2,74	3,36	3,65
Resa raffreddamento sensibile	(1)(E)	kW	1,63	2,13	2,52	1,47	1,87	2,16	2,45	3,08	3,41	2,10	2,59	2,83
Classe FCEER	(E)		E											
Portata acqua	(2)	1/h	382	496	584	334	424	489	567	704	775	472	579	629
Perdita di carico	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Resa riscaldamento	(3)(E)	kW	2,47	3,14	3,70	2,19	2,75	3,20	3,55	4,36	4,83	3,04	3,69	4,05
Classe FCCOP	(E)		D			E			E			E		
Portata acqua	(3)	1/h	425	541	637	377	474	551	611	751	832	523	635	697
Perdita di carico	(3)(E)	kPa	4	6	8	5	8	10	7	11	13	9	13	15
Batteria standard - numero ranghi			4			3			4			- 3		
Potenza sonora globale	(4)	$d B(A)$	48	57	63	48	57	63	54	61	66	54	61	66
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	46	54	61	46	54	61	52	59	64	52	59	64
Potenza sonora mandata aria	(4)(E)	$d B(A)$	45	53	59	45	53	59	51	58	63	51	58	63
UTN			12A			12D			16A			16D		
Velocità			min	med	max									
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1000	1107	1203	1019	1134	1238	1198	1371	1581	1207	1384	1606
Prevalenza statica utile	(E)	Pa	41	50	59	40	50	59	38	50	66	38	50	67
Potenza assorbita	(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
Resa raffreddamento totale	(1)(E)	kW	5,54	5,99	6,34	4,98	5,39	5,70	6,67	7,41	8,24	6,03	6,63	7,32
Resa raffreddamento sensibile	(1)(E)	kW	4,11	4,47	4,73	3,66	3,94	4,16	5,23	5,86	6,58	4,84	5,39	6,04
Classe FCEER	(E)		E											
Portata acqua	(2)	1/h	954	1031	1092	858	928	982	1149	1276	1419	1038	1142	1261
Perdita di carico	(2)(E)	kPa	15	17	19	18	21	24	11	13	16	17	20	24
Resa riscaldamento	(3)(E)	kW	6,29	6,80	7,26	5,59	6,03	6,42	7,28	8,04	8,93	6,47	7,11	7,88
Classe FCCOP	(E)		E											
Portata acqua	(3)	1/h	1083	1171	1250	963	1038	1106	1254	1384	1538	1114	1224	1357
Perdita di carico	(3)(E)	kPa	14	17	18	17	19	22	10	12	14	15	17	21
Batteria standard - numero ranghi			4			3			4			3		
Potenza sonora globale	(4)	$d B(A)$	61	63	69	59	63	69	62	67	72	62	67	72
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	56	60	66	56	60	66	60	64	70	60	64	70
Potenza sonora mandata aria	(4)(E)	$d B(A)$	59	59	65	55	59	65	58	63	69	58	63	69

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u unidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 2 TUBI

UTN			19A			22A			22D			30A		
Velocità			min	med	max									
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1166	1500	1577	1436	1819	2222	1483	1898	2376	2074	2604	3174
Prevalenza statica utile	(E)	Pa	38	50	62	31	50	75	30	50	78	32	50	74
Potenza assorbita	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Resa raffreddamento totale	(1)(E)	kW	7,34	9,17	10,1	9,20	11,2	13,1	8,41	10,1	11,8	12,9	15,4	17,7
Resa raffreddamento sensibile	(1)(E)	kW	5,43	6,81	8,83	6,76	8,32	9,85	6,35	7,75	9,22	9,38	11,4	13,5
Classe FCEER	(E)		E											
Portata acqua	(2)	I/h	1266	1582	1749	1584	1927	2249	1448	1743	2039	2221	2652	3048
Perdita di carico	(2)(E)	kPa	20	31	36	12	17	22	15	21	29	27	37	48
Resa riscaldamento	(3)(E)	kW	7,94	9,96	11,0	9,73	11,7	13,7	9,06	10,8	12,7	13,7	16,4	19,1
Classe FCCOP	(E)		D			E			E			E		
Portata acqua	(3)	I/h	1365	1715	1857	1676	2020	2354	1560	1867	2190	2359	2824	3289
Perdita di carico	(3)(E)	kPa	22	29	34	10	14	19	14	19	25	23	32	41
Batteria standard - numero ranghi			4			4			3			5		
Potenza sonora globale	(4)	$d B(A)$	61	67	71	60	67	74	60	67	74	69	73	78
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	59	65	69	58	65	72	58	65	72	67	71	76
Potenza sonora mandata aria	(4)(E)	$d B(A)$	57	63	68	57	64	71	57	64	71	66	70	75

UTN			30D			40A			40D		
Velocità			min	med	max	min	med	max	min	med	max
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	2092	2641	3207	3067	3622	4287	3129	3706	4422
Prevalenza statica utile	(E)	Pa	31	50	74	36	50	71	35	50	71
Potenza assorbita	(E)	W	870	1090	1300	650	820	1150	650	820	1150
Resa raffreddamento totale	(1)(E)	kW	11,6	13,8	15,9	17,3	19,6	22,0	15,4	17,4	19,5
Resa raffreddamento sensibile	(1)(E)	kW	8,61	10,4	12,2	13,3	15,3	17,5	12,1	13,8	15,6
Classe FCEER	(E)		E			D			E		
Portata acqua	(2)	1/h	2003	2382	2741	3082	3505	3979	2761	3128	3551
Perdita di carico	(2)(E)	kPa	21	29	37	16	20	25	17	21	26
Resa riscaldamento	(3)(E)	kW	12,7	15,0	17,3	18,8	21,2	24,0	17,2	19,4	21,8
Classe FCCOP	(E)		E			D			D		
Portata acqua	(3)	I/h	2183	2592	2977	3263	3693	4177	2986	3364	3799
Perdita di carico	(3)(E)	kPa	18	25	31	18	22	28	18	23	28
Batteria standard - numero ranghi			4			5			4		
Potenza sonora globale	(4)	dB(A)	69	73	78	70	74	79	70	74	79
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	67	71	76	68	72	77	68	72	77
Potenza sonora mandata aria	(4)(E)	dB(A)	66	70	75	67	71	76	67	71	76

[^5](2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

UTN			6A			6D			8A			8D		
Velocità			min	med	max									
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	342	455	557	346	463	567	529	686	783	531	694	793
Prevalenza statica utile DF	(E)	Pa	28	50	75	28	50	75	30	50	65	29	50	65
Potenza assorbita DF	(E)	W	84	122	188	84	122	188	135	185	265	135	185	265
Resa raffreddamento totale DF	(1)(E)	kW	2,21	2,86	3,37	1,93	2,44	2,82	3,27	4,06	4,46	2,73	3,33	3,61
Resa raffreddamento sensibile DF	(1)(E)	kW	1,62	2,11	2,50	1,46	1,86	2,15	2,43	3,06	3,38	2,09	2,57	2,80
Classe FCEER DF	(E)		E											
Portata acqua DF	(2)	1/h	381	492	580	332	420	486	563	699	768	470	573	622
Perdita di carico DF	(2)(E)	kPa	4	6	9	5	8	11	8	12	14	10	14	17
Resa riscaldamento DF	(3)(E)	kW	2,56	2,99	3,31	2,58	3,02	3,34	3,23	3,66	3,89	3,23	3,68	3,91
Classe FCCOP DF	(E)		D			D			E			E		
Portata acqua DF	(3)	I/h	220	257	285	222	260	288	278	315	335	278	317	337
Perdita di carico DF	(3)(E)	kPa	3	4	5	3	5	5	5	6	7	5	6	7
Batteria DF-numero di ranghi			1			1			1			1		
Potenza sonora globale DF	(4)	$d B(A)$	48	57	63	48	57	63	54	61	66	54	61	66
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	46	54	61	46	54	61	52	59	64	52	59	64
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	45	53	59	45	53	59	51	58	63	51	58	63
UTN			12A			12D			16A			16D		
Velocità			min	med	max									
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	985	1088	1182	1005	1115	1211	1184	1349	1550	1192	1362	1576
Prevalenza statica utile DF	(E)	Pa	41	50	59	41	50	59	38	50	66	38	50	67
Potenza assorbita DF	(E)	W	345	385	460	345	385	460	290	380	505	290	380	505
Resa raffreddamento totale DF	(1)(E)	kW	5,47	5,91	6,24	4,93	5,32	5,60	6,60	7,31	8,10	5,97	6,54	7,21
Resa raffreddamento sensibile DF	(1)(E)	kW	4,06	4,40	4,66	3,60	3,89	4,08	5,17	5,77	6,46	4,79	5,31	5,94
Classe FCEER DF	(E)		E											
Portata acqua DF	(2)	1/h	942	1018	1075	849	916	964	1137	1259	1395	1028	1126	1242
Perdita di carico DF	(2)(E)	kPa	15	17	19	18	21	23	10	13	15	16	19	23
Resa riscaldamento DF	(3)(E)	kW	5,21	5,45	5,65	5,25	5,51	5,72	6,99	7,44	7,94	7,02	7,47	7,99
Classe FCCOP DF	(E)		E											
Portata acqua DF	(3)	1/h	449	469	486	452	474	492	602	641	684	604	643	688
Perdita di carico DF	(3)(E)	kPa	10	11	12	12	13	14	20	22	25	8	9	10
Batteria DF-numero di ranghi			1			1			1			1		
Potenza sonora globale DF	(4)	$d B(A)$	61	64	69	59	63	69	62	67	72	62	67	72
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	56	60	66	56	60	66	60	64	70	60	64	70
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	55	59	65	59	62	65	58	63	69	58	63	69

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo u unido (47% u unidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (v-ph-Hz)

UTN 3-23 kW

DATI TECNICI NOMINALI 4 TUBI

UTN			19A			22A			22D			30A		
Velocità			min	med	max									
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1143	1470	1545	1423	1795	2184	1468	1871	2332	2065	2590	3154
Prevalenza statica utile DF	(E)	Pa	38	50	62	31	50	74	23	50	78	32	50	74
Potenza assorbita DF	(E)	W	290	380	505	370	535	750	370	535	750	870	1090	1300
Resa raffreddamento totale DF	(1)(E)	kW	7,17	8,98	10,0	9,12	11,0	12,9	8,34	10,0	11,7	12,9	15,3	17,7
Resa raffreddamento sensibile DF	(1)(E)	kW	5,30	6,67	8,59	6,71	8,22	9,68	6,29	7,66	9,07	9,34	11,3	13,4
Classe FCEER DF	(E)		E											
Portata acqua DF	(2)	1/h	1237	1549	1732	1570	1903	2216	1436	1722	2010	2216	2633	3041
Perdita di carico DF	(2)(E)	kPa	20	30	35	12	16	22	15	21	28	27	37	48
Resa riscaldamento DF	(3)(E)	kW	7,80	9,80	10,8	10,6	12,3	13,9	10,9	12,6	14,4	14,8	17,0	19,2
Classe FCCOP DF	(E)		D			D			D			E		
Portata acqua DF	(3)	1/h	1338	1679	1854	916	1059	1194	935	1087	1242	1273	1466	1652
Perdita di carico DF	(3)(E)	kPa	22	29	34	6	8	10	6	8	10	12	16	20
Batteria DF-numero di ranghi			1			2			2			2		
Potenza sonora globale DF	(4)	$d B(A)$	61	67	71	60	67	74	60	67	74	69	73	78
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	59	65	69	58	65	72	58	65	72	67	71	76
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	57	63	68	57	64	71	57	64	71	66	70	75
UTN			30D			40A			40D					
Velocità			min	med	max	min	med	max	min	med	max			
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	2083	2626	3187	3345	4002	4837	3073	3637	4321			
Prevalenza statica utile DF	(E)	Pa	31	50	74	35	50	73	36	50	70			
Potenza assorbita DF	(E)	W	870	1090	1300	650	820	1150	650	820	1150			
Resa raffreddamento totale DF	(1)(E)	kW	11,6	13,8	15,8	18,6	21,2	24,2	15,2	17,2	19,2			
Resa raffreddamento sensibile DF	(1)(E)	kW	8,58	10,4	12,2	14,4	16,8	19,5	11,9	13,5	15,3			
Classe FCEER DF	(E)		E			D			E					
Portata acqua DF	(2)	1/h	1996	2371	2728	3297	3779	4347	2722	3085	3493			
Perdita di carico DF	(2)(E)	kPa	24	32	41	16	21	26	17	23	29			
Resa riscaldamento DF	(3)(E)	kW	14,9	17,2	19,3	18,3	20,2	22,2	18,5	20,4	22,6			
Classe FCCOP DF	(E)		E			D			D					
Portata acqua DF	(3)	I/h	1281	1478	1662	1601	1766	1948	1620	1790	1983			
Perdita di carico DF	(3)(E)	kPa	13	17	21	9	11	13	9	11	13			
Batteria DF - numero di ranghi			2			2			2					
Potenza sonora globale DF	(4)	$d B(A)$	69	73	78	70	74	79	70	74	79			
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	67	71	76	68	72	77	68	72	77			
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	66	70	75	67	71	76	67	71	76			

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (v-ph-Hz)

Unità canalizzabili UTN

DISEGNI DIMENSIONALI
UTN 06-19

LEGENDA	
$\mathbf{1}$	$N^{\circ} 6$ asole aggancio rapido
$\mathbf{2}$	Scarico condensa installazione orizzontale
3	Scarico condensa installazione verticale
4	Attacchi idraulicia destra
4DF	Attacchi idraulici batteria addizionale
$\mathbf{5}$	Mandata aria
6	Aspirazione aria
6-A	condizione di fornitura
6 -B	modificabile in corso di installazione
7	Pretranciato circolare ($(100 \mathrm{~mm})$ per immissione aria esterna

UTN	A	B	C	D	4	4DF	2	3	\bigcirc
	mm	mm	mm	mm	"	"	mm	mm	kg
6D-6A-8D-8A	754	707	676	646	3/4	3/4	17	17	33
12D-12A	964	917	886	856	3/4	3/4	17	17	42
16D-16A-19A	1174	1127	1096	1066	3/4	3/4	17	17	49

[^6]
DISEGNI DIMENSIONALI

UTN	A	B	C	D	4	4DF	2	3	\bigcirc
	mm	mm	mm	mm	"	"	mm	mm	kg
22D-22A	1174	1127	1096	1066	1	1	17	17	67
30D-30A	1384	1337	1306	1276	1	1	17	17	80
40D -40A	1594	1547	1516	1486	1	1	17	17	90

Unità termoventilanti ad alta prevalenza con motore EC UTN i 4-18 kW

JONIX
 pure living

Elevata efficienza e basse emissioni acustiche per applicazioni canalizzate

Abstract

Le unità termoventilanti della gamma UTN i con motore inverter, da 4 a 18 kW frigoriferi, rappresentano l'evoluzione della serie UTN: facendo proprie le normative sul risparmio energetico e sull'efficienza degli impianti e le più recenti evoluzioni tecnologiche nel campo dei motori elettrici, Galletti propone unità canalizzabili equipaggiate con motore EC a magneti permanenti e pilotati da inverter. Tale soluzione permette di ridurre la potenza elettrica assorbita fino al 70% rispetto ad un motore asincrono tradizionale e allo stesso tempo offre la possibilità di effettuare una regolazione precisa della portata aria, grazie alla sua capacità di variare in modo continuo ed efficiente il numero di giri del ventilatore. Le caratteristiche peculiari che caratterizzano la serie UTN, cioè l'altezza di 280 mm per garantirne l'alloggiamento nei controsoffitti, la flessibilità di installazione e di collegamento alle canalizzazioni dell'aria e l'ampia scelta di accessori, vengono riprese per garantire i medesimi standard qualitativi. La disponibilità di scambiatori di calore ad elevato numero di ranghi permette inoltre di utilizzare, nelle fasi di riscaldamento, un fluido termovettore a bassa temperatura, per un ulteriore contenimento energetico.

PLUS

» Motore EC a magneti permanenti
» Basso consumo elettrico
" Facile setup aeraulico
» Altezza contenuta sull'intera gamma (280 mm)
» Installazione verticale ed orizzontale
» Vasta disponibilità di accessori
» Elevata flessibilità di installazione
» Sistema di sanificazione JONIX incorporabile

Comfort e silenziosità

UTN i, grazie alla possibilità di regolare con precisione la velocità di rotazione del motore, si adatta ad ambienti che richiedono elevata silenziosità.
Disponibile su richiesta sistema di decontaminazione dell'aria inserito su apposito plenum.
VERSIONI DISPONIBILI

UTXXXILO...OA Unità termoventilante predisposta per impianti a 2 tubi
UTXXXILL...OA Unità termoventilante predisposta per impianti a 4 tubi (2 scambiatori di calore)

UTXXXILO... 02 La versione doppia pannellatura è realizzata con lamiera preverniciata e coibentata con lana di roccia ignifuga di classe 0 (A richiesta)

COMPONENTI PRINCIPALI

Struttura

In lamiera d'acciaio zincata e coibentata con materiale fonoassorbente, termoisolante e autoestinguente, a cellule chiuse, per ridurre le emissioni acustiche e prevenire la formazione di condensa sulla superficie esterna.

Batteria di scambio

 termicoÈ composta da tubi di rame e alette d'alluminio fissate tramite mandrinatura.
Gli attacchi idraulici sono reversibili.
È disponibile una batteria addizionale per l'installazione delle unità in impianti a 4 tubi.

Motore elettrico EC

Motore a magneti permanenti. L'unità è dotata di scheda inverter di controllo del motore, che permette un preciso settaggio della velocità di rotazione (segnale di controllo 0-10 V).

Ventilatore

I ventilatori sono in alluminio di tipo centrifugo a doppia aspirazione e pale sfalsate per ridurre le emissioni acustiche. Sono bilanciati staticamente e dinamicamente per minimizzare le sollecitazioni trasmesse all'albero motore.

Modulo filtro

I| filtro aria è disponibile come accessorio nelle classi di filtrazione G2 o G4 e realizzato in fibra acrilica rigenerabile.

Unità canalizzabile UTN i

DATI TECNICI NOMINALI 2 TUBI

UTNi			8A			8D			12A			12D		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	532	692	791	534	700	802	1000	1107	1203	1019	1134	1238
Prevalenza statica utile	(E)	Pa	30	50	65	29	50	65	41	50	59	40	50	59
Potenza assorbita	(E)	W	40	73	112	40	73	112	102	125	152	102	125	170
Resa raffreddamento totale	(1)(E)	kW	3,38	4,20	4,65	2,83	3,47	3,80	5,78	6,25	6,65	5,22	5,65	6,01
Resa raffreddamento sensibile	(1)(E)	kW	2,54	3,19	3,56	2,19	2,70	2,98	4,35	4,73	5,04	3,90	4,20	4,47
Classe FCEER	(E)		B			C			C			C		
Portata acqua	(2)	I/h	582	723	801	487	598	654	995	1076	1145	899	973	1035
Perdita di carico	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	24
Resa riscaldamento	(3)(E)	kW	3,55	4,36	4,83	3,04	3,69	4,05	6,29	6,80	7,26	5,59	6,03	6,42
Classe FCCOP			B			B			C			C		
Portata acqua	(3)	1/h	611	751	832	523	635	697	1083	1171	1250	963	1038	1106
Perdita di carico	(3)(E)	kPa	7	11	13	9	13	15	14	17	18	17	19	22
Batteria standard - numero ranghi			4			3			4			3		
Potenza sonora globale	(4)	$d B(A)$	54	61	66	54	61	66	61	63	69	59	63	69
Potenza sonora irradiata + aspirazione aria	(4)(E)	dB(A)	52	59	64	52	59	64	56	60	66	56	60	66
Potenza sonora mandata aria	(4)(E)	dB(A)	51	58	63	51	58	63	59	59	65	55	59	65

UTN i			16A			16D			19A			22A		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	6,70	7,70	8,90	6,70	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1198	1371	1581	1207	1384	1606	1166	1500	1577	1436	1819	2222
Prevalenza statica utile	(E)	Pa	38	50	66	38	50	67	38	50	62	31	50	75
Potenza assorbita	(E)	W	124	170	248	124	170	248	109	190	247	135	210	285
Resa raffreddamento totale	(1)(E)	kW	6,84	7,62	8,49	6,20	6,84	7,57	7,50	9,36	10,4	9,43	11,5	13,6
Resa raffreddamento sensibile	(1)(E)	kW	5,40	6,07	6,83	5,01	5,60	6,29	7,35	9,17	10,3	6,99	8,65	10,3
Classe FCEER	(E)		C			C			C			B		
Portata acqua	(2)	1/h	1178	1312	1462	1068	1178	1304	1289	1663	1789	1644	2010	2366
Perdita di carico	(2)(E)	kPa	11	13	16	17	20	24	20	31	36	12	17	22
Resa riscaldamento	(3)(E)	kW	7,28	8,04	8,93	6,47	7,11	7,88	7,94	9,96	11,0	9,73	11,7	13,7
Classe FCCOP			C			C			B			B		
Portata acqua	(3)	I/h	1254	1384	1538	1114	1224	1357	1365	1715	1857	1676	2020	2354
Perdita di carico	(3)(E)	kPa	10	12	14	15	17	21	22	29	34	10	14	19
Batteria standard - numero ranghi			4			3			4			4		
Potenza sonora globale	(4)	$d B(A)$	62	67	72	62	67	72	61	67	71	60	67	74
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	60	64	70	60	64	70	59	65	69	58	65	72
Potenza sonora mandata aria	(4)(E)	$d B(A)$	58	63	69	58	63	69	57	63	68	57	64	71

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 2 TUBI

UTN i				22D			30A			30D	
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Portata aria nominale	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1483	1898	2376	2074	2604	3174	2092	2641	3207
Prevalenza statica utile	(E)	Pa	30	50	78	32	50	74	31	50	74
Potenza assorbita	(E)	W	140	220	320	195	310	445	200	320	445
Resa raffreddamento totale	(1)(E)	kW	8,64	10,4	12,2	13,6	16,2	18,6	12,3	14,6	16,8
Resa raffreddamento sensibile	(1)(E)	kW	6,58	8,07	9,66	10,1	12,2	14,3	9,29	11,2	13,0
Classe FCEER	(E)			C			B			C	
Portata acqua	(2)	1/h	1509	1827	2163	2365	2823	3270	2145	2561	2953
Perdita di carico	(2)(E)	kPa	15	21	29	27	37	48	21	29	37
Resa riscaldamento	(3)(E)	kW	9,06	10,8	12,7	13,7	16,4	19,1	12,7	15,0	17,3
Classe FCCOP				C			B			C	
Portata acqua	(3)	I/h	1560	1867	2190	2359	2824	3289	2183	2592	2977
Perdita di carico	(3)(E)	kPa	14	19	25	23	32	41	18	25	31
Batteria standard - numero ranghi				3			5			4	
Potenza sonora globale	(4)	$d B(A)$	60	67	74	69	73	78	69	73	78
Potenza sonora irradiata + aspirazione aria	(4)(E)	$d B(A)$	58	65	72	67	71	76	67	71	76
Potenza sonora mandata aria	(4)(E)	$d B(A)$	57	64	71	66	70	75	66	70	75

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u uididà relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Unità canalizzabile UTN i

DATI TECNICI NOMINALI 4 TUBI

UTNi			8A			8D			12A			12D		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	6,00	7,40	8,90	6,00	7,40	8,90	7,30	8,00	8,80	7,30	8,00	8,80
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	529	686	783	531	694	793	985	1088	1182	1005	1115	1211
Prevalenza statica utile DF	(E)	Pa	30	50	65	29	50	65	41	50	59	41	50	59
Potenza assorbita DF	(E)	W	40	73	112	45	73	112	102	125	152	102	125	152
Resa raffreddamento totale DF	(1)(E)	kW	3,36	4,17	4,61	2,82	3,44	3,76	5,71	6,17	6,55	5,17	5,58	5,91
Resa raffreddamento sensibile DF	(1)(E)	kW	2,52	3,17	3,53	2,18	2,68	2,95	4,30	4,66	4,97	3,84	4,15	4,39
Classe FCEER DF	(E)		B			C			C			C		
Portata acqua DF	(2)	1/h	579	718	794	486	592	647	983	1062	1128	890	961	1018
Perdita di carico DF	(2)(E)	kPa	8	12	14	10	14	17	15	17	19	18	21	23
Resa riscaldamento DF	(3)(E)	kW	3,23	3,66	3,89	3,23	3,68	3,91	5,21	5,45	5,65	5,25	5,51	5,72
Classe FCCOP DF	(E)		B			B			B			C		
Portata acqua DF	(3)	1/h	278	315	355	278	317	337	449	469	486	452	474	492
Perdita di carico DF	(3)(E)	kPa	5	6	7	5	6	7	10	11	12	12	13	14
Batteria DF - numero di ranghi			1			1			1			1		
Potenza sonora globale DF	(4)	$d B(A)$	54	61	66	54	61	66	61	64	69	59	63	69
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	52	59	64	52	59	64	56	60	66	56	60	66
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	51	58	63	51	58	63	55	59	65	55	59	65

UTNi			16A			16D			19A			22A		
Velocità			min	med	max									
Tensione in ingresso	(E)	V	6,70	7,70	8,90	7,00	7,70	8,90	6,60	8,00	9,00	3,80	5,90	7,90
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1184	1349	1550	991	1094	1212	1143	1470	1545	1423	1795	2184
Prevalenza statica utile DF	(E)	Pa	38	50	66	38	50	61	38	50	62	31	50	74
Potenza assorbita DF	(E)	W	124	170	248	124	170	248	109	190	247	138	210	305
Resa raffreddamento totale DF	(1)(E)	kW	6,77	7,52	8,35	6,14	6,75	7,46	5,62	7,00	9,10	9,35	11,3	13,3
Resa raffreddamento sensibile DF	(1)(E)	kW	5,34	5,98	6,71	4,96	5,52	6,19	5,44	6,86	8,85	6,94	8,55	10,1
Classe FCEER DF	(E)		C			C			C			B		
Portata acqua DF	(2)	1/h	1166	1295	1438	1057	1162	1285	1268	1582	1777	1631	1987	2336
Perdita di carico DF	(2)(E)	kPa	10	13	15	16	19	23	20	31	36	12	16	22
Resa riscaldamento DF	(3)(E)	kW	6,99	7,44	7,94	7,02	7,47	7,99	7,80	9,80	10,8	10,6	12,3	13,9
Classe FCCOP DF	(E)		C			C			B			B		
Portata acqua DF	(3)	I/h	602	641	684	604	643	688	1338	1679	1854	916	1059	1194
Perdita di carico DF	(3)(E)	kPa	20	22	25	22	24	27	22	29	34	6	8	10
Batteria DF - numero di ranghi			1			1			1			2		
Potenza sonora globale DF	(4)	$d B(A)$	62	67	72	62	67	72	61	67	71	60	67	74
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	60	64	70	60	64	70	59	65	69	58	65	72
Potenza sonora mandata aria DF	(4)(E)	dB(A)	58	63	69	58	63	69	57	63	68	57	64	71

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

DATI TECNICI NOMINALI 4 TUBI

UTN i				22D			30A			30D	
Velocità			min	med	max	min	med	max	min	med	max
Tensione in ingresso	(E)	V	3,90	6,10	8,30	3,60	5,50	7,20	3,60	5,60	7,20
Portata aria nominale DF	(E)	$\mathrm{m}^{3} / \mathrm{h}$	1468	1871	2332	2065	2590	3154	2083	2626	3187
Prevalenza statica utile DF	(E)	Pa	30	50	78	32	50	74	31	50	74
Potenza assorbita DF	(E)	W	144	220	317	221	345	441	223	350	452
Resa raffreddamento totale DF	(1)(E)	kW	8,56	10,3	12,1	13,6	16,0	18,6	12,2	14,5	16,6
Resa raffreddamento sensibile DF	(1)(E)	kW	6,51	7,98	9,50	9,99	12,0	14,3	9,23	11,1	13,0
Classe FCEER DF	(E)			C							
Portata acqua DF	(2)	1/h	1493	1808	2130	2358	2811	3254	2138	2550	2940
Perdita di carico DF	(2)(E)	kPa	15	21	28	27	37	48	21	28	36
Resa riscaldamento DF	(3)(E)	kW	10,9	12,6	14,4	14,8	17,0	19,2	14,9	17,2	19,3
Classe FCCOP DF	(E)			B							
Portata acqua DF	(3)	I/h	935	1087	1242	1273	1466	1652	1281	1478	1662
Perdita di carico DF	(3)(E)	kPa	6	8	10	13	16	20	13	17	21
Batteria DF - numero di ranghi				2			2			2	
Potenza sonora globale DF	(4)	$d B(A)$	60	67	74	69	73	78	69	73	78
Potenza sonora irradiata + aspirazione aria DF	(4)(E)	$d B(A)$	58	65	72	67	71	76	67	71	76
Potenza sonora mandata aria DF	(4)(E)	$d B(A)$	57	64	71	66	70	75	66	70	75

(1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
(3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
(4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
(E) Dati certificati EUROVENT

Alimentazione elettrica 230-1-50 (V-ph-Hz)

Aerotermi per climatizzazione con motore ON/OFF

AREO 8-101 kW

PLUS

» Bassi livelli sonori
" Ampio range di lavoro (fino a $60^{\circ} \mathrm{C}$ aria aspirata)
» Ventilatore assiale con pale a profilo aerodinamico (tecnologia HyBlade ${ }^{\oplus}$)
» Motore elettrico in classe F omologato per funzionamento continuo
» Accessorio RVM per la regolazione della ventilazione nei modelli monofase

Comfort termo-igrometrico nei settori industriali e commerciali

In linea con i recenti sviluppi normativi in materia di efficienza energetica, Galletti aggiorna la proposta degli aerotermi per impianti di riscaldamento e per quelli di raffrescamento, destinati ad ambienti industriali e commerciali di qualsiasi volumetria.
II nuovo AREO, progettato per rispondere agli stringenti requisiti imposti dalla direttiva ERP, mantiene inalterate le peculiarità del progetto originale, e cioè estrema affidabilità e robustezza.
Il mobile di AREO, realizzato in lamiera di acciaio preverniciata, vanta un originale design con linee arrotondate che ne esaltano l'estetica.
La gamma AREO è composta da 16 modelli che, nel caso della versione per il solo riscaldamento, possono essere utilizzati sia per installazione a parete (proiezione aria orizzontale) sia per installazione a soffitto (proiezione aria verticale). La versione adatta per la climatizzazione è dotata di un innovativo sistema di raccolta condensa e di coibentazione aggiuntiva all'interno del mobile.
6 taglie dimensionali montano batterie a 2, 304 ranghi per permettere il corretto funzionamento con acqua calda prodotta da caldaia o pompa di calore (modelli a 4 ranghi).

VERSIONI DISPONIBILI
Alimentazione elettrica monofase e trifase.
AREOP
Aerotermi per riscaldamento ad acqua calda, con attacchi idraulici laterali.

AREOH
Aerotermi per riscaldamento acqua calda, con attacchi idrau- acqua calda, provvisto di diffusore lici verticali, per sostituzione di a lama d'aria, installazione a soffitto. terminali installati in impianti già esistenti.

COMPONENTI PRINCIPALI

Gruppo motoventilante

Motore e ventilatore sono un assieme integrato ed ottimizzato per raggiungere la massimizzazione dell'efficienza aeraulica. Infatti si garantisce la conformità ad ERP anche per le versioni con alimentazione monofase.

Motore elettrico

Motore tropicalizzato direttamente accoppiato al rotore esterno, di serie con le seguenti caratteristiche:

- dotato di protettore termico interno
- avvolgimenti di classe F
- grado di protezione IP54
- cuscinetti a sfera esenti da manutenzione

Ventilatore assiale

Con pale a profilo aerodinamico ottimizzato (tecnologia HyBlade『), bilanciate staticamente, inserite in un apposito boccaglio che esalta le prestazioni aerauliche e minimizza il rumore.

Griglia anti-infortunistica

Realizzata con filo di acciaio elettrozincato sostiene il motore ed è fissata al mobile mediante supporti anti-vibranti.

Regolatore della velocità di ventilazione per modelli monofase

Il regolatore di velocità RVM è in grado di variare il valore efficace sul carico tramite la parzializzazione della forma d'onda operata da un TRIAC. L'accessorio, utilizzabile solo nei modelli dotati di alimentazione monofase, rende possibile variare in maniera manuale la velocità di ventilazione variando la resa dell'aerotermo secondo le diverse necessità. Il sistema è inoltre dotato di appositi filtri per eliminare eventuali disturbi immessi sulla linea di alimentazione o irradiati dall'apparecchiatura e di un trimmer per la regolazione manuale della minima velocità di ventilazione. Questo accessorio è fornito di serie nella versione per raffrescamento AREO C.

ACCESSORI

Pannelli di comando elettromeccanici	
CST	Commutatore stella/triangolo per installazione in quadri elettrici
CSTP	Commutatore stella/triangolo per installazione a parete
RVM	Regolatore manuale di potenza per AEROTERMI con alimentazione elettrica monofase
TA2	Termostato ambiente a parete con selettore stagionale
Interfaccia di potenza e comandi per serrande	
CSD	Comando ad incasso a parete per l'apertura e la chiusura proporzionale della serranda motorizzata SM
Accessori vari	
VA	Vasca ausiliaria di raccolta condensa
Dime di fissaggio	
DFC	Dima per fissaggio a colonna
DFO	Dima orientabile per fissaggio a parete/colonna

DFP	Dima per fissaggio a parete
Rete di protezione per palestre (antipallone)	
R	Rete di protezione per palestre
Diffusori	
DO	Diffusore a doppio ordine di alette orientabili
LA	Diffusore a lama d'aria
Presa aria esterna	
PAE	Presa aria esterna
PAEM	Serranda miscelatrice manuale
PAEMM	Serranda miscelatrice motorizzata, alimentazione 24 V con ritorno a molla
Griglia antipioggia per presa aria esterna	
GR	Griglia di aspirazione aria con controtelaio

Aerotermi AREO

DATI TECNICI NOMINALI AREO P - FUNZIONAMENTO IN RISCALDAMENTO

AREO P			12	12	13	13	14	14
Alimentazione elettrica		V-ph-Hz	230-1-50					
n° di poli			4	6	4	6	4	6
Connessione motore			Mono	Mono	Mono	Mono	Mono	Mono
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	1280	1000	1140	900	1040	800
Resa riscaldamento	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9
Portata acqua	(1)	I/h	863	749	1097	946	1252	1047
Perdita di carico	(1)	kPa	29	23	22	17	17	12
Livello di potenza sonora	(2)	dB(A)	64	59	64	59	65	60
Potenza assorbita		W	69	49	69	50	70	51

AREO P			22	22	23	23	24	24
Alimentazione elettrica		V-ph-Hz	230-1-50					
n° di poli			4	6	4	6	4	6
Connessione motore			Mono	Mono	Mono	Mono	Mono	Mono
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	3020	2100	2630	1850	2600	1800
Resa riscaldamento	(1)	kW	19,9	16,2	25,6	20,6	28,9	22,9
Portata acqua	(1)	I/h	1754	1432	2256	1820	2555	2022
Perdita di carico	(1)	kPa	23	16	29	20	19	13
Livello di potenza sonora	(2)	dB(A)	76	64	76	65	77	65
Potenza assorbita		W	198	110	210	114	212	120

AREO P			32	32	32	33	33	33
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
n° di poli			4	4	6	4	4	6
Connessione motore			Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	4500	4300	3200	4150	4000	2900
Resa riscaldamento	(1)	kW	35,6	34,7	29,2	39,5	38,6	31,8
Portata acqua	(1)	I/h	3143	3060	2579	3486	3411	2806
Perdita di carico	(1)	kPa	20	19	14	18	17	12
Livello di potenza sonora	(2)	dB(A)	76	76	69	76	76	69
Potenza assorbita		W	320	315	175	340	330	180

AREO P			34	34	34	42	42	42
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
n° di poli			4	4	6	4	4	6
Connessione motore			Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	4050	3900	2800	6900	7100	5600
Resa riscaldamento	(1)	kW	45,1	44,0	35,6	53,4	54,3	47,4
Portata acqua	(1)	I/h	3980	3886	3145	4718	4793	4185
Perdita di carico	(1)	kPa	29	28	19	37	38	30
Livello di potenza sonora	(2)	dB(A)	77	77	70	75	73	67
Potenza assorbita		W	345	340	182	623	650	450

AREO P			43	43	43	44	44	44
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
n° di poli			4	4	6	4	4	6
Connessione motore			Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	6400	6550	5300	6200	6400	5150
Resa riscaldamento	(1)	kW	59,6	60,4	53,2	66,8	68,1	59,5
Portata acqua	(1)	I/h	5259	5329	4695	5894	6009	5250
Perdita di carico	(1)	kPa	36	37	30	23	24	19
Livello di potenza sonora	(2)	dB(A)	74	74	68	75	75	69
Potenza assorbita		W	635	690	465	655	700	470

(1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo 1503741 -100\% della velocità massima

DATI TECNICI NOMINALI AREO P - FUNZIONAMENTO IN RISCALDAMENTO

AREO P			53	53	53	54	54	54
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
n° di poli			6	4	6	6	4	6
Connessione motore			Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	6200	7900	6450	5900	7600	6200
Resa riscaldamento	(1)	kW	60,8	70,2	62,3	66,2	77,4	68,3
Portata acqua	(1)	1/h	5373	6202	5497	5852	6834	6033
Perdita di carico	(1)	kPa	19	25	20	21	27	22
Livello di potenza sonora	(2)	dB(A)	69	76	72	71	77	73
Potenza assorbita		W	374	732	775	380	755	780
AREO P			63	63	63	64	64	64
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	400-3-50	230-1-50	400-3-50	400-3-50
n° di poli			6	6	8	6	6	8
Connessione motore			Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	8100	8300	6500	7500	7650	6000
Resa riscaldamento	(1)	kW	99,7	101	86,4	99,6	101	85,8
Portata acqua	(1)	1/h	8802	8943	7626	8795	8913	7571
Perdita di carico	(1)	kPa	29	30	23	29	29	22
Livello di potenza sonora	(2)	dB(A)	65	72	67	71	72	67
Potenza assorbita		W	560	575	380	582	590	390

(1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo ISO 3741-100\% della velocità massima

Aerotermi AREO

DATITECNICI NOMINALI AREO C - FUNZIONAMENTO IN RISCALDAMENTO

AREOC			12	12	13	13	14	14	22	22
Alimentazione elettrica		V-ph-Hz	230-1-50							
n° di poli			4	6	4	6	4	6	4	6
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	1280	1000	1140	900	1040	800	3020	2100
Resa riscaldamento	(1)	kW	9,77	8,48	12,4	10,7	14,2	11,9	19,9	16,2
Portata acqua	(1)	I/h	863	749	1097	946	1252	1047	1754	1432
Perdita di carico	(1)	kPa	29	23	22	17	17	12	23	16
Livello di potenza sonora	(2)	dB(A)	64	59	64	59	65	60	76	64
Potenza assorbita	(3)	W	67	49	69	50	70	51	198	110
AREOC			23	23	24	24	32	33	34	42
Alimentazione elettrica		V-ph-Hz	230-1-50							
n° di poli			4	6	4	6	4	4	4	4
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	2630	1850	2600	1800	4500	4150	4050	6900
Resa riscaldamento	(1)	kW	25,6	20,6	28,9	22,9	35,6	39,5	45,1	53,4
Portata acqua	(1)	I/h	2256	1820	2555	2022	3143	3486	3980	4718
Perdita di carico	(1)	kPa	29	20	19	13	20	18	29	37
Livello di potenza sonora	(2)	dB(A)	76	65	77	65	76	76	77	75
Potenza assorbita	(3)	W	210	114	212	120	320	340	345	623
AREOC			43	44	53	54	63	64		
Alimentazione elettrica		V-ph-Hz	230-1-50							
n° di poli			4	4	6	6	6	6		
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	6400	6200	6200	5900	7695	7500		
Resa riscaldamento	(1)	kW	59,6	66,8	60,8	66,3	79,3	99,6		
Portata acqua	(1)	I/h	5259	5894	5373	5852	8802	8795		
Perdita di carico	(1)	kPa	36	23	19	21	29	29		
Livello di potenza sonora	(2)	dB(A)	74	75	69	71	69	71		
Potenza assorbita	(3)	W	635	655	374	380	560	582		

[^7]DATI TECNICI NOMINALI AREO C - FUNZIONAMENTO IN RAFFREDDAMENTO

AREOC			12	12	13	13	14	14	22	22
Alimentazione elettrica		V-ph-Hz	230-1-50							
n° di poli			4	6	4	6	4	6	4	6
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	898	898	808	808	718	718	1602	1602
Resa riscaldamento	(1)	kW	7,87	7,87	10,0	10,0	11,2	11,2	13,4	13,4
Portata acqua	(1)	I/h	695	695	884	884	988	988	1184	1184
Perdita di carico	(1)	kPa	18	18	13	13	10	10	9	9
Resa raffreddamento totale	(2)	kW	2,30	2,30	2,82	2,82	3,15	3,15	3,61	3,61
Resa raffreddamento sensibile	(2)	kW	1,81	1,81	2,23	2,23	2,45	2,45	3,08	3,08
Portata acqua	(2)	1/h	395	395	482	482	541	541	620	620
Perdita di carico	(2)	kPa	9	9	6	6	5	5	4	4
Livello di potenza sonora	(3)	dB(A)	53	54	53	54	54	55	58	59
Potenza assorbita	(4)	W	33	34	33	34	33	34	95	81

AREOC			23	23	24	24	32	33	34	42
Alimentazione elettrica		V-ph-Hz	230-1-50							
n° di poli			4	6	4	6	4	4	4	4
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	1411	1411	1373	1373	2485	2292	2237	3738
Resa riscaldamento	(1)	kW	17,3	17,3	19,1	19,1	22,9	25,4	29,1	35,1
Portata acqua	(1)	I/h	1527	1527	1686	1686	2024	2242	2569	3098
Perdita di carico	(1)	kPa	15	15	5	5	5	5	8	7
Resa raffreddamento totale	(2)	kW	5,00	5,00	5,23	5,23	5,72	7,22	9,65	9,72
Resa raffreddamento sensibile	(2)	kW	3,91	3,91	4,20	4,20	5,23	6,12	7,50	7,85
Portata acqua	(2)	I/h	860	860	898	898	982	1239	1656	1668
Perdita di carico	(2)	kPa	7	7	2	2	1	1	4	2
Livello di potenza sonora	(3)	dB(A)	63	60	59	60	63	63	64	62
Potenza assorbita	(4)	W	95	81	95	81	153	153	153	400

AREOC			43	44	53	54	63	64
Alimentazione elettrica		V-ph-Hz	230-1-50					
n° di poli			4	4	6	6	6	6
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	3467	3359	3001	2832	4232	4125
Resa riscaldamento	(1)	kW	39,2	43,9	38,6	42,4	48,0	64,7
Portata acqua	(1)	1/h	3460	3875	3406	3743	4240	5715
Perdita di carico	(1)	kPa	7	3	11	11	8	8
Resa raffreddamento totale	(2)	kW	12,4	13,1	10,5	14,8	18,9	22,4
Resa raffreddamento sensibile	(2)	kW	8,69	10,3	8,50	11,4	14,3	16,8
Portata acqua	(2)	I/h	2123	2255	1800	2022	3237	3853
Perdita di carico	(2)	kPa	3	1	5	6	4	4
Livello di potenza sonora	(3)	dB(A)	61	62	53	55	56	58
Potenza assorbita	(4)	W	400	400	272	272	335	335

(1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}$ - velocità massima consentita in freddo
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) - velocità massima consentita in freddo
(3) Potenza sonora rilevata secondo 1503741 - velocità massima consentita in freddo
(4) Riferito alla velocità massima consentita in freddo

I dati riportati in tabella si iferiscono alla massima velocità consentita in raffreddamento per evitare il trascinamento delle gocce di condensa prodotte nella batteria

Aerotermi AREO

DATI TECNICI NOMINALI AREO H - FUNZIONAMENTO IN RISCALDAMENTO

AREOH			13	13	23	23	33	33	33	43
Alimentazione elettrica		V-ph-Hz	230-1-50	230-1-50	230-1-50	230-1-50	230-1-50	400-3-500	400-3-500	230-1-50
n° di poli			4	6	4	6	4	4	6	4
Connessione motore			Mono	Mono	Mono	Mono	Mono	Delta	Star	Mono
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	1083	855	2499	1758	3943	3800	2755	6080
Resa riscaldamento	(1)	kW	10,2	8,89	21,3	17,3	33,2	32,5	26,9	50,4
Portata acqua	(1)	1/h	905	785	1882	1529	2935	2871	2376	4454
Perdita di carico	(1)	kPa	13	10	19	13	12	11	8	25
Livello di potenza sonora	(2)	dB(A)	64	59	76	65	74	76	69	75
Potenza assorbita		W	69	50	210	114	340	330	180	635

(1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo 1503741 -100\% della velocità massima

AREO H			43	43	53	53	53	63	63	63
Alimentazione elettrica		V-ph-Hz	400-3-500	400-3-500	230-1-50	400-3-500	400-3-500	230-1-50	400-3-500	400-3-500
n° di poli			4	6	6	4	6	6	6	8
Connessione motore			Delta	Star	Mono	Delta	Star	Mono	Delta	Star
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	6223	5035	5890	7505	6128	8100	7885	6175
Resa riscaldamento	(1)	kW	51,1	45,2	56,2	64,8	57,5	99,7	80,5	69,2
Portata acqua	(1)	I/h	4512	3991	4960	5720	5079	8802	7106	6112
Perdita di carico	(1)	kPa	25	20	16	20	16	29	19	15
Livello di potenza sonora	(2)	dB(A)	77	70	69	76	72	70	71	66
Potenza assorbita		W	690	465	375	732	775	560	575	380

(1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo S 03741 - 100% della velocità massima

DISEGNI DIMENSIONALI

AREOH	A	B	E	G	1	2	\bigcirc
	mm	mm	mm	mm	"	"	kg
13	460	330	300	380	11/4	11/4	20
23	560	430	400	480	11/4	11/4	26
33	660	530	500	580	11/4	11/4	35
43	760	630	600	680	11/4	11/4	41
53	860	730	700	780	11/4	11/4	52
63	960	830	800	880	11/4	11/4	61

Aerotermi AREO

DISEGNI DIMENSIONALI

AREO P-AREOL

38

LEGENDA

$\mathbf{1}$	Attacco ingresso acqua gas maschio
$\mathbf{2}$	Attacco uscita acqua gas maschio

AREO P					G	1	2	$\stackrel{\square}{\circ}$
	mm	mm	mm	mm	mm	"	"	kg
12	460	330	328	300	380	3/4	3/4	20-20-21
13-14	460	330	329	300	380	3/4	3/4	20-20-21
22-23-24	560	430	428	400	480	3/4	3/4	26-26-27
32-33-34	660	530	528	500	580	1	1	34-35-37
42-43-44	760	630	628	600	680	1	1	40-41-44
53-54	860	730	728	700	780	11/4	11/4	52-55
63-64	960	830	828	800	880	11/4	11/4	61-64
AREOL								
	mm	mm	mm	mm	mm	"	"	kg
32-33	660	530	528	500	580	1	1	34-35
42-43	760	630	628	600	680	1	1	40-41
53	860	730	728	700	780	11/4	11/4	52
63	960	830	828	800	880	11/4	11/4	61

DISEGNI DIMENSIONALI

AREOC	A	B	D	E	G	1	2	\bigcirc
	mm	mm	mm	mm	mm	${ }^{\prime}$	"	kg
12-13-14	460	330	328	300	380	3/4	3/4	20-20-21
22-23-24	560	430	428	400	480	3/4	3/4	26-26-27
32-33-34	660	530	528	500	580	1	1	34-35-37
42-43-44	760	630	628	600	680	1	1	40-41-44
53-54	860	730	728	700	780	11/4	11/4	52-55
63-64	960	830	828	800	880	11/4	11/4	61-64

Aerotermi per climatizzazione con motore EC

AREOi11-118 kW

Inverter
Technology

Affidabilità ed efficienza energetica al vertice della categoria

II nuovo AREO i coniuga l'affidabilità e la robustezza della versione ON/OFF con l'innovazione della tecnologia Inverter. La serie AREO iè dotata di inverter brushless (EC) integrato al motore che garantisce una regolazione accurata della velocità di rotazione ed il massimo adattamento al carico termico istantaneo.
L'innovativa tecnologia Inverter permette il raggiungimento di un'eccezionale efficienza aeraulica e la conseguente riduzione dei consumi elettrici stagionali fino al 50\%, rispetto alla tradizionale versione con motore $A C$.
Le linee arrotondate del mobile di copertura conferiscono al prodotto un design particolarmente ricercato.
La gamma AREO i è composta da 22 modelli per installazione a parete. AREO i è idoneo per funzionamento sia in riscaldamento sia in raffrescamento grazie ad un innovativo sistema di raccolta condensa e della coibentazione aggiuntiva all'interno del mobile.
La gamma presenta 6 differenti taglie costruttive disponibili anche con batterie a 4 ranghi per permettere il corretto funzionamento con acqua calda prodotta da pompa di calore.

PLUS

» Bassi livelli sonori
» Ampio range di lavoro (fino a $65^{\circ} \mathrm{C}$ aria aspirata)
" Ventilatore assiale con pale a profilo aerodinamico (Hyblade ${ }^{\ominus}$ technology)
» Motore elettrico in classe F omologato per funzionamento continuo
» Ventilatore e motore integrati tra loro, per un notevole aumento dell'affidabilità

ACCESSORI	
Pannelli di comando elettronici a microprocessore con display	DFP Dima per fissaggio a parete
DIST Distanziale per comandi MY COMFORT per installazione a parete	Rete di protezione per palestre (antipallone)
MCLE Comando a microprocessore con display MY COMFORT LARGE	R Rete di protezione per palestre
MCSWE Sonda acqua per comandi MY COMFORT, EVO	Diffusori
Interfaccia di potenza e comandi per serrande	DO Diffusore a doppio ordine di alette orientabili
CSD Comando ad incasso a parete per l'apertura e la chiusura proporzionale della serranda	Presa aria esterna
motorizzata SM	PAE Presa aria esterna
Accessori vari	PAEM Serranda miscelatrice manuale
VA Vasca ausiliaria di raccolta condensa	PAEMM Serranda miscelatrice motorizzata, alimentazione 24 V con ritorno a molla
Dime di fissaggio	Griglia antipioggia per presa aria esterna
DFC Dima per fissaggio a colonna	GR Griglia di aspirazione aria con controtelaio
DFO Dima orientabile per fissaggio a parete/colonna	

COMPONENTI PRINCIPALI

Gruppo motoventilante

Elettroventilatore e motore EC sono un assieme integrato ed ottimizzato per raggiungere la massimizzazione dell'efficienza aeraulica. Infatti si garantisce la conformità ad ERP anche per le versioni con alimentazione monofase.

Motore elettrico

Motore tropicalizzato direttamente accoppiato al rotore esterno, di serie con le seguenti caratteristiche:

- dotati di protettore termico interno
- avvolgimenti di classe F
- grado di protezione IP54
- cuscinetti a sfera esenti da manutenzione

Ventilatore assiale

Con pale a profilo aerodinamico ottimizzato (tecnologia HyBlade『), bilanciate staticamente, inserite in un apposito boccaglio che esalta le prestazioni aerauliche e minimizza il rumore.

Mobile di copertura

In lamiera di acciaio preverniciata, completo di angolari in ABS e di alette deflettrici orientabili (a molla) in alluminio poste sulla mandata aria per una distribuzione ottimale dell'aria nell'ambiente da riscaldare.

Batteria di scambio termico

Realizzata in tubo di rame ed alette in alluminio ad alta conducibilità termica per ottimizzare lo scambio rispetto alle batterie con tubo in ferro tradizionali.

DISEGNI DIMENSIONALI

Aerotermi AREO i

DATI TECNICI NOMINALI - FUNZIONAMENTO IN RISCALDAMENTO

AREO i			12MEC	13MEC	14MEC	22MEC	23MEC	24MEC	32MEC	33MEC	34MEC
Alimentazione elettrica		V-ph-Hz	230-1-50								
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	1427	1240	1152	2700	2350	2300	3100	2850	2770
Resa riscaldamento	(1)	kW	6,99	8,83	10,3	12,5	16,1	18,1	19,1	21,2	24,1
Portata acqua	(1)	I/h	612	773	901	1094	1411	1585	1674	1852	2107
Perdita di carico	(1)	kPa	17	13	10	11	14	9	7	6	10
Livello di potenza sonora	(2)	dB(A)	65	66	67	71	69	69	64	64	64
Potenza assorbita	(3)	W	67	66	68	139	132	146	105	108	108

(1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo $1503741-100 \%$ della velocità massima
(3) Riferito alla velocità massima

AREO i			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC	52MEC	52TEC	53MEC	53TEC
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	5800	7248	5400	7800	5350	6663	8800	9500	8450	9150
Resa riscaldamento	(1)	kW	32,4	36,8	36,4	41,5	41,2	47,2	38,9	40,6	49,3	51,6
Portata acqua	(1)	I/h	2839	3220	3184	3633	3611	4129	3405	3550	4315	4515
Perdita di carico	(1)	kPa	16	20	16	20	11	13	12	13	14	15
Livello di potenza sonora	(2)	dB(A)	71	78	72	78	72	79	80	80	82	80
Potenza assorbita	(3)	W	318	563	334	566	344	576	715	859	766	876

(1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo SO 3741 -100\% della velocità massima
(3) Riferito alla velocità massima

AREO i			54MEC	54TEC	62MEC	62TEC	63MEC	63TEC	64MEC	64TEC
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	8100	8850	7200	11200	6700	10500	6200	9750
Resa riscaldamento	(1)	kW	54,6	57,6	51,5	66,8	59,8	79,4	59,9	80,3
Portata acqua	(1)	I/h	4781	5040	4506	5852	5234	6951	5241	7035
Perdita di carico	(1)	kPa	15	17	9	14	13	21	12	21
Livello di potenza sonora	(2)	dB(A)	82	81	69	78	70	79	71	79
Potenza assorbita	(3)	W	776	875	248	845	259	864	266	875

(1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
(2) Potenza sonora rilevata secondo 1503741 -100\% della velocità massima
(3) Riferito alla velocità massima

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63TDC	63TDF
Alimentazione elettrica		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
Portata aria max riscaldamento		$\mathrm{m}^{3} / \mathrm{h}$	3400	3255	5575	7606	9006	7449	10734	8282
Resa riscaldamento	(1)	kW	19,0	22,3	31,0	36,4	59,9	56,2	68,6	62,2
Portata acqua	(1)	I/h	1664	1954	2719	3183	5249	4921	6005	5448
Perdita di carico	(1)	kPa	5	9	12	16	13	11	16	13
Livello di potenza sonora	(2)	dB(A)	80	79	76	80	78	75	87	83
Potenza assorbita	(3)	W	189	193	388	918	693	414	1001	655

[^8]AREO i 11-118 kW

DATI TECNICI NOMINALI - FUNZIONAMENTO IN RAFFREDDAMENTO

AREO i			12MEC	13MEC	14MEC	22MEC		23MEC	24MEC	32MEC	33MEC	34MEC
Alimentazione elettrica		V-ph-Hz	$230-1-50$									
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	865	936	899	1538	1616		1570	2409	2362	2412
Resa riscaldamento	(1)	kW	5,26	7,43	8,73	9,10	12,8		14,2	16,5	18,8	22,0
Portata acqua	(1)	I/h	460	651	764	797	1122		1243	1443	1649	1926
Perdita di carico	(1)	kPa	10	9	7	6	9		6	5	7	9
Resa raffreddamento totale	(2)	kW	2,90	4,11	4,83	4,75	7,15		7,71	8,00	9,75	12,7
Resa raffreddamento sensibile	(2)	kW	1,79	2,53	2,97	3,06	4,40		4,79	5,36	6,25	7,65
Portata acqua	(2)	I/h	505	714	834	819	1237		1333	1381	1684	1381
Perdita di carico	(2)	kPa	16	14	11	8	14		8	6	7	6
Livello di potenza sonora	(3)	dB(A)	47	54	55	57	59		64	58	59	60
Potenza assorbita	(4)	W	36	44	45	25	46		63	47	57	68
AREO i			42MEC	42TEC	43MEC	43TEC	44MEC	44TEC	52MEC	52TEC	53MEC	53TEC
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	3346	3399	3492	3278	3421	3282	4644	4536	4492	4365
Resa riscaldamento	(1)	kW	23,5	23,7	27,9	26,8	31,0	30,2	27,2	26,8	33,9	33,3
Portata acqua	(1)	I/h	2058	2077	2440	2346	2716	2644	2382	2351	2965	2912
Perdita di carico	(1)	kPa	9	9	10	9	6	6	7	6	7	7
Resa raffreddamento totale	(2)	kW	12,7	12,9	15,9	15,3	17,2	16,8	14,4	14,2	19,0	18,6
Resa raffreddamento sensibile	(2)	kW	7,99	8,09	9,65	9,31	10,6	10,3	9,20	9,00	11,6	11,4
Portata acqua	(2)	I/h	2200	2221	2748	2637	2980	2892	2487	2452	3268	3206
Perdita di carico	(2)	kPa	13	14	16	15	10	9	9	9	11	11
Livello di potenza sonora	(3)	dB(A)	61	64	63	64	63	63	64	63	64	64
Potenza assorbita	(4)	W	91	69	118	73	120	76	97	92	105	96

AREO i			54MEC	54TEC	62MEC	62TEC	63MEC	63TEC	64MEC	64TEC
Alimentazione elettrica		V-ph-Hz	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50	230-1-50	400-3-50
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	4706	4653	6011	5888	6005	5605	5861	5779
Resa riscaldamento	(1)	kW	39,1	38,8	46,1	45,5	55,6	53,1	57,6	57,1
Portata acqua	(1)	I/h	3427	3401	4036	3982	4870	4651	5047	4999
Perdita di carico	(1)	kPa	9	8	8	7	11	10	12	11
Resa raffreddamento totale	(2)	kW	22,8	22,6	23,5	23,2	31,7	30,2	34,1	33,8
Resa raffreddamento sensibile	(2)	kW	13,7	13,6	15,3	15,1	19,3	18,4	20,3	20,2
Portata acqua	(2)	I/h	3936	3910	4064	4005	5465	5216	5900	5841
Perdita di carico	(2)	kPa	14	14	10	10	17	16	20	19
Livello di potenza sonora	(3)	dB(A)	66	66	64	62	67	62	70	65
Potenza assorbita	(4)	W	141	134	157	150	195	152	232	205

(1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}$ - velocità massima consentita in freddo
(2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $28^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (53% umidità relativa) - velocità massima consentita in freddo
(3) Potenza sonora rilevata secondo 1503741 - velocità massima consentita in freddo
(4) Riferito alla velocità massima consentita in freddo

AREO i			33MDF	34MDF	43MDF	43TDC	63MDC	63MDF	63TDC	63TDF
Alimentazione elettrica		V-ph-Hz	230-1-50	230-1-50	230-1-50	400-3-50	230-1-50	230-1-50	400-3-50	400-3-50
Portata aria max raffreddamento		$\mathrm{m}^{3} / \mathrm{h}$	2601	2414	3848	4164	5746	4107	6173	4471
Resa riscaldamento	(1)	kW	16,3	18,9	25,0	25,8	45,6	38,5	49,1	42,0
Portata acqua	(1)	I/h	1426	1653	2192	2261	3992	3367	4295	3675
Perdita di carico	(1)	kPa	4	7	8	9	8	6	9	7
Resa raffreddamento totale	(2)	kW	5,83	9,65	12,2	13,4	21,1	19,4	25,9	23,9
Resa raffreddamento sensibile	(2)	kW	4,63	6,66	8,32	9,14	13,7	12,7	17,1	15,7
Portata acqua	(2)	I/h	1016	1672	2120	2332	3661	3367	4509	4124
Perdita di carico	(2)	kPa	3	9	8	9	9	6	9	11
Livello di potenza sonora	(3)	dB(A)	73	72	68	70	71	68	78	72
Potenza assorbita	(4)	W	86	92	139	177	219	103	363	131

[^9]
Destratificatori d'aria

DST 1700-9100 m ${ }^{3} / \mathrm{h}$

La soluzione per eliminare la stratificazione dell'aria calda negli ambienti ad uso industriale

Negli ambienti industriali caratterizzati da altezze elevate e riscaldati con sistemi ad aria calda, la necessità di mantenere al livello del pavimento una temperatura di comfort per le persone comporta l'inconveniente di addensare nella parte alta del locale aria ad alta temperatura. Il calore resta così confinato ed inutilizzato in prossimità del tetto ed è destinato a riversarsi verso l'esterno, aumentando cosil le dispersioni termiche dell'ambiente.
I destratificatori della serie DST eliminano questo inconveniente, generando un flusso d'aria verticale discendente in grado di ridurre la differenza della temperatura dell'aria tra il pavimento e il soffitto fino ad un massimo di circa 3 ${ }^{\circ} \mathrm{C}$. Durante la stagione estiva i destratificatori DST possono essere utilizzati per ottenere un'efficace ventilazione. Sono provvisti di un gruppo motoventilante costituito da ventilatori assiali e motori elettrici asincroni, monofase o trifase a seconda della taglia, a rotore esterno che ne garantiscono la compatibilità con le più recenti normative sul contenimento dei consumi energetici.
Il termostato di consenso e il salvamotore magnetotermico a riarmo manuale, installati di serie a bordo macchina, insieme alle comode staffe di fissaggio e alle alette deflettrici orientabili per direzionare il flusso dell'aria, ne rendono l'installazione particolarmente agevole senza l'utilizzo di ulteriori accessori.

PLUS

" Semplicità di installazione
" Telesalvamotore e termostato di consenso di serie
" Alette deflettrici orientabili
" Ventilatori assiali HyBlade ${ }^{\circledR}$

DATI TECNICI NOMINALI

DST			14	26	36	46	56	66
Velocità ventola		rpm	1400	900	900	900	900	750
Portata aria nominale		$\mathrm{m}^{3} / \mathrm{h}$	1710	3083	4199	7220	8142	9139
Altezza minima installazione		m	3,00	3,50	4,50	5,00	7,00	6,50
Altezza massima installazione		m	5,00	5,50	7,00	7,50	9,00	10,0
Alimentazione elettrica		V-ph-Hz	230-1-50	230-1-50	400-3-50	400-3-50	400-3-50	400-3-50
Potenza assorbita		W	62	110	160	390	418	320
Corrente assorbita		A	0,30	0,50	0,30	0,70	0,70	0,60
Livello di potenza sonora	(1)	dB(A)	65	68	72	76	78	70

(1) Potenza sonora rilevata secondo ISO 3741

DISEGNI DIMENSIONALI

DST

Regolazione Galletti

Controllare la climatizzazione diventa semplice ed immediato: l'effettivo comfort ambientale è accessibile in modo efficace, semplice e intuitivo con i pannelli di comando Galletti, dal più semplice elettromeccanico per la gestione della velocità di ventilazione, ai comandi a microprocessore per il completo controllo termoigrometrico.
La gestione di valvole a 2 e 3 vie, sia ON/OFF sia modulanti, viene effettuata sulla base dei parametri di temperatura e umidità rilevati.

Comandi integrabili in ogni tipo di impianto

L'ampia gamma di controlli Galletti offre molteplici possibilità di installazione.
Ben 7 comandi pensati per installazione a bordo macchina garantiscono soluzioni semplici ed eleganti. Appositi kit di installazione permettono il montaggio nei terminali idronici ESTRO, FLAT. In questo modo l'utente ha il controllo della temperatura a portata di mano e una soluzione integrabile in qualunque tipo di ambiente.
Ancora più estesa è la gamma di comandi installabili a parete: 9 comandi con la possibilità di gestire da un unico punto più terminali nella stessa stanza.
In aggiunta a questi, per terminali a parete alta e fan coil a cassetta, è anche disponibile un apposito telecomando ad infrarossi.

Comandi di ogni livello per qualsiasi esigenza

La proposta Galletti si adatta ad ogni esigenza di economicità e funzionalità. Con i sui 9 comandi elettromeccanici e i 5 comandi a microprocessore Galletti si pone ai vertici del mercato per varietà dell'offerta. I dispositivi proposti a catalogo sono in grado di interagire con terminali plurivelocità o con ventilazione modulante gestendo differenti dinamiche di termostatazione ed eventuale comunicazione seriale.

Comunicazione seriale: una possibilità per ogni esigenza

L'offerta Galletti di comandi a microprocessore dotati di porta seriale RS485 permette un'adeguata gestione di ogni unità terminale, aprendo letteralmente la porta a qualsiasi esigenza di regolazione impiantistica. La circolazione di informazioni su rete bus mediante protocollo di comunicazione Modbus, standard di categoria, è completata e combinata alla comunicazione mediante Onde Convogliate (OC), creando possibilità di interazione semplificate e personalizzate tra utente e impianto.

Rete ad onde convogliate (OC)

" Soluzione di facile installazione
" Unica interfaccia al comando di più terminali
" Riduzione dei cablaggi elettrici
" Le unità Slave replicano esattamente l'unità Master
" Soluzione adatta a terminali sottoposti allo stesso carico termico
" Disponibile con comando EVO

Rete Modbus

" Soluzione adatta a terminali sottoposti a diverso carico termico
» Ogni terminale è dotato di propri sensori di regolazione
" L'unità Master impone i parametri principali
" Diversi gradi di libertà impostabili per le unità Slave
» Disponibile con comandi MYCOMFORT o EVO

Rete mista

" Soluzione ideale per hotel o ambienti con molte zone da climatizzare
" Aree chiave controllate in Modbus con copia delle istruzioni tramite onde convogliate
" I| Master può essere costituito da un semplice comando o da un sistema di supervisione
» Monitoraggio con autonomia decrescente
" Sfruttamento dei vantaggi della rete Modbus e di quella ad onde convogliate
" Disponibile con comando EVO

Controlli e Software per terminali idronici

Sinottico comandi per terminali idronici

La tabella seguente può essere utilizzata per individuare rapidamente il pannello di comando più adatto in base alle funzionalità richieste.

COMANDI ELETTROMECCANICI

COMANDI A MICROPROCESSORE ELETTRONICI

	Bordo	\checkmark	-	\checkmark	\checkmark	-
	Parete	-	\checkmark	-	-	\checkmark
$\begin{aligned} & \text { 을 } \\ & \text { 플 } \\ & \text { 튼 } \end{aligned}$	2 tubi	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4 tubi	-	-	-	-	-
	Termostato aria	-	-	\checkmark	\checkmark	\checkmark
	3 velocità	\checkmark	\checkmark	\checkmark	\checkmark	-
	4 velocità	-	-	-	-	-
	Velocità automatiche	-	-	-	-	-
	Velocità variabile	-	-	-	-	-
	Deumidifica/lettura UR	-	-	-	-	-
	Sonda acqua	-	-	-	-	-
	Sonda aria remota	-	-	-	-	-
	Sonda UR remota	-	-	-	-	-
	Termostato di consenso acqua	\checkmark	\checkmark	, *	\checkmark^{*}	-
	Gestione valvola 0N/OFF	-	-	**	\checkmark^{*}	\checkmark
	$G e s t i o n e ~ v a l v o l a ~ m o d u l a n t e ~$	-	-	-	-	-
	Gestione resistenza elettrica	-	-	-	-	-
	Uscite digitali	-	-	-	-	-
	Estate/inverno locale	-	-	-	\checkmark	\checkmark
	Estate/inverno acqua	-	-	-	-	-
	Estate/inverno aria (4 tubi)	-	-	-	-	-
	Economy	-	-	-	-	-
	Ingressi digitali	-	-	-	-	-
	Comunicazione Modbus	-	-	-	-	-

\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark	-	\checkmark
-	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
-	-	-
-	-	\checkmark
-	-	\checkmark
-	-	-
\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
-	-	-
-	-	-
\checkmark	\checkmark	\checkmark
-	-	-
-	-	-
-	-	-
\checkmark	\checkmark	\checkmark
-	-	-
-	\checkmark	\checkmark
-	-	-
-	-	-
-	-	-

* opzioni non compatibili insieme

Sinottico comandi per terminali idronici

La tabella seguente può essere utilizzata per individuare rapidamente il pannello di comando più adatto in base alle funzionalità richieste.

COMANDI A MICROPROCESSORE CON DISPLAY

\checkmark	\checkmark	\checkmark	$\checkmark^{* *}$	$\checkmark * *$	\checkmark	Bordo	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Parete	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2 tubi	
\checkmark	\checkmark	$\checkmark *$	\checkmark	\checkmark	$\checkmark *$	4tubi	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Termostato aria	$\begin{aligned} & \text { 즁 } \\ & \text { OiN. } \\ & \text { 응 } \end{aligned}$
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3 velocità	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark *$	$4 \mathrm{velocità}$	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Velocità automatiche	
-	-	$\checkmark *$	\checkmark	\checkmark	-	Velocità variabile	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Deumidifica/lettura UR	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sonda acqua	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sonda aria remota	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Sonda UR remota	
-	-	-	-	-	-	Termostato di consenso acqua	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Gestione valvola ON/OFF	
-	-	$\checkmark *$	\checkmark	\checkmark	-	Gestione valvola modulante	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	**	Gestione resistenza eletrica	
-	-	\checkmark	\checkmark	\checkmark	-	Uscite digitali	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Estate/inverno locale	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Estate/inverno acqua	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Estate/inverno aria (4 tubi)	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	Economy	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Ingressi igigitali	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	Comunicazione Modbus	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	Gestione JONIX	

Controlli e software per terminali idronici EVO

Interfaccia utente touch screen

 EVO-2-TOUCH

PLUS

" Display touch screen capacitivo da $2.8^{\prime \prime}$
" Sonda di temperatura e umidità integrata
» Alimentazione a bassa tensione derivata dall'elemento di potenza
» Installazione a parete o a bordo ART-U
" Predisposizione per le principali scatole di collegamento elettrico
" Utilizzo facilitato per I'utente
» Cornice in lamina di alluminio e polietilene in diversa cromatura

CARATTERISTICHE

Interfaccia intelligente

Le diverse schermate sono state ideate per rendere intuitiva la comunicazione uomo-macchina. Ogni pagina contiene poche informazioni essenziali che permettono la consultazione dei principali parametri operativi dell'unità e consentono la configurazione iniziale del comando a seconda delle esigenze impiantistiche.

Smart touch

La tecnologia touch screen rappresenta un ulteriore elemento mirato alla semplificazione dell'esperienza dell'utente. Grazie alle funzioni di 'tap' e 'swipe' l'esperienza di utilizzo del comando è resa simile a quella del proprio smartphone.

INSTALLAZIONE

Modalità di installazione

L'interfaccia touch screen può essere installata a bordo della serie ART-U in abbinamento alla scheda di potenza EVO BOARD, integrando tutte le funzionalità avanzate di EVO con un prodotto fortemente orientato al design. Le diverse combinazioni cromatiche della cornice, unite alle differenti versioni del pannello di copertura della serie ART-U, permettono una notevole libertà di personalizzazione. Se previsto in abbinamento ad altre serie di ventilconvettori, la predisposizione per i principali standard di scatole elettriche ne consente la facile installazione a parete. In questo caso le tagliole posizionate ai due estremi della scatola di contenimento consentono la corretta lettura della temperatura ambiente da parte del sensore integrato nell'elettronica del comando

Cornice personalilzzabile

La cornice esterna dellinterfaccia è disponibile in quattro diverse cromature ed è realizzata con materiale a doppia lamina di alluminio e anima in polietilene. Le colorazioni disponibili sono il bianco, il nero, il grigio e il rosso, e consentono l'accoppiamento ideale alle versioni della serie ART-U. Nel caso di installazione a parete, le diverse soluzioni rappresentano un buon range di scelta per la determinazione del migliore abbinamento allo stile della struttura da climatizzare.

Uscita digitale configurabile

EVO è dotato di una uscita digitale completamente configurabile che permette al comando di fornire importanti informazioni a dispositivi esterni, come ad esempio la richiesta di raffrescamento e/o riscaldamento, la modalità di funzionamento e l'eventuale presenza di allarme.

Attivazione deumidificatore / umidificatore esterno

Il comando implementa la funzione di controllo dell'umidità relativa a set point impostabile. Collegando l'apposita sonda al comando è possibile non solo variare le dinamiche di regolazione del fancoil ma anche gestire le chiamate a dispositivi esterni quali umidificatori e deumidificatori.

Controlli e software per terminali idronici EVO

Controllo elettronico a microprocessore

EVO

Regolatore multifunzione dall'utilizzo semplice e intuitivo

EVO racchiude il meglio della regolazione Galletti nell'ambito dei terminali idronici.
II software di EVO, interamente sviluppato dall'ufficio tecnico Galletti, si compone di due parti distinte, in due microprocessori. La prima di queste, residente nella scheda di potenza, gestisce il monitoraggio dei parametri e le logiche di regolazione. La seconda parte del software, caricata nel microprocessore dell interfaccia utente, garantisce una vera e propria comunicazione, attraverso la quale installatore e utente vengono guidati nella configurazione e nell'utilizzo del comando.
Nel caso venga richiesto il montaggio della scheda di potenza a bordo macchina, opzione disponibile in gran parte dei terminali idronici di Galletti, in fase di cablaggio sarà sufficiente collegare l'interfaccia utente con un cavo bipolare schermato. Questa straordinaria semplicità dimezza tempi e costi di installazione.
II comando EVO è progettato per gestire i terminali d'impianto della gamma Galletti con motore asincrono monofase plurivelocità o con motori EC a velocità modulante. In particolare la tecnologia avanzata di cui dispone consente di strutturare reti di comandi adatti a qualsiasi esigenza per una gestione automatica ed intelligente dei terminali d'impianto.

PLUS

" Notevole risparmio in fase di installazione
" Interfaccia user friendly
» Comunicazione seriale RS485 ed OC
» Funzione di deumidificazione avanzata
" Controllo contemporaneo di 3 dispositivi modulanti
» Gestione avanzata delle fasce orarie
" Display LCD o touch screen

Un comando multi interfaccia

EVO si contraddistingue per la possibilità di abbinare il modulo di potenza a due tipologie di interfaccia: EVO-2-TOUCH e EVODISP. È possibile adottare di volta in volta la soluzione migliore per soddisfare le diverse esigenze di installazione.
Nel caso in cui non sia necessaria un'interfaccia, è possibile l'abbinamento diretto dell'unità al proprio smartphone tramite l'utillizzo dell'app Galletti (previa pre-configurazione della scheda di potenza).

Soluzione splittata

La separazione tra elementi di potenza e interfaccia grafica risulta una soluzione molto pratica dal punto di vista dell'installazione, presentando il vantaggio di alimentare a bassa tensione linterfaccia a contatto con l'utente e utilizzando un unico cavo sfruttato sia per I'alimentazione che per lo scambio di informazioni tra i due dispositivi. In questo modo la lunghezza e il costo dei cavi da posa resi riduce notevolmente, non rappresentando un costo aggiuntivo per l'utente finale.

ACCESSORI

Interfaccia utente con display LCD

EVO DISP

PLUS

Display LCD con sonda di temperatura integrata
Alimentazione a bassa tensione derivata dall'elemento di potenza
Installazione a parete o a bordo ART-U
Predisposizione per scatola 503
Modalità di stand-by personalizzabile
Funzione di blocco tastiera

Display LCD

Il pannello di comando si collega direttamente alla scheda di potenza installata sul ventilconvettore dalla quale deriva direttamente l'alimentazione elettrica in bassa tensione. L'interfaccia è predisposta per essere installata su scatole elettriche standard ed è predisposta per l'alloggiamento di una sonda per la lettura dell'umidità relativa. L'orologio RTC di cui è dotato permette infine la gestione del ventilconvettore mediante l'impostazione di fasce orarie.

Gestione automatica delle

fasce orarie

L'interfaccia utente consente di impostare lo stato ON OFF del comando e il set point desiderato, ora per ora, per i differenti giorni della settimana. I parametri di funzionamento sopra citati, se impostati su unità "master", possono essere replicati su tutti gli "slave" collegati.

Comunicazione seriale

|| comando dispone di porte seriali per comunicazione RS485 e ad onde convogliate che consentono lo sviluppo di reti di comandi adeguate per tutte le necessità.

Controllo dispositivi modulanti

EVO è in grado di controllare contemporaneamente fino a due valvole modulanti ed un ventilatore BLDC, consentendo di variare la portata d'aria e la portata d'acqua in batteria adeguandosi al carico termico.

Controllo dell'umidità

EVO offre la possibilità di attivare automaticamente una procedura di deumidifica in accordo l'umidità relativa in ambiente ed un set point impostabile. La funzione richiede una sonda umidità disponibile come accessorio.

Applicazione di controllo unità terminali per smartphone

GALLETTI APP

PLUS

» Comunicazione Wifi o Bluetooth
» Informazioni sempre consultabili su Cloud
» Accesso da remoto
» Applicazione compatibile con iOS e Android
" Utilizzabile con tutti i terminali governati da EVO

FUNZIONALITÀ E CARATTERISTICHE

Navel

È il dispositivo impiegato per rendere possibile la comunicazione wifi o Bluetooth tra EVO BOARD e lo smartphone in cui è presente l'applicazione Galletti. È da posizionare sulla fiancata del ventilconvettore e deriva I'alimentazione direttamente da EVO.

Controllo remoto globale

Tutte le funzioni avanzate del comando EVO sono presenti all'interno dell'applicazione, che è quindi in grado di attivare disattivare cicli di deumidifica, attivare la funzione di minima temperatura e attivare o disattivare le fasce orarie che definiscono l'accensione e lo spegnimento dei dispositivi.

Comunicazione

Sono disponibili due possibili alternative di comunicazione: Wifi o Bluetooth. Nel primo caso le informazioni sono inviate in cloud e ogni dispositivo che utilizzi l'applicazione può consultare o modificare le impostazioni ovunque sia disponibile una connessione internet. La seconda modalità è invece stand alone, ed è in grado di trasformare lo smartphone in un telecomando a distanza in grado di governare il ventilconvettore.

Informazioni diagnostiche

L'applicazione rende disponibili informazioni relative allo stato del ventilconvettore e di alcuni accessori adesso collegati. Tra il resto è possibile valutare lo stato di apertura/chiusura della valvola, la temperatura dell'acqua di alimentazione e l'eventuale presenza di allarme nella lettura della sonda di temperatura dell'aria.

Compatibilità

La possibilità di abbinare l'accessorio Navel alla scheda di potenza EVOBOARD rende l'applicazione idonea al controllo di tutti i terminali presenti a catalogo che non presentino già la possibilità di controllo mediante telecomando ad infrarossi. All'interno dell'applicazione è possibile la creazione di una lista personalizzata di unità terminali che ne rende immediata la consultazione.

ACCESSORI

EVO-LUTION

EVO BOARD

EVO-2-TOUCH

Controlli e software per terminali idronici MYCOMFORT

Controllo elettronico a microprocessore con display LCD

MYCOMFORT

Tre differenti proposte per un livello di comfort personalizzato

Controllare la climatizzazione diventa semplice ed immediato: l'effettivo comfort ambiente è accessibile con i pannelli di comando MYCOMFORT, nodo di collegamento dei sistemi integrati Galletti.
Il pannello di comando a microprocessore permette la regolazione del funzionamento dei terminali idronici di impianto in modo da ottenere le condizioni di benessere ambientale ed il controllo completo dell'impianto di climatizzazione. Il comando è dotato di display a cristalli liquidi di ampie dimensioni con una tastiera incorporata per l'impostazione e la lettura dei parametri ambientali e di funzionamento del terminale idronico collegato.
Vasta è la scelta tra gli accessori disponibili, che permettono linstallazione indifferentemente a parete oppure a bordo del terminale.

PLUS

» Tre versioni in funzione della richiesta del cliente
» Ampio display
" Interfaccia user friendly
» Installazione a parete o a bordo macchina
» Facilità di collegamento e startup

VERSIONI DISPONIBILI

BASE

Gestione del terminale di impianto e valvole di regolazione su base temperatura.

MEDIUM

el terminale di impianto (4 velocità Gestione del terminale di impianto (4 velocidi ventilazione) e valvole di regolazione su base tà di ventilazione) e valvole di regolazione su temperatura ed umidità, connessione a sistemi base temperatura, umidità, timer settimanale, GARDA, realizzazioni di reti small in modalità connessione a sistemi GARDA, realizzazioni di slave.
reti small in modalità master, retroilluminazione display, gestione dispositivi modulanti (valvole, motori EC).

COMPONENTI PRINCIPALI E FUNZIONI

Guscio

Il guscio esterno è in materiale ABS trattato ai raggi UV, per conservate il colore originale nel tempo. Grazie al suo gradevole design, è adatto anche ad installazioni di pregio, in contesti raffinati.

Morsettiera

MYCOMFORT è dotato di morsettiera ad innesto rapido che permette i cablaggi senza impedimenti. La programmabilità di funzioni ed indirizzo è semplificata in quanto avviene direttamente da tastiera e display.

Gestione accessori e dispositivi esterni

Il comando permette la gestione di valvole a 2 e 3 vie, sia ON/OFF che modulanti, inoltre è possibile gestire dispositivi esterni come chiller, caldaia, valvole di zona. Attraverso contatti puliti ON/OFF, viene effettuata in funzione dei parametri ambientali.

Display

3" sono a disposizione dell'utente per visualizzare con chiarezza tutti i dati d'interesse per una regolazione efficace. Per un'utilizzo user friendly, tutte le funzioni sono rappresentate da intuitivi pittogrammi.

Gestione e risparmio

Controllo automatico del funzionamento di raffreddamento e riscaldamento dell'unità in funzione della temperatura aria e della temperatura acqua.

Supervisione

Il comando è integrabile a sistema di supervisione, mediante il bus di connessione RS485, da cui è possibile visualizzare tutte le funzioni e l'accesso al menu di programmazione di MYCOMFORT.

Comfort effettivo

MYCOMFORT è in grado di controllare e mantenere il benessere termoigrometrico grazie alla presenza di una sonda che misura l'umidità ambiente e che consente di realizzare cicli di deumidificazione (agendo su valvole, ventilazione, set-point acqua).

FUNZIONALITÀ MYCOMFORT
Collegamento BUS/RS485 . .

Controllo valvole modulanti/uscite $0-10 \mathrm{~V}$
-
Controllo ventilatori inverter/uscite 0-10V
Orologio settimanale \quad •

Retroilluminazione display

ACCESSORI		
Pannelli di comando elettronici a microprocessore con display	KBFLAE	Kit installazione comandi MY COMFORT a bordo FLAT
DIST Distanziale per comandi MY COMFORT per installazione a parete	MCSUE	Sonda umidità per comandi MY COMFORT (medium e large), EVO
KB2X1E Kit installazione comandi MY COMFORT a bordo 2X1	MCSWE	Sonda acqua per comandi MY COMFORT , EVO

Controlli e Software per terminali idronici TED

Comando elettronico semplificato

TED

PLUS

" Tre versioni secondo la tipologia d'impianto e di terminale
» Facilità di utilizzo
» Installazione a parete o a bordo macchina
» Gestione di terminali con motore EC (solo versione 0-10 V)

Una serie di tre comandi agevoli ed efficaci

Le tre diverse versioni del nuovo comando elettronico TED sono la risposta Galletti all'esigenza di avere a disposizione un comando semplice ma allo stesso tempo adattabile alle diverse necessità impiantistiche.
L'assegnazione delle modalità di funzionamento risulta intuitiva e di facile applicazione, mentre gli accessori a corredo rendono possibile l'installazione del comando a bordo macchina oltre che nel classico posizionamento a parete.
Il comando é inoltre dotato in tutte le sue versioni di contatti dedicati a sonde aria o acqua remote. In quest'ultimo caso e dunque possibile fornire il consenso alla ventilazione solo se la temperatura dell lacqua risulta adeguata al normale funzionamento.

VERSIONI DISPONIBILI

TED2T

- Gestione delle unità terminali con motore asincrono poste in impianti a 2 tubi
- Gestione della valvola di regolazione
- Gestione del consenso acqua su base tem peratura

TED4T

TED10

- Gestione delle unità terminali con motore EC grazie al generatore interno di segnale $0-10 \mathrm{~V}$
- Adatto ad impianti a 2 e 4 tubi
- Modalità manuale o automatica di variazione della velocità
- Gestione del consenso acqua su base temperatura

Controlli e software per terminali idronici-EVO LINK

Supervisore con touchscreen da 5" per la gestione del sistema di climatizzazione

EVO LINK

EVO LINK, la supervisione resa semplice.

Per fornire un pacchetto di supervisione che sia al contempo intuitivo e potente nasce EVO LINK
La supervisione Galletti in un comodo formato all-in-one. EVO LINK è un elegante ma discreto tablet da $5^{\prime \prime}$ da installare a parete che contiene al suo interno tutto il necessario per la supervisione di un piccolo impianto. Grazie a EVO LINKè possibile controllare fino a 30 terminali con comandi EVO e una pompa di calore, attraverso una grafica fresca ed intuitiva.
Con EVO LINK la supervisione non è mai stata più semplice, impostare fasce orarie, accensioni o spegnimenti programmati oppure cambiare il setpoint delle proprie unità saranno operazioni veloci e piacevoli.

Dashboard semplice e intuitiva, permette di controllare tutti i dispositivi dellimpianto con un solo click!
Grazie alla schermata dedicata, la gestione di chiller e pompe di calore non è mai stata cosi semplice!

ACCESSORI
Pannelli di comando elettronici a microprocessore con display
EVO-2-TOUCH Interfaccia utente touch screen $2.8^{\prime \prime}$ per comando EVO Scheda di potenza per comando EVO

[^0]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
 (2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
 (3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
 (4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
 (E) Dati certificati EUROVENT

 Alimentazione elettrica 230-1-50 (V-ph-Hz)

[^1]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
 (2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa)
 (3) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
 (4) Potenza sonora rilevata secondo ISO 3741 e 1503742
 (E) Dati certificati EUROVENT

 Alimentazione elettrica 230-1-50 (V-ph-Hz)

[^2]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u umidità relativa) espressa secondo la EN1397:2021
 (2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
 (3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
 (4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
 (E) Dati certificati EUROVENT

 Alimentazione elettrica 230-1-50 (V-ph-Hz)

[^3]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
 (2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa)
 (3) Temperatura acqua $45^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
 (4) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
 (E) Dati certificati EUROVENT

 Alimentazione elettrica 230-1-50 o 220/-1-60 (V-ph-Hz)

[^4]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% umidità relativa) espressa secondo la EN1397:2021
 (2) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $20^{\circ} \mathrm{C}$
 (3) Potenza sonora rilevata secondo ISO 3741 e ISO 3742
 (E) Dati certificati EUROVENT

 Alimentazione elettrica 230-1-50 (V-ph-Hz)

[^5]: (1) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $27^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (47% u unidità relativa) espressa secondo la EN1397:2021

[^6]: MODELLI 6 E 6A DISPONIBILI SOLO NELLA VERSIONE ON/OFF

[^7]: (1) Temperatura acqua $85^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
 (2) Potenza sonora rilevata secondo $1503741-100 \%$ della velocità massima
 (3) Riferito alla velocità massima

[^8]: (1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$, temperatura aria $15^{\circ} \mathrm{C}-100 \%$ della velocità massima
 (2) Potenza sonora rilevata secondo IS0 3741 -100\% della velocità massima
 (3) Riferito alla velocità massima

[^9]: (1) Temperatura acqua $65^{\circ} \mathrm{C} / 55^{\circ}$, temperatura aria $15^{\circ} \mathrm{C}$ - velocità massima consentita in freddo
 (2) Temperatura acqua $7^{\circ} \mathrm{C} / 12^{\circ} \mathrm{C}$, temperatura aria $28^{\circ} \mathrm{C}$ bulbo secco $/ 19^{\circ} \mathrm{C}$ bulbo umido (53% umidità relativa) - velocità massima consentita in freddo
 (3) Potenza sonora rilevata secondo 1503741 - velocità massima consentita in freddo
 (4) Riferito alla velocità massima consentita in freddo

